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Abstract: Efforts to characterize environmental parameters from ambient
noise must contend with uncertainty introduced by stochastic fluctuations of
the noise itself. This Letter calculates the Fisher information and Cramer-
Rao bound of an unbiased correlated ambient noise parameter estimate. As
an illustration, lower bounds on the error covariance of medium speed
and attenuation parameters are obtained for a two-dimensional isotropic
ambient noise scenario. The results demonstrate that an optimal sensor
separation exists for obtaining the minimum error and the predictions are
validated using simulated parameter inversions. The influences of record
length, bandwidth, signal-to-noise, and spatial resolution are discussed.
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1. Introduction
In 1953 Eckart1 demonstrated that the second order statistics of diffuse noise can exhibit
spatio-temporal correlations related to the propagation of waves between two locations. In
recent years, passive applications in ocean acoustics2 and seismics3 have capitalized on this
connection to infer information about the propagation environment (e.g., phase speed,
attenuation, boundary properties, etc.). Such strategies must contend with uncertainty intro-
duced by stochastic fluctuations of the noise itself. The level of uncertainty depends on many
factors including the parameters of interest, the inversion strategy, the propagation medium,
the directivity of the noise, sensor geometry, sample duration (record length), and bandwidth.

A number of theoretical studies address parameter inversion uncertainty in the
context of active tomography and passive source localization where the emphasis is on
the information about a localized radiator (a transduction device, a ship, an earth-
quake, etc.) against interference from a background of diffuse ambient noise.4,5 Here
attention is paid to the passive tomography context where the focus is on environmen-
tal information carried by correlated diffuse ambient noise. Starting with a parametric
model for the ambient noise covariance between a pair of spatially separated sensors, a
general expression for the Fisher information (FI) with respect to chosen parameters of
the model is derived and used to quantify the Cramer-Rao bound (CRB) on the esti-
mation error. As an illustration, the FI is calculated with respect to medium phase
speed and attenuation for the canonical model of isotropic broadband noise in a
two-dimensional (2D), free space, attenuating medium.6 From this follow expressions
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for the error bound that depend explicitly on record length, bandwidth, and sensor sep-
aration. As a consequence of the trade-off between increased signal-to-noise at small
separation versus increased resolution at large separation, the error bounds exhibit a
global minimum at an optimal, intermediate value of separation.

Expressions are derived for two different inversion strategies: one based on an
association between peak covariance and travel-time between the sensors,7,8 and one
that incorporates the full structure of the covariance. Favorable comparison with pa-
rameter inversions carried out using simulated data suggest the FI may be useful for
the design, analysis, and interpretation of ambient noise inversion experiments.

2. The Fisher information
Consider the sample covariance, C(t, s)¼ x1(t)x2(tþ s), between experimental measurements
x1 at location r1 at time t and x2 at location r2 at time tþ s. Relative time s is referred to
henceforth as lag. For simplicity, measurements x1 and x2 are assumed to be real valued,
zero mean, Gaussian distributed, wide-sense stationary processes. As a particular realization
of a stochastic process, the sample covariance exhibits fluctuations. An underlying assump-
tion of experimental efforts to estimate a set of environmental parameters, h # [h1, h2,
…,hJ], from ambient noise is that the measurement ensemble stochastically converges9 to an
expectation value, C # C(s, h)¼ hC(t, s)i, that can be modeled in terms of h.

In the parlance of estimation theory, the stochastic fluctuations of observable
C(t, s) translate to error (or uncertainty) on h. This section calculates the Fisher infor-
mation matrix (FIM) for the process from which lower bounds on the error follow. In
the following, vector and matrix quantities are noted in bold, with matrices having the
additional underline notation. The notation T denotes matrix transpose.

Let X # [x1(t), x2(tþ s)]T represent the joint measurement of a single sample
of x1 at time t and x2 at time tþ s. The likelihood function, denoted L # L(h|X), is

given by L¼ (2p jRj1/2)$1 exp($ð1=2ÞXTR$1X), where R # r2
1 C

C r2
2

! "
# ! n q

q n$1

! "
is

the covariance matrix, r2
1 ðr2

2Þ is the variance of x1 (x2), and the definitions ! # r1r2,
n # r1/r2, and q # C/! are used. The latter is recognized as the correlation coeffi-
cient.10 In general, q, !, and n can depend on h. For a single time sample, element
j,j0 of the FIM with respect to two scalar parameters hj,hj0, given by10 I jj0 # [I ]jj0
¼ð1=2ÞTrfR$1 _RjR

$1 _Rj0 g, becomes

I jj0 ¼ _! j _! j0=!
2 þ

! _nj
_nj0 $ n2qð _! j _qj0 þ _! j0 _qjÞ

!n2ð1$ q2Þ
þ _qj _qj0 ð1þ q2Þ=ð1$ q2Þ2; (1)

where the notation _bj # @b=@hj denotes partial differentiation of quantity b with
respect to hj, and Tr{ } denotes the matrix trace.

