
Background

In the ocean, acoustic information
arrives at the receiver distorted by the
medium and corrupted by noise.

Even when the signal is deterministic, a
complete description must minimally be
a statistical one. If information regarding
the medium or the form of the signal is
available, it too can and should be includ-
ed, leading to what is known as Model-
Based signal processing. In other words,
any processing carried out on the
received signal should contain the best
characterization of the distortion by the
medium and corruption by the measure-
ment noise that is available.

Signal processing is conventionally divided into three
tasks; detection, estimation, and classification. Detection is
defined as the determination of the existence or non-exis-
tence of a postulated signal at the receiver, and in its simplest
form, is a simple binary (yes/no) decision. Detection per se is
not discussed in detail in this article. Estimation is the deter-
mination of the values of certain parameters of the signal, the
source, or the medium. A simple example is the determina-
tion of the bearing (angle) of an acoustic source at a receiving
array of hydrophones. At its most complex, estimation leads
to a class of problems called Inverse Problems, an example of
which could be the extraction of the value of some property
of the ocean (sound speed), the ocean bottom (density, sound
speed, etc.) from the signal, or the characterization of a
source or scatterer, commonly called Identification.

The quantification of detection and estimation is where
statistics plays its major role. In the case of detection, the per-
formance is measured in terms of the probability of detection
for a given probability of false alarm. This is embodied by the
so-called Neyman-Pearson detector,1 which seeks the maxi-
mum probability of detection for a fixed probability of false
alarm. There are more sophisticated approaches to detection
based on formal hypothesis testing, and information on these
approaches is can be found in Ref. 2 and references therein.2

In estimation, which is the main focus of this article, the
quality of the estimate is usually measured by its variance,
which is a measure of the statistical spread of the estimate
about its true value. Both of these criteria require the specifi-

cation of a probability density function.
In these cases, it is convenient to divide
the processing task into two classes;
parametric and non-parametric. What
is meant by non-parametric is that the
processing does not concern itself with
other than the detection decision or the
value of the estimate. Parametric, on the
other hand, attempts to assign values to
certain parameters of the signal, as in
time series analysis, or parameters
describing the source and the medium.
These parameters may or may not be
easily identified as directly representing
actual physical parameters. When they
are, it is convenient to call this type of

parametric processing Model-Based Processing (MBP),3,4
which is the main subject of this article.

In Fig. 1, we show a sketch of an inverse problem
approached with MBP. In ocean acoustics, a mathematical
model (denoted in the figure as the forward model) is select-
ed (the wave or Helmholtz equation, for example), expressing
the physics of the medium. In the forward problem, equa-
tions are then solved under the assumption of a known set of
parameters; sound speed and source location is a potential
set of such parameters. The solution provides the acoustic
field under the assumed conditions. Data collected in the
ocean consist of measurements of the actual field. In the
inverse problem, we now treat the parameters (previously
assumed as known), as unknown or uncertain quantities and
move backwards from the measured data for the estimation
of the optimal set of parameters generating the field best
resembling the measurements. It is the estimation perform-
ance that we wish to improve using MBP, connecting a phys-
ical/mathematical model and signal processing.
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Fig. 1. An inverse problem.
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Figure 2 illustrates the ocean acoustics estimation prob-
lem. A source emits sound, which is sensed at an array of
phones. The array could be a vertical line array (VLA), a hor-
izontal line array (HLA), or a more complex configuration of
a sensor geometry. We wish to “invert” the measured data for
estimation purposes. Parameters to be estimated may
include source location, array tilt and shift, sound speed in
the ocean and seafloor sediments, sediment thickness, atten-
uation, and density.

Model-Based signal processing
The concept of MBP is not a new one, because the spec-

ification of a model is required for any inverse problem.
However, its use as a means of improving the performance of
an ocean acoustic processor is a relatively novel idea.
Historically, its use in ocean acoustics probably began with
the work of Hinich,5 who showed that by including the prop-
agation model in the algorithm, the depth of an acoustic
source in an acoustic waveguide could be readily estimated.
Bucker6 later showed that both the range and depth of the
source could be estimated and introduced the term
“Matched-Field processing,” or MFP. A more detailed
description of the history and methods of MFP can be found7

in a special dedicated issue of the Institute of Electrical and
Electronic Engineers (IEEE) Journal of Oceanic Engineering.

