

Geoacoustic Tracking

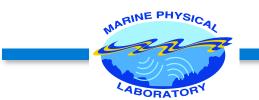
Caglar Yardim, Peter Gerstoft, and William S. Hodgkiss

12 November 2008

156th Meeting of the Acoustical Society of America, Miami, FL

Work supported by ONR.

- I. Introduction
- II. Geoacoustic Inversion vs. Tracking Monte Carlo vs. Sequential Monte Carlo
- III. Applications/Scenarios
- IV. Tracking Filter Theory
 - a. Extended (EKF), Unscented Kalman (UKF), Particle (PF) Filters
 - b. Posterior Cramér-Rao Lower Bound (PCRLB)
- V. Results
- VI. Conclusions



What is geoacoustic tracking? What is a tracking filter?

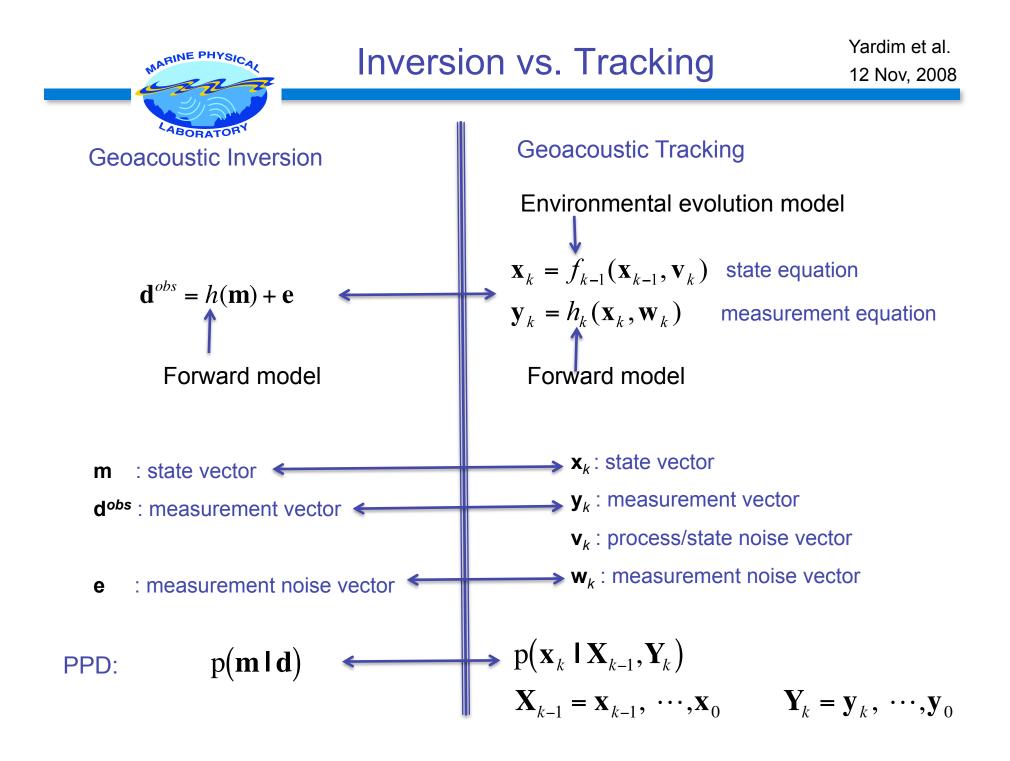
Geoacoustic tracking is the estimation of the evolution of geoacoustic parameters sequentially, temporal and/or spatial. (estimates and underlying posterior densities)
A tracking filter is a recursive Bayesian estimator.