Because the FI is additive under independence,11 the FIM for N independent
samples, [X(t1,s),X(t2,s),…,X(tN,s)]T, is given by I (s)¼

PN
n¼1 IðsÞ ¼ NIðsÞ. For a

measurement accumulated over a continuous collection of samples spanning duration
T, the number of independent samples (on average) is given by N¼T/tc, where tc
denotes a correlation time. Consider the case (discussed in Sec. 3 below) where measure-
ments x1 and x2 are white noise processes band-pass filtered over the interval f0(1$D/2)
' |f|' f0(1þD/2) about a chosen characteristic (i.e., carrier) frequency f0. By definition,
D must be less than 2, with D¼ 1 corresponding to 100% relative bandwidth. In this
case, measurements sampled over interval tc¼F$1 (where F # 2Df0 denotes the band-
width) are completely uncorrelated,12 yielding N¼TF independent samples.13

By similar logic the FIM for a simultaneous joint measurement over K inde-
pendent values of lag, [X(t, s1), X(t, s2),…, X(t, sK)]T, becomes I ¼

PK
k¼1 IðskÞ. In the

continuous lag limit, the FIM for a duration T measurement integrated over lag
becomes I ¼ t$1

c

Ð1
$1 ds IðsÞ ¼ NF

Ð1
$1 dsIðsÞ.
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3. Demonstration: 2D isotropic ambient noise
As a demonstration, the FI and error bounds with respect to medium speed and
attenuation are derived and analyzed for an ambient noise scenario involving a uni-
form spatial distribution of noise sources in a 2D free space attenuating medium. As
the scenario is spatially homogeneous, signals x1 and x2 exhibit equal variance,
r1¼ r2¼r (n¼ 1; _nj¼ _nj0 ¼ 0). For simplicity the analysis assumes x1 and x2 exhibit
white power spectra whose intensity is independent of the parameters of interest14

(!¼ r2; _! j ¼ _! j0 ¼ 0).
By the correlation theorem, the correlation coefficient is given by

qðsÞ ¼ CðsÞ
!
¼ 2
F
Re

ðfþ

f$
df C expði2pf sÞ

% &
; (2)

where C # C(f) denotes the coherence function between x1 and x2 with respect to fre-
quency and the limits of integration are defined f6 # f0(1 6 D/2). The factor of F$1 is
required for consistency with the condition n¼ 1. For the isotropic 2D scenario of in-
terest, the coherence function takes the form6 C¼ exp($ad)J0(2pdf=c), where J0
denotes the zeroth order Bessel function of the first kind, d¼ |r1$ r2| is the sensor sepa-
ration, and c and a are the medium speed and attenuation, respectively.

To avoid mixed dimensionality, dimensionless parameters are introduced:
h # [c, a], where c # c/c0 and a # a/a0 represent the speed and attenuation, respectively,
referenced to particular values c¼ c0 and a¼ a0. At the characteristic frequency, f0, one
can then define k0 # c0/f0, l # d/k0, and a # a0k0 as the characteristic wavelength,
the sensor aperture in wavelengths, and the attenuation coefficient in nepers
per wavelength, respectively. While an analytic solution in terms of elementary functions
is not possible, using the asymptotic form, C ( p$1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf0cÞ=ðf lÞ

p
cosð2plf =f0c$ p=4Þ

)expð$aalÞ, to evaluate Eq. (2) at lag sd # d/c (where the covariance exhibits a peak)
in the large aperture limit, l * 1, yields qp # q(sd) ( exp($aal)

ffiffiffi
c
p
=ð2p

ffiffiffiffiffiffi
2l
p
Þ:

Under these conditions the parametric derivatives for speed and attenuation become
_qc # _qcðsdÞ ( $ð2pl=c2Þqp and _qa # _qaðsdÞ ( $alqp, respectively. In subsequent dis-
cussion, notation ( implies the asymptotic limit assumption, l * 1.

3.1 Fisher information with respect to speed and attenuation

Applying Eq. (1) to the isotropic scenario defined above, the FIM associated with the
covariance peak, Ip # IðsdÞ, is written

Ip ¼
_q2

c _qc _qa