Originally, MFP was applied solely to source localization

problems, under the assumption that the parameters describ-
ing the medium are known. Although a great deal was done in
the field of MFP for source localization, still a rather useful
approach to many ocean acoustic problems, there remains a
fundamental problem which plagues it, sometimes referred to
as the “Mismatch Problem.” This problem arises from the fact
that the solution can be highly sensitive to errors in the model
parameters. This is not surprising, because it is the complexity
of the model itself that leads to the observability of the desired
parameters. Thus, if the model is not correct, it will lead to
degradation. Sometimes this degradation can be catastrophic.

Although there have been many approaches to try to rem-
edy this, the first major step forward was the work of
Richardson andNolte,8 who, working within a Bayesian frame-
work, included a priori probabilities in the MFP algorithm to
account for uncertainties in the troublesome parameters. As a
result, they obtained posterior probability density functions
(PDFs) for source location, which described the uncertainty in
the estimation process resulting from the lack of precise
knowledge on the propagation medium characteristics.

MFP was soon after extended to inversion for environ-
mental parameters. The first such application of MFP was
presented by Livingston and Diachok,9 who estimated the
under-ice reflection coefficient applying MFP to data and
sound propagation models in the Arctic. Inversion for the
characteristics of the propagation medium subsequently
expanded with estimation of geoacoustic parameters in high-
ly complex environments.10-16

Within a Bayesian framework, but with dynamic models
in mind—namely Bayesian filtering, Candy and Sullivan17

sought to remedy the mismatch problem by embedding the
propagation model into a Kalman filter (KF). This has the
advantage of allowing the troublesome parameters to be
included as part of the state vector of unknowns, a procedure
known as “augmentation.” A further advantage is that the
Kalman formalism provides a natural and self-consistent
framework for the inclusion of essentially any model. Most
subsequent work has improved on this approach, especially
by use of the so-called Extended and Unscented Kalman fil-
ters18,19 (EKFs and UKFs, respectively) and several variants,
and the particle filter (PF),20 the latter pioneered in ocean
acoustics by Candy21,22 and subsequently extended.23-26 PFs
provide a powerful framework for performing signal pro-
cessing in nonstationary dynamic systems involving nonlin-
ear equations and non-Gaussian PDFs as well as a stream of
incoming data. A summary of applications of the family of
Kalman and particle filters to problems in ocean acoustics27 is
available. These methods are often referred to as sequential
Bayesian filtering and rely on a two-stage process. During the
first stage, unknown state variables xk at step k are predicted
using estimates from step k–1. The second stage entails an
update stemming from physical and statistical models that
relate acoustic measurements yk to state variables xk. Figure 3
illustrates the two steps of sequential Bayesian filtering. In
addition to providing point estimates for the state variables,
sequential Bayesian filtering also provides posterior PDFs at
every step, as will be shown.

Sequential Bayesian filtering has been frequently applied
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Fig. 2. Measuring the acoustic field in the ocean.

Fig. 3. Sequential Bayesian filtering.
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to source localization and tracking. It has also been success-
fully employed in geoacoustic inversion,24,28,29 tracking of
internal wave fields,30 tracking of frequencies in time-fre-
quency representations,23 and spatial arrival tracking across
an array.26 Some applications of MBP in ocean acoustics with
sequential Bayesian filtering (with Kalman or particle filters)
are discussed next.

Applications
Towed array processing

One novel application of MBP in ocean acoustics is its
use as a processor for a short towed array. Because a towed
array is a moving sensor, it naturally incurs Doppler in the
received signal. Here, MBP is a means of exploiting the bear-
ing information in the Doppler.

A simple example of this can be seen from the following.
Suppose a narrow-band plane wave signal of radian frequency
ω0 is arriving at a receiver moving with speed v, where the
direction of propagation of the signal is at angle θ with respect
to the normal to the direction of motion of the receiver, some-
times referred to as broadside. The frequency of the received
signal will be Doppler-shifted to frequency ω, and the sign of
the product vsinθ determines the sign of the Doppler, i.e., pos-

itive implying up-Doppler. The relation between ω and ω0 is
given by the following well known expression:

Here, c is the speed of sound in the water. It is clear then,
that if one has knowledge of the source frequency, the bear-
ing can be estimated. Passive synthetic aperture bearing esti-
mation exploits this idea by casting the problem as joint esti-
mation of the source frequency and the bearing angle.

