

AOS SEMINAR I

RADAR CLUTTER INVERSION USING BAYESIAN MONTE CARLO METHODS

April 29, 2004 Caglar YARDIM

OUTLINE

- Introduction
- Refractivity From Clutter Problem
- Implementation of the Inversion Problem
 - Bayesian Theory
 - Likelihood
 - Markov Chain Monte Carlo Methods
 - Metropolis Sampler
- Results
- Future Work & Conclusions

INTRODUCTION

What is a EM Duct?

- A decrease in the atmospheric index of refraction with increasing altitude will bend the EM wave downward, effectively trapping the signal within a layer called the "Duct".

n	=	c/	'v
n	=	<i>C</i> /	v

where *n* is the index of refraction *c* is the speed of light in vacuum *v* is the speed of light in the medium

A typical value for n for the lower atmosphere is 1.000330. Since this is not very practical, the parts-per-million version is used, where

 $N = (n-1).10^6$

So N will be 330. However this is for the flat surface and after taking into account the curvature of the earth we end up with the currently used M-profile, where

M = N + .157h where **h** is the altitude

EM vs Acoustic Inversion

Possible Duct Profiles

Why does it occur? Where and when?

A decrease in M can happen if - Temperature increases w/ height

- Humidity decreases w/ height

where the effect of humidity are far larger that of the temperature.

Land Duct : Clear summer nights with moist ground. Relatively short lived. *Thunderstorm Duct* : Caused by the cool air spreading out from the base of the thunderstorm. Short lived.

Sea Duct : Warm dry air from land over cooler bodies of water. Can last for long durations. Marine Boundary Layer.

Result in cylindrical spreading (1/R) instead of usual spherical EM spreading (1/R²).

ABORATOR' Effects of Ducting

- Why do we care about it?What are the effects on EM Propagation?
- 1. Blind Zones (Radar Holes)

MARINE PHYSIC

- 2. Height Error for 3-D Radars
- 3. Clutter Rings

Coverage display for a surface-based duct atmosphere.

Estimation of the M-Profile

- Conventional Duct Measurement Techniques
 - Bulk Measurements (radiosonde, helicopter soundings, etc)
 - Numerical Weather Prediction Models
- Alternative Method
 - Refractivity From Clutter (RFC)
 - 1. No ship based equipment or measurement
 - 2. No additional signal, Inversion is performed the data acquired during the normal radar operation
 - 3. Near real time range dependent refractivity profile

MARINE PHYSICAL

RFC as an Inversion Problem

How to Implement the Inversion Problem?

What else do we want to find?

So, we are looking for the probability of a selected model given the data measured in the experiment.

We want :

- 1. $p(model|data) = p(\mathbf{m}|\mathbf{d})$
- Probability distribution of each parameter, pdf, p(m_i|d)
- 3. Means, variances, medians of each parameter

Desired Quantities

$$\mu_x = E[x] = \int xp(x)dx$$

$$\sigma_x^2 = E[(x - \mu_x)^2] = \int (x - \mu_x)^2 p(x)dx$$

N-Dimensional Posterior Probability Density

$$PPD \equiv p(\mathbf{m}|\mathbf{d})$$

$$p(m_i|\mathbf{d}) = \iiint \dots \iint p(\mathbf{m}|\mathbf{d}) dm_1 dm_2 \dots dm_{i-1} dm_{i+1} \dots dm_N$$

$$\mu_i = \langle m_i \rangle = \int m_i p(\mathbf{m}|\mathbf{d}) d\mathbf{m}$$
Marginal Posterior Probability Density
$$\sigma_i^2 = \int m_i (m_i - \mu_i)^2 p(\mathbf{m}|\mathbf{d}) d\mathbf{m}$$

How are we going to get *PPD*, $p(\mathbf{m}|\mathbf{d}) \geq$

Bayesian Theory,

Bayesian Theory :

$$p(A, B) = p(A|B) \cdot p(B) = p(B|A) \cdot p(A)$$
Then,
$$p(A|B) = \frac{p(B|A) \cdot p(A)}{p(B)}$$

$$p(B) = \int p(A, B) dA = \int p(B|A) \cdot p(A) dA$$
Hence,
$$p(A|B) = \frac{p(B|A) \cdot p(A)}{\int p(B|A) \cdot p(A) dA}$$
Bayes' Thm.