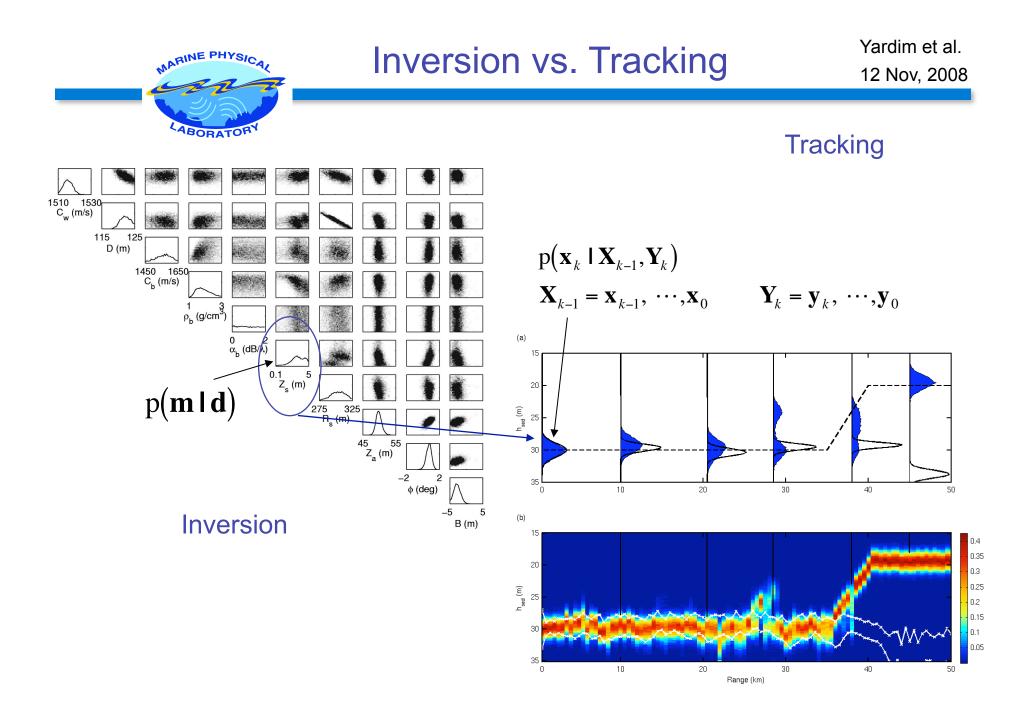
Why do it?

Efficient way of doing sequential estimation. A framework that handles both the previous values of the parameters and the sequential data at each index *k*.

How to do it?

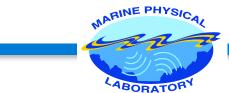
- Kalman Framework, the optimal recursive Bayesian estimator for linear/Gaussian.
- Sequential Monte Carlo Techniques.





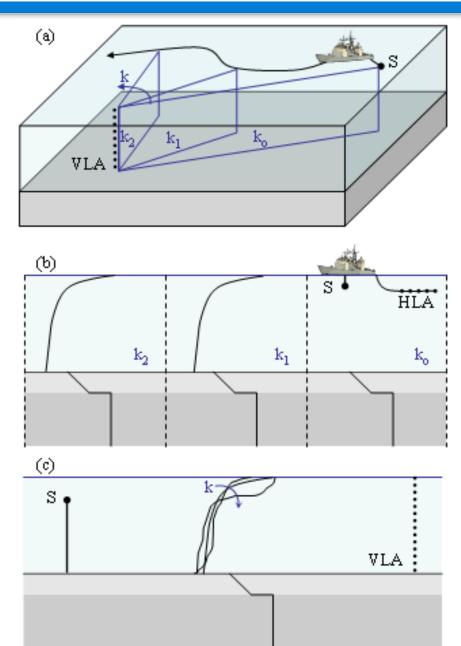
Scenarios and Possible Applications

Yardim et al. 12 Nov, 2008



- Towed source/fixed HLA, VLA
- Towed source/HLA platform
- Fixed hydrophone on the seafloor and a towed source
- Tow ship self noise data acquired via a towed HLA
- Passive fathometer from the ocean ambient noise field measured by drifting array
- Fixed source/receiver. Track sound speed evolution

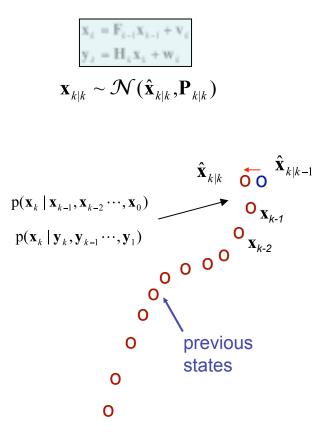
SWARM95, SWAMI98, MAPEX2000, SCARAB98, ASCOT01, Boundary03, Yellow Shark94, MREA/BP07, SW06