Although the signal in this example is narrowband, the
same approach can be used in the broadband case. More
information on passive synthetic aperture and its history is
available.31,32 (The term “synthetic aperture” refers to the fact
that this processor outperforms the conventional processor,
and therefore is equivalent to a conventional processor with
a significantly longer aperture.) In the following example, the
problem is solved by the use of a Kalman Filter.

During an experiment carried out jointly by Boston
University andWoods Hole Oceanographic Institution, using
the autonomous undersea vehicle REMUS, a short (six-ele-
ment) array was towed. During the experiment, a ferry from
the mainland of Cape Cod on its way to the island of
Nantucket passed through the area. The resulting data pro-
vide the basis for this example.33,34

The six-element array, which had an element spacing of
0.75 m, was towed at a speed of 1.5 m/s. The ferry first
appeared at an angle very close to broadside (00) to the towed
array. The array was moving in a straight line toward the
course of the ferry, which was moving at approximately 20 kts,
on a straight course from left to right with respect to forward
endfire of the array. This configuration is depicted in Fig. 4.
The points A and B are the ferry positions for the respective
onset and closest point of approach (CPA) of the ferry source
used in this work. The distance between these two points is
approximately 2 km. Although the radiated sound from the
ferry was quite broadband, extending over a band from about
100 to 1000 Hz, there was a particularly strong band of energy
occurring between 890 and 920 Hz. This energy band was

Fig. 5. Results for the random walk case.

Fig. 4. Ferry and Remus tracks.

Fig. 6. Results for the bearing-rate augmented case.
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selected for the data in this paper. At this band of frequencies,
the array has an acoustic length of approximately 2.3 λ.

A KF was then used to process the data. The state vector
consisted of the target bearing and the source frequency,
which in this broadband case, was the lowest frequency of a
sequence of short fast Fourier transforms (FFTs) of the time
series data from each hydrophone. The measurement equa-
tion was made up of the six hydrophone time series and the
observed frequency mentioned above. The results are shown
in Figs. 5 and 6. In both figures the vertical axis is time in sec-
onds. The left panel of Figure 5 is the result of beamforming
the data with a conventional frequency-domain beamformer.

The center panel shows the maxima of the plot in the left
panel, and the right panel shows the synthetic aperture result.
As expected, both estimators fail to resolve the bearing in the
neighborhood of endfire. After endfire, beginning at about
400 seconds, the synthetic aperture clearly shows the cumu-
lative effect expected of such a processor.

Figure 6 depicts the results for the case where the bearing
rate is augmented into the processor, which adds another ele-
ment to the state vector. The left panel shows the bearing esti-
mate, the center panel shows the estimate of the bearing rate,
and the right-hand panel shows the estimate of the source fun-
damental frequency. Note that this frequency is not constant,
because the source itself is undergoing non-zero accelerations.
Thus, before endfire it has an up Doppler and, after endfire, a
down Doppler and the apparent fundamental frequency of the
source must adapt to these speed changes.

The fact that the bearing estimate in Fig. 6 shows some
improvement over that of Fig. 5 bears some explanation. The
KF requires that the user specify a trial value for the state
error covariance. The value chosen constitutes a lower bound
on the eventual state error covariance. This provides a means
for the user to control the convergence rate of the process.
That is, the larger this covariance is chosen to be, the faster
the convergence of the processor, but at the price of a noisier
estimate. The estimate in Fig. 6 allowed a smaller value for
this covariance to be used, because the convergence require-
ments for the case of a non-zero bearing rate are eased by the

Fig. 7. (a) Synthetic, noise-free time series received at an array of vertically and hor-
izontally separated hydrophones; (b) time series after noise has been added.

Fig. 8. (a) True arrival times (+) and particle filter (PF) estimates (o). Posterior
probability density functions (PDFs) for the number of arrivals at phone (b) 14,
and (c) 15.

inclusion of the bearing rate directly into the dynamics. Thus,
the limiting state estimation error is smaller in Fig. 6 (left
panel), than that in Fig. 5 (right panel). This adjustment of
the covariance input to the KF is referred to as tuning, and is
discussed in Refs. 35 and 36.

The performance of the synthetic aperture processor
presented here is a consequence of proper modeling. There
are three elements to the model structure. First, the proper
inclusion of the Doppler provides additional bearing angle
information; second, the modeling of the state as a Gauss-
Markov process exploits the memory implicit in such a
recursive model; and third, explicitly including the bearing
rate in the model further decreases the bearing error.

