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What is a EM Duct?
- A decrease in the atmospheric index of refraction with increasing altitude will bend 
the EM wave downward, effectively trapping the signal within a layer called the “Duct”.

A typical value for n for the lower atmosphere is 1.000330. Since this is not very 
practical, the parts-per-million version is used, where

So N will be 330. However this is for the flat surface and after taking into account the 
curvature of the earth we end up with the currently used M-profile, where
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vcn /= where n is the index of refraction
c is the speed of light in vacuum
v is the speed of light in the medium
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Why does it occur? Where and when?

A decrease in M can happen if  - Temperature increases w/ height
- Humidity decreases w/ height

where the effect of humidity are far larger that of the temperature.

Land Duct : Clear summer nights with moist ground. Relatively short lived.
Thunderstorm Duct : Caused by the cool air spreading out from the base of 
the thunderstorm. Short lived.
Sea Duct : Warm dry air from land over cooler bodies of water. Can last for 
long durations. Marine Boundary Layer.

Result in cylindrical spreading (1/R) instead of usual spherical EM 
spreading (1/R2).

1/R



Why do we care about it? 
What are the effects on EM Propagation?

1. Blind Zones (Radar Holes)

2. Height Error for 3-D Radars

3. Clutter Rings

4. Extended Range

Effects of Ducting



No Ducting

Ducting

Effects of Ducting



Conventional Duct Measurement Techniques

- Bulk Measurements (radiosonde, helicopter soundings, etc)
- Numerical Weather Prediction Models

Alternative Method

- Refractivity From Clutter (RFC)
1. No ship based equipment or measurement
2. No additional signal, Inversion is performed the data acquired 

during the normal radar operation
3. Near real time range dependent refractivity profile

Estimation of the M-Profile



RFC as an Inversion Problem

EM Parabolic 
Equation 

(TPEM)

Measured Radar 
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- Elevation Angle
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Inversion ….continued



What else do we want to find?
- We want to address the uncertainties in the estimated results.

So, we are looking for the probability of a selected model given the data measured in 
the experiment.

How to Implement the Inversion Problem?
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Result

m, model

m : [m1, m2, m3,…, mN]

d, data

We want :

1. p(model|data) = p(m|d) 

2. Probability distribution of 
each parameter, pdf, 
p(mi|d) 

3. Means, variances, 
medians of each 
parameter
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Bayesian Theory :Bayesian Theory :
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Prior : p(m)  , density before the experiment, usually taken as uniform.

Evidence : p(d)

∫== mmmdd dpppEvidence )()()( constant

Therefore, assuming uniform prior, p(m) :

)()( dmdm Lp ∝

Evidence
 LikelihoodPrior x  Posterior =

… continued



It is well known that, if the errors are assumed to be of Gaussian distribution 
w/ zero mean and uncorrelated at different ranges, the likelihood function will 
be:
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[ ])()( mdm Eep −∝

Just calculate e-E(m) for all m and obtain PPD. But it is not that easy! 

• For N=10 and a discretization of 20 possible values per parameter:

Need 2010 forward model runs (Parabolic Equation in our case)

If we assume 10 runs/sec we need 30,000 years to calculate it!

A clever sampling (Metropolis Algorithm) needs about  100k samples (3 hours).

USE CLEVER SAMPLING STRATEGY!USE CLEVER SAMPLING STRATEGY!

… continued



Efficient Sampling Techniques – Markov Chain Monte Carlo

MC2 are algorithms that are mathematically proven to sample the state space in such a 
way that PPD can be found using these few samples. (Metropolis – Hastings Algorithm, 
Gibbs Sampling, Slice Sampling,…)

Metropolis Algorithm : 

m1

m2

m1

m2

L(m|d)

mt

m(t+1)

m(t+2)

p(mproposed)
p(mt)

a =

a > rand[0,1] accept

else reject proposal

Accept: mt+1 = mproposed

Reject : mt+1 = mt
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Λ= C : Covariance matrix of the   
collected first samples

U : Rotation matrix (found by 
eigenvalue decomposition)

Λ : Eigenvalues



Summary of the Algorithm

1. Burn-in Phase to find a initial point to start sampling. 

Can be genetic algorithm, simulated annealing, etc.

2. Initial Sampling Phase

- Takes samples to compute C.

- Find the rotation matrix. 

- Rotate the space and create new rotated parameters.

3. Metropolis Phase 

- Run 2 independent parallel MA samplers in this new space.

- Quit when both independent runs histograms converges to the same 

distribution.
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Marginal PPD

2-D PPD
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Future Work

Estimation of evidence for a few model shapes and reparameterization
after a single inversion and usage of that model in the next inversions.

Incorporation of our own electromagnetic Split-Step FFT Parabolic 
Equation. Testing it with Wide-Angle Pade PE and analyzing the 
differences.

Addition of range dependence.

Inclusion of grazing angle and range dependence of sea surface RCS 
(Radar Cross-Section).

Comparison w/ PPD’s obtained by so-called biased samplers like 
Genetic Algorithm. 



An alternate way of measuring the duct properties has been introduced. 

The method provides us not only with the parameter estimates but also with 

their uncertainties, by providing probability distribution, mean and variance 

of each parameter.

CONCLUSIONS



Thanks…

Some of the figures are taken from AREPS user manual