Kalman Framework

A Single Kalman Iteration

 $p(\mathbf{x}_k | \mathbf{Y}_k)$



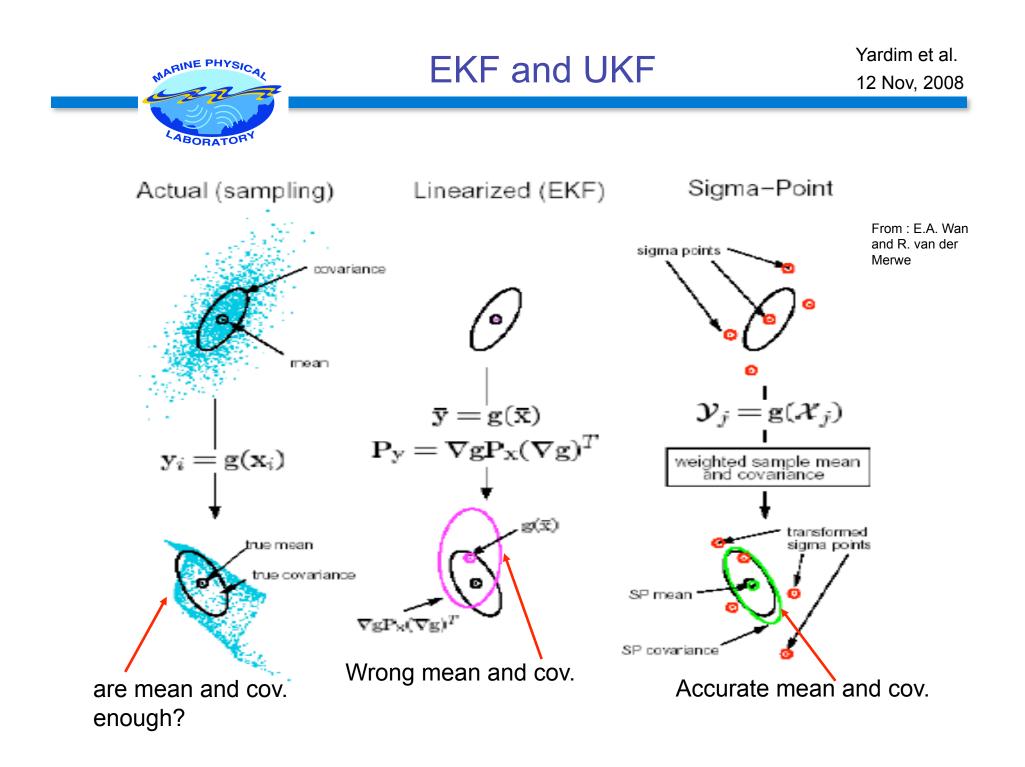
- 1. Predict the mean $\hat{\mathbf{x}}_{k|k-1}$ using previous history. $\mathbf{p}(\mathbf{x}_k | \mathbf{x}_{k-1})$ $\hat{\mathbf{x}}_{k|k-1} = E\{\mathbf{x}_k | \mathbf{x}_{k-1}\} = \int \mathbf{x}_k p(\mathbf{x}_k | \mathbf{x}_{k-1}) d\mathbf{x}_k$ 2. Predict the covariance $\mathbf{P}_{k|k-1}$ using previous history. 3. Correct/update the mean using new data \mathbf{y}_k
 - $\hat{\mathbf{x}}_{k|k} = \mathrm{E}\left\{\mathbf{x}_{k} \mid \mathbf{Y}_{k}\right\} = \int \mathbf{x}_{k} \, \mathrm{p}(\mathbf{x}_{k} \mid \mathbf{Y}_{k}) d\mathbf{x}_{k}$
- 4. Correct/update the covariance $\mathbf{P}_{k|k}$ using \mathbf{y}_k

