

Lower Atmospheric Radio Refractivity Estimation Using Sea-Borne Radar and Meteorological Statistics

AOS SEMINAR

March 02, 2006

Caglar Yardim

OUTLINE

- Introduction
- Refractivity From Clutter (RFC) Problem
- Factors That Affect the RFC Capability of a System
- Study Case : West Pacific
- Results
- Conclusions

INTRODUCTION

EM Duct in Sea-borne Radar Applications

Three most common ducting profiles

- **n** : the index of refraction
- c : the speed of light in vacuum
- *v* : the speed of light in the medium

n = c/v M ~ n

Radar PPI Screen for Evaporative and Surface-Based Ducts

Reflectivity image: March 11, 1998 Map # 031198-20 15:52:33.3

Reflectivity image: April 02, 1998 Map # 040298-17 18:50:00.3

RFC Capability Assessment

RFC Capability Assessment

SCRIPPS INSTITUTION O OCEANOGRAPHY UCSD CENTENNIAL SO

II. Issues Related to the Environment:

1. Regional duct statistics

NARINE PHYSICA

ABORATOR

- 1.a. Evaporation duct
- 1.b. Surface-based duct
- 2. Day/night, monthly and seasonal changes
- 3. Surface wind speed

Atmospheric Statistics

<u>Purpose</u>: To determine how well RFC will perform with a given radar platform in Sea-of-Japan, Yellow Sea, East China Sea, North West Pacific Ocean, Philippine Sea, and Sea-of-Okhotsk.

Three regions: East China Sea, South Japan, and North Japan

Evaporation duct height increases with latitude

RFC Capability in West Pacific

Range-independent tri-linear M-profile model

RFC Capability in West Pacific

Various duct statistics

	SBD	Elevated	Multiple Elevated	SBD & Elevated
North Japan (15 stations)	5%	4%	0.7%	0.7%
South Japan (20 stations)	9%	11%	3.5%	2.4%
East China Sea (15 stations)	8.5%	18%	4%	2.3%

SBD Mean Values (Annual and day/night averaged)

	h ₂	h ₃	c ₂	C ₃
North Japan (15 stations)	38 m	68 m	0.112 M-units/m	-0.367 M-units/m
South Japan (20 stations)	51 m	91 m	0.104 M-units/m	-0.350 M-units/m
East China Sea (15 stations)	67 m	122 m	0.101 M-units/m	-0.364 M-units/m

Evaporation Duct Estimation in West Pacific

- The algorithm takes advantage of averaging over both time and azimuth.
- For evaporation duct with stable conditions ($T_{sea surface} = T_{air}$) Jeske profile can be written as:

$$M(z) = c_1 (z - h_1 \ln(z / z_o)),$$

$$c_1 = 0.13, \quad z_o = 1.5 \times 10^{-4}$$

Hence, there is only one parameter, duct height. The algorithm just compares the observed clutter return with a library of clutter returns obtained from evaporation ducts with varying heights.

MARINE PHYSICAL

Evaporation Inversion

Results for 20m duct

Source Frequency: 5500 MHz Height: 25 m, Launch Angle: 0⁰ HPBW: 2⁰, Polarization: V Beam Pattern: Gaussian

Duct Type: Evaporation

Region: SouthJapan day Time, Season: spring

Sea State: 4:22 Evaporation Duct Height: 20 m

Inversion Results

Clutter Only: 20m Clutter+Prior: 19m

20

h_{evap} (m)

10

30

40

12

10

8

6

4

2

00

% Occurence (Prior)

h_{evap} Estimated Based on Clutter & Regional Prior

- Almost all radar parameters are critical in RFC. Antenna height is very important in the sense that a very high antenna will not excite the duct and clutter will be low.
- Flexibility in one or more radar parameter can result in substantial improvement in RFC.

Sea Clutter Fluctuations

Sea clutter can be described as K-distribution. (a closed form solution of a chi-squared distribution modulated by a Rayleigh)

Chi-squre: for slowly varying part

Rayleigh: for fast (speckle) components

$$p(a) = \frac{2b}{\Gamma(\nu)} \left(\frac{ba}{2}\right)^{\nu} K_{\nu-1}(ba)$$

- Clutter fluctuations can be substantial. Time and azimuth averaging may be needed to mitigate this.
- Averaging in azimuth (median filtering) could remove disturbing interferers (other ships, rain showers).

MARINE PHYSICAL LABORATORY

SBD in East China Sea

- SBD inversion is done using a genetic algorithm.
- The results shows histogram of the best samples from the GA-simplex codes. Red shows true values.

- Applicability of RFC for a given radar system in a given environment is addressed.
- Important issues such as the effects of radar parameter, environmental statistics are discussed.
- Performance is analyzed with noise and sea clutter fluctuations.

Some of the figures are taken from AREPS user manual and created using DCS data