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INTRODUCTION

» What is a EM Duct?

- A decrease in the atmospheric index of refraction with increasing altitude will bend
the EM wave downward, effectively trapping the signal within a layer called the “Duct”.

n=c/v where n is the index of refraction
c is the speed of light in vacuum
v is the speed of light in the medium

A typical value for n for the lower atmosphere is 1.000330. Since this is not very
practical, the parts-per-million version is used, where

N = (n—1).10°

So N will be 330. However this is for the flat surface and after taking into account the
curvature of the earth we end up with the currently used M-profile, where

M =N +.157h where h is the altitude
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EM vs Acoustic Inversion
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» Why does it occur? Where and when?

Modified Refractivity M
A decrease in M can happen if - Temperature increases w/ height

- Humidity decreases w/ height
where the effect of humidity are far larger that of the temperature.

Land Duct : Clear summer nights with moist ground. Relatively short lived.

Thunderstorm Duct : Caused by the cool air spreading out from the base of
the thunderstorm. Short lived.

Sea Duct : Warm dry air from land over cooler bodies of water. Can last for
long durations. Marine Boundary Layer.

» Result in cylindrical spreading (1/R) instead of usual spherical EM
spreading (1/R?).
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Why do we care about it?
What are the effects on EM Propagation?

Blind Zones (Radar Holes)

Height Error for 3-D Radars
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Estimation of the M-Profile

Conventional Duct Measurement Techniques

- Bulk Measurements (radiosonde, helicopter soundings, etc)
- Numerical Weather Prediction Models

Alternative Method

- Refractivity From Clutter (RFC)
1. No ship based equipment or measurement

2. No additional signal, Inversion is performed the data acquired
during the normal radar operation

3. Near real time range dependent refractivity profile
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N Parameter
Refractivity Model
N\
Square-Error Genetic ML, MAP
Objective Function qori — _
EM Parabolic Algorithm Estimates
Equation | Replica i
Other Parameters ~ Field Z
-Frequency (TPEM) * PPD
- Transmitter Height MC? :
— > Moments
- Antenna Pattern Sampler
- Antenna Beamwidth
- Elevation Angle Measured Radar
Clutter
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How to Implement the Inversion Problem?

What else do we want to find?

- We want to address the uncertainties in the estimated results. Estimated
_— Result
g m
"m, I "m;

So, we are looking for the probability of a selected model given the data measured in

the experiment.
We want :

|\W{\ 1. p(model|data) = p(m|d)
: NH 2. Probability distribution of
{} each parameter, pdf,
Moditied Refractivity M p(m| | d )

d, data .
{} 3. Means, variances,

medians of each
parameter

(o)

Surface
Based
Duct

eight —

Trapping
Layar

H

m, model

m : [my, m,, mg,..., my]
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CABamAaOe Desired Quantities

1, = E[X] = [ xp(x)dx
o} = E[(x—1,)°]= [ (x—12,)* p(x)dlx

N-Dimensional Posterior Probability Density

p(md) = [[[ .- [ p(m[d)dm,dm,...dm,_dm, ,....dm, \

m; j#i

L =<M. >= Imi p(m\d)dm Marginal Posterior Probability Density
m
2
oy = j(mi _ﬂi) p(m\d)dm
m
Bayesian Theory,

How are we going to get PPD, p(m‘d) ::> Markov Chain Monte

Carlo Samplers (MC?)
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Bayesian Theory
P(A B) = p(AB).p(B) = p(B|A).p(A)

p(B|A).p(A)
Then, p(AB)=
o PAR=T
p(B) = [ p(A,B)dA = [ p(B|A) p(A)dA
Hence, p(AB)= p(B|A) p(A) Bayes’ Thm.
| p(BJA) p(A)IA
Applying it to our case,
LIKELIHOOD
POSTERIOR PRIOR
d d
p(mld) - p( \m(zjr))(m) _ p((j \m)p(m()]I
p J p(m) ﬂm) m

EVIDENCE
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. Prior x Likelihood
Posterior = :
Evidence

» Prior : p(m) , density before the experiment, usually taken as uniform.

» Evidence : p(d)

Evidence = p(d) = [ p(djm) p(m)dm — congian

Therefore, assuming uniform prior, p(m) :

p(mld) o< L(m|d)
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It is well known that, if the errors are assumed to be of Gaussian distribution
w/ zero mean and uncorrelated at different ranges, the likelihood function will

be:
1 (—é(d"bs—d(m))”
exp

\/(ZEGZ)R \ 20° )

L(m|d) =

L(m|d) oc e =™
1

20°

where E(m)= Z(d ?* —d (m))2

p(m|d) oc 1™
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p(m|d) oc e ™

Just calculate e’®M) for all m and obtain PPD. But it is not that easy!
» For N=10 and a discretization of 20 possible values per parameter:
Need 2010 forward model runs (Parabolic Equation in our case)
If we assume 10 runs/sec we need 30,000 years to calculate it!

A clever sampling (Metropolis Algorithm) needs about 100k samples (3 hours).

) USE CLEVER SAMPLING STRATEGY!
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Efficient Sampling Techniques — Markov Chain Monte Carlo

MC? are algorithms that are mathematically proven to sample the state space in such a
way that PPD can be found using these few samples. (Metropolis — Hastings Algorithm,
Gibbs Sampling, Slice Sampling,...)

Metropolis Algorithm :

rn2 mz _ p(mproposed)
p(my)
L(m|d) a > rand[0,1] accept
else reject proposal
Accept: M = Myrgpose
m; m,

Reject : mt*1 = m!
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C : Covariance matrix of the
collected first samples

U : Rotation matrix (found by
eigenvalue decomposition)

A : Eigenvalues
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Summary of the Algorithm LU

1. Burn-in Phase to find a initial point to start sampling.
Can be genetic algorithm, simulated annealing, etc.
2. Initial Sampling Phase
- Takes samples to compute C.
- Find the rotation matrix.
- Rotate the space and create new rotated parameters.
3. Metropolis Phase
- Run 2 independent parallel MA samplers in this new space.

- Quit when both independent runs histograms converges to the same

distribution.
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lllustration of How the Algorithm Works

Burn-in

v
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\ >

Initial Sampling m,
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GConvergence of Gorrelation Matrix that will be used in Parameter Rotation
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Convergence of the Marginal PPD's
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Future Work
» Estimation of evidence for a few model shapes and reparameterization
after a single inversion and usage of that model in the next inversions.

» Incorporation of our own electromagnetic Split-Step FFT Parabolic
Equation. Testing it with Wide-Angle Pade PE and analyzing the
differences.

» Addition of range dependence.

» Inclusion of grazing angle and range dependence of sea surface RCS
(Radar Cross-Section).

» Comparison w/ PPD’s obtained by so-called biased samplers like
Genetic Algorithm.
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CONCLUSIONS

» An alternate way of measuring the duct properties has been introduced.

» The method provides us not only with the parameter estimates but also with

their uncertainties, by providing probability distribution, mean and variance

of each parameter.
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Thanks...

Some of the figures are taken from AREPS user manual