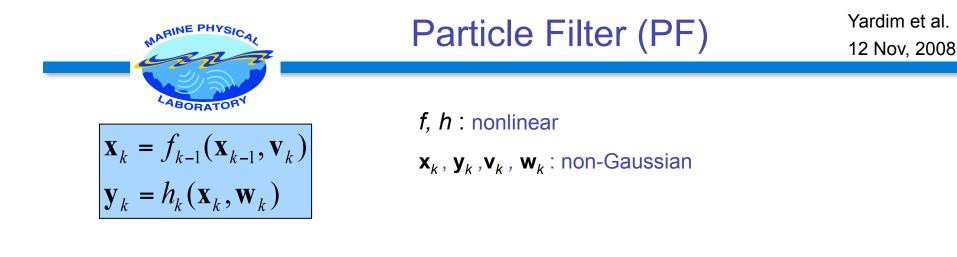
UPDATE

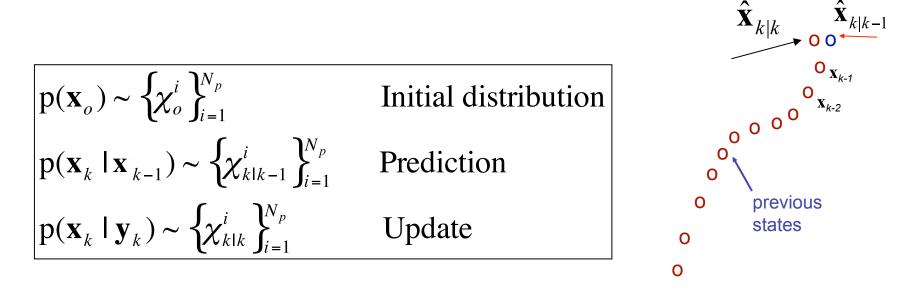
 $\cdots \Rightarrow p(\mathbf{x}_{k-1} \mid \mathbf{Y}_{k-1}) \Rightarrow p(\mathbf{x}_k \mid \mathbf{Y}_{k-1}) \Rightarrow p(\mathbf{x}_k \mid \mathbf{Y}_k) \Rightarrow \cdots$

PREDICTOR-CORRECTOR

DENSITY PROPAGATOR





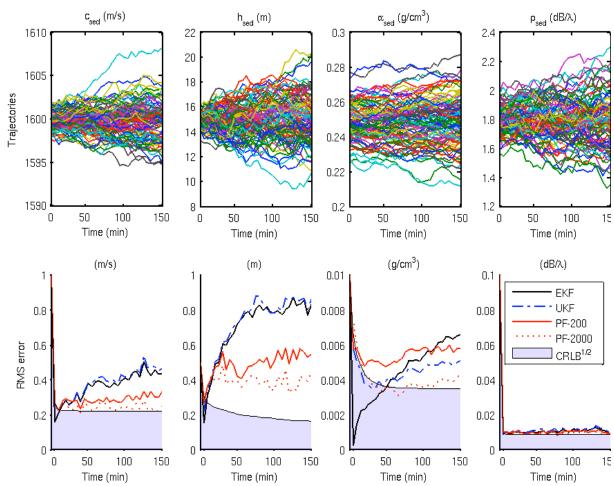


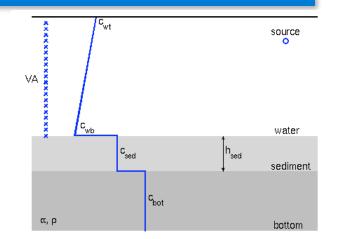
MC Importance Sampling (IS) SMC Sequential Importance Resampling (SIR)

Filter Performance and PCRLB

Yardim et al. 12 Nov, 2008

- 5 km range Ĉircular arc
- Performance of 100 tracks
- EKF, UKF, PF-200, PF-2000
- Posterior or Bayesian CRLB (MC sampled)





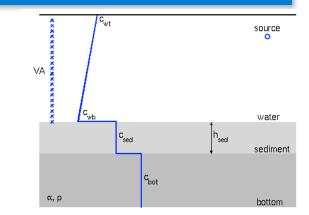
Filter Performance and PCRLB

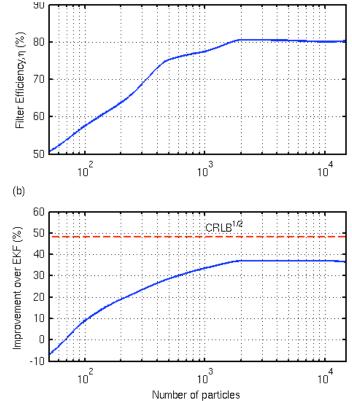
Yardim et al. 12 Nov, 2008

TABLE II. Performance Comparison for Example I

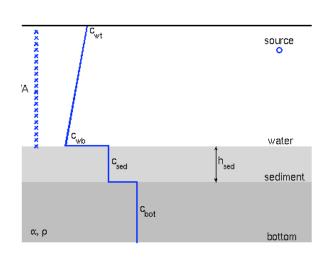
	RMS at $t = 150 \text{ min}$				Avg.	RTAMS (100–150 min)				Avg. %
Method	$c_{\rm sed}$	$h_{\rm sed}$	$\alpha_{\rm sed}$	$\rho_{\rm sed}$	η	$c_{\rm sed}$	$h_{\rm sed}$	$\alpha_{\rm sed}$	$\rho_{\rm sed}$	Improv.
	(m/s)	(m)	(dB/λ)	(g/cm^3)	(%)	(m/s)	(m)	(dB/λ)	$(\mathrm{g/cm^3})$	Over EKF
EKF	0.43	0.77	$6.5 \ 10^{-3}$	$10.7 \ 10^{-3}$	52	0.44	0.82	$6.1 10^{-3}$	$11.3 \ 10^{-3}$	0
UKF	0.45	0.80	$5.0 \ 10^{-3}$	$11.1 \ 10^{-3}$	55	0.46	0.84	$4.9 10^{-3}$	$11.8 \ 10^{-3}$	2
$\rm PF{-}200$	0.30	0.53	$5.8 \ 10^{-3}$	$9.9 10^{-3}$	63	0.31	0.54	$5.8 \ 10^{-3}$	$10.4 \ 10^{-3}$	19
PF-2000	0.22	0.39	$4.2 \ 10^{-3}$	$9.3 \ 10^{-3}$	80	0.24	0.39	$3.9 10^{-3}$	$9.6 \ 10^{-3}$	36
$\rm PF{-}10000$	0.22	0.39	$4.2 \ 10^{-3}$	9.310^{-3}	81	0.24	0.39	$3.9 10^{-3}$	$9.6 \ 10^{-3}$	37
$\sqrt{\text{CRLB}}$	0.22	0.16	$3.5 \ 10^{-3}$	$8.8 \ 10^{-3}$	100	0.22	0.17	$3.5 \ 10^{-3}$	$8.8 \ 10^{-3}$	37 48

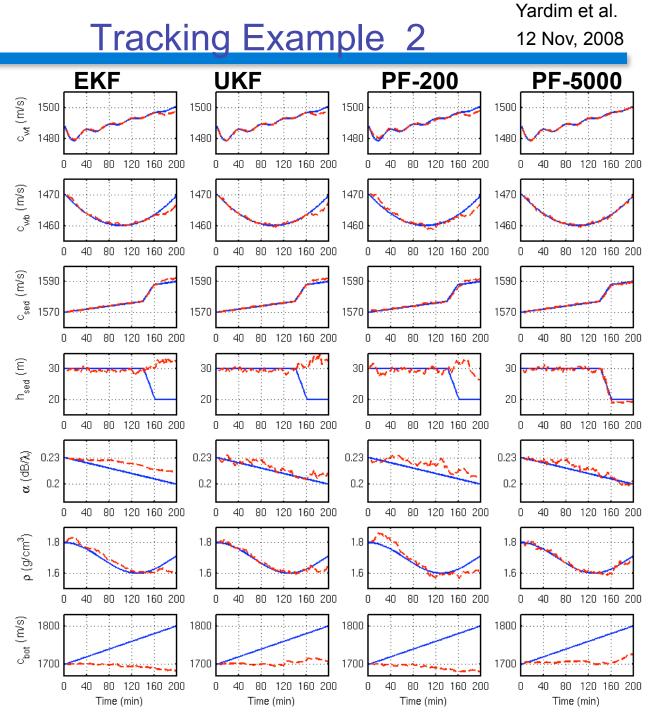
EKF and UKF: (2*4+1)=9 forward model runs/step
CPU time: a factor ~20 (PF-200), 200 (PF-2000), 1000 (PF-20000) more than EKF.





- Evolution of a 200 min track with jump in sediment, VLA 5km range
- True environment
- Tracked environment
- PF-5000 tracks sediment jump

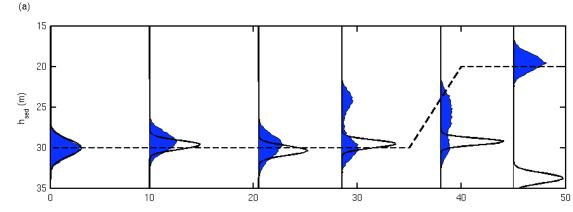


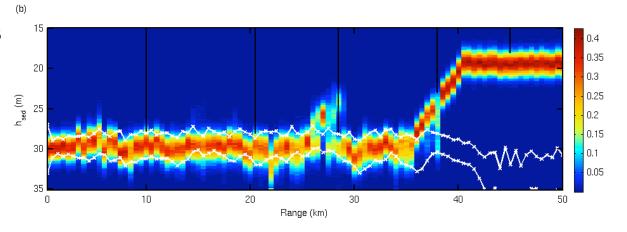


Evolution of PPD

Yardim et al. 12 Nov, 2008

- PPD of sediment thickness
- Black curves: EKF (Gaussian)
- PF with 10k particles
- MCMC requires typically 100 k to 1 M particles
- PF requires less particles, because it is based on the history





Geoacoustic tracking can help improve the estimating the evolution of the environmental parameters and their associated uncertainties and can be a useful tool to complement classical geoacoustic inversion algorithms.

- EKF: Easy and fast but not for most geoacoustic tracking problems which can be highly nonlinear and non-Gaussian.
- UKF: Higher order nonlinearities, but still high nonlinearity and non Gaussian pdfs are problematic.
- > PF: No assumptions. for nonlinear, non-Gaussian problems.