Spatial time delay tracking
Estimating difference in arrival times of signals at a set of

receiving phones provides critical information on the propa-
gation medium and geometry. It is commonly referred to as
time-delay or arrival time estimation37 and has a vast number
of applications in sonar, communications, speech processing,
architectural acoustics, and medical diagnostics among other
fields. In ocean acoustics, in particular, it has been shown in
the past how arrival time estimation can lead to accurate
bathymetry estimation, source localization, and geoacoustic
inversion.37-40 As expected, the accuracy of arrival time esti-
mates determines source localization and environmental
parameter inversion quality.

Typically, arrival time estimation pertains to identifying
arrival times of distinct signals at a specific phone or finding
the time difference between arrivals of the same signal at dif-
ferent receivers. The idea that is explored here is to combine
both aspects. We are interested in not only estimating times
at which distinct paths arrive at a given phone, but also
employing information on arrival times from one receiver to
the next, in order to improve arrival time estimation at each
phone. Using information from one hydrophone for the esti-
mation process at another hydrophone leads to the concept
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of sequential Bayesian filtering in space, that is, across
phones. Because Bayesian filters have the power to exploit the
correlation of motion of a target from one space/time point
to another, it is possible to estimate parameters such as
arrival times more tightly when we exploit spatial informa-
tion rather than by only employing data at a single phone.
Specifically, our signal arrives at a set of receivers via multi-
ple paths and the movement of each arrival up and down the
array of receivers can be compared to the motion of a target.

Figure 7(a) shows synthetic, noise-free time series at a
tilted very large array (VLA) of 16 hydrophones in an isove-
locity shallow water waveguide, similar to that of the Haro
Strait Primer experiment.39 The hydrophones have varying,
nonuniform vertical and horizontal separations, causing
nonlinearities in the arrival time patterns. The direct (D) and
surface reflection (SR) paths that sound follows can be iden-
tified in the time series, although the SR is not present at the
last two phones. Black dotted lines in the figure indicate the
evolution of arrival times in space for each path. If we have a
reliable arrival time estimate for one path at hydrophone k−1,
we should be able to get an estimate for the same path at

phone k, that is superior to an estimate obtained without tak-
ing into account arrival times at neighboring receivers.
Figure 7(b) shows the same signals after noise has been
added. The Signal-to-Noise Ratio (SNR) was 14 dB. Red
ellipses show spurious peaks introduced by noise that could
be potentially identified by an arrival time estimator as true
sound arrivals.

Treating each path in space as a moving target, Bayesian
MBP exploits the spatial evolution described above and
shown in Fig. 7(a). The state vector consists of the arrival
times for the D and SR paths. An observation model relates
the received time series to those state variables. A prediction
model is also selected, that predicts arrival times at receiver k
using arrival time knowledge at receiver k−1. Because of the
non-linearity of the observation model, KFs are not suitable
for this problem. Instead, MBP is implemented with particle
filtering.26 We consider here, as an additional state variable,
the number of arrivals that are present in the time series.

Figure 8(a) illustrates the true arrival times (+) and the
corresponding estimates (o) for the 16 phones obtained via
PF. Estimates are very close to the true arrivals with small
deviations because of the added noise. Although two arrivals
are detected for K=1,…,14, the filter correctly switches to a
single arrival at phones 15 and 16. Figure 8(b) shows the PDF
for the estimated number of arrivals at phone 14, where the
PF clearly identifies two arrivals with probability of one. At
phone 15, the PDF in Fig. 8(c) demonstrates that the filter has
estimated the presence of a single arrival. Because of the tran-
sition between phones 14 and 15, there is still significant
probability (0.4) corresponding to the presence of two
arrivals.

Similarly,27 we applied the PF arrival time estimation
approach to data from the Shallow Water 06 (SW06) experi-
ment.41 The data were collected in August 2006 at the 16-ele-
ment MPL-VLA1 array. The source signal was a linear fre-
quency modulated pulse with frequencies between 100 and
900 Hz; the sampling rate was 50 kHz. Received data were
match-filtered to produce the time series of Fig. 9(a). Because
of low SNR at the 15th and 16th phones, data at only the 14
lower phones were used.

We consider three paths: D, SR, and Bottom Reflection
(BR). As discussed,42 estimating accurately those arrivals can
reduce uncertainty in source localization and subsequently,
in inversion for other parameters. The state variables for the
PF are the arrival times for the three paths.

Figure 9(b) demonstrates the PDFs of arrival times as
calculated by the PF. Notable uncertainty is present at the
16th phone, as the PDF spread demonstrates. This is expect-
ed, because no prior information from previous states
(phones) is available; the 14th phone is where the PF begins.
However, although the D and SR arrivals are very close at that
phone, the PDFs show that the paths are clearly identified.
The uncertainty is reduced at lower phones, where estimates
are improved because of the incorporation of prior informa-
tion. As also discussed,41 uncertainty, manifested by an
increase in the spread of the PDFs, becomes more pro-
nounced when the SR and BR paths cross at receivers six
through three.

Fig. 9. (a) SW06 time-series at 14 phones, (b) PDFs for D (black), SR (red) and BR
(green) paths at the 14 phones.
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Using the same approach, amplitudes of distinct paths
can be readily estimated as well, in addition to their arrival
times,26 and can be subsequently used for estimation of atten-
uation.
Source and geoacoustic tracking

Another application of Model-Based ocean acoustic sig-
nal processing is the tracking of source and ocean environ-
mental properties using sequential Bayesian techniques.
These techniques provide a suitable framework for sequen-
tially estimating in time and space the unknown ocean envi-
ronment and source parameters as data become available.

KFs deal with systems where the acoustic measurements are
related to unknown parameters via linear equations and all
the underlying uncertainty can be represented with Gaussian
PDFs. Geoacoustic tracking involves nonlinear interactions
between the environmental parameters and the measured
acoustic field with non-Gaussian PDFs. Hence, EKFs, UKFs,
and PFs were used to handle the nonlinear/non-Gaussian
geoacoustic tracking problem.24 The performances of the
EKF, UKF, and PF were analyzed and compared to the
Bayesian Cramér-Rao lower bound, that provides a lower
bound for achievable performance in tracking geoacoustic

We make microphonesWe mak microphones ansihead.comansihead com

Visit ansihead.com if you are interested in
measuring the insertion-loss of all types of
hearing protectors.

Would you like
to meet the new
head in town?
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Fig. 10. Geoacoustic and source tracking example from SWellEx-96 experiment. (a) Towed source trajectory and a vertical line array (VLA) in a range dependent environ-
ment with varying geoacoustic parameters and (b) posterior probability density functions (PDFs) of water depth and sediment properties [25] obtained using a particle fil-
ter with five minute snapshots provided on the right. Solid curves are the true values calculated from the Bachman database.
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parameters.24 The results showed that, for slowly varying
environments, all filters performed similarly. However, when
abrupt changes such as a rapid transition to a different sedi-
mentary rock formation occurred, the PF outperformed the
KF variants. The trade-off for better track quality is the
increased computational cost of the PF compared to the KF
variants.

Sequential geoacoustic tracking was demonstrated on
SWellEx-96 data.25 Because the source parameters were also
unknown, the state vector included the unknown source
parameters (source depth, range, and speed) together with
the geoacoustic parameters, effectively tracking the source in
an unknown and changing environment. A constant velocity
model was adopted in that problem. The algorithm was test-
ed in a region with bathymetry ranging from 100 to 250 m
and a range-dependent sedimentary layer given by the
Bachman profile43 as shown in Fig. 10(a). It was conducted in
May 1996, off the coast of San Diego, CA, near Point Loma.
A 118 m long, 21-element VLA was deployed from R/P Flip
at 216.5 m deep water north of Loma Canyon. The source
was towed at 2.6 m/s at a depth of 55 m. The source was a
comb signal composed of 13 frequencies from 49 to 388 Hz.
A PF with 200 particles was able to track the moving source
array and the environmental parameters that included array
tilt, water depth, sediment thickness, sediment top and bot-
tom sound speed values. The posterior PDFs for four of these
parameters, shown in Fig. 10(b), are in agreement with the
true values obtained from the Bachman database. Note that
the PF allows the PDFs to be non-Gaussian as is the case for
the sediment thickness and upper sound speed.

The ocean shelfbreak region is characterized by rapid
change in bathymetry and large variations in geoacoustic
parameters. The ocean sound speed can be evolving rapidly
both temporally and spatially due to the interplay between
deep and shallow water. The capabilities of sequential
Bayesian geoacoustic and source tracking were also tested in
the shelfbreak regions with strong spatial and temporal vari-
ability44 using the data from the SW06 experiment. The PF
was able to track the source and bottom parameters as well as
the sound speed profile in terms of empirical orthogonal
functions. AT
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