Applying it to our case,

- > <u>Prior</u> : $p(\mathbf{m})$, density before the experiment, usually taken as uniform.
- Evidence : p(d)

Evidence =
$$p(\mathbf{d}) = \int p(\mathbf{d}|\mathbf{m}) p(\mathbf{m}) d\mathbf{m} \longrightarrow \text{constant}$$

Therefore, assuming uniform prior, $p(\mathbf{m})$:

 $p(\mathbf{m}|\mathbf{d}) \propto L(\mathbf{m}|\mathbf{d})$

It is well known that, if the errors are assumed to be of Gaussian distribution w/zero mean and uncorrelated at different ranges, the likelihood function will be:

$$L(\mathbf{m}|\mathbf{d}) = \frac{1}{\sqrt{(2\pi\sigma^2)^R}} \exp\left(\frac{-\sum\limits_{R} \left(d^{obs} - d(\mathbf{m})\right)^2}{2\sigma^2}\right)$$

 $L(\mathbf{m}|\mathbf{d}) \propto e^{-[E(\mathbf{m})]}$

where
$$E(\mathbf{m}) \equiv \frac{1}{2\sigma^2} \sum_{R} \left(d^{obs} - d(\mathbf{m}) \right)^2$$

 $p(\mathbf{m}|\mathbf{d}) \propto e^{-[E(\mathbf{m})]}$

 $p(\mathbf{m}|\mathbf{d}) \propto e^{-[E(\mathbf{m})]}$

Just calculate $e^{-E(m)}$ for all m and obtain PPD. But it is not that easy!

- For N=10 and a discretization of 20 possible values per parameter:
- Need 20¹⁰ forward model runs (Parabolic Equation in our case)
- If we assume 10 runs/sec we need 30,000 years to calculate it!
- A clever sampling (Metropolis Algorithm) needs about 100k samples (3 hours).

... continued

USE CLEVER SAMPLING STRATEGY!

Efficient Sampling Techniques – Markov Chain Monte Carlo

MC² are algorithms that are mathematically proven to sample the state space in such a way that PPD can be found using these few samples. (Metropolis – Hastings Algorithm, Gibbs Sampling, Slice Sampling,...)

Metropolis Algorithm :

Coordinate Rotation

T

Using the first couple of hundred samples :

$$\mathbf{C} = U\Lambda U^{T}$$
$$\mathbf{\widetilde{m}} - U^{T}\mathbf{m}$$

 $\mathbf{m} = U\widetilde{\mathbf{m}}$

 \underline{C} : Covariance matrix of the collected first samples

U : Rotation matrix (found by eigenvalue decomposition)

 $\underline{\Lambda}$: Eigenvalues

SCRIPPS INSTITUTION OF OCEANOGRAPHY UCSD UCSD (F//TLINNA's003

Summary of the Algorithm

1. Burn-in Phase to find a initial point to start sampling.

Can be genetic algorithm, simulated annealing, etc.

- 2. Initial Sampling Phase
 - Takes samples to compute C.
 - Find the rotation matrix.
 - Rotate the space and create new rotated parameters.
- 3. Metropolis Phase
 - Run 2 independent parallel MA samplers in this new space.
 - Quit when both independent runs histograms converges to the same distribution.

Illustration of How the Algorithm Works

Convergence

Future Work

Estimation of evidence for a few model shapes and reparameterization after a single inversion and usage of that model in the next inversions.

Incorporation of our own electromagnetic Split-Step FFT Parabolic Equation. Testing it with Wide-Angle Pade PE and analyzing the differences.

> Addition of range dependence.

Inclusion of grazing angle and range dependence of sea surface RCS (Radar Cross-Section).

Comparison w/ PPD's obtained by so-called biased samplers like Genetic Algorithm.

CONCLUSIONS

- > An alternate way of measuring the duct properties has been introduced.
- The method provides us not only with the parameter estimates but also with their uncertainties, by providing probability distribution, mean and variance of each parameter.

Thanks...

Some of the figures are taken from AREPS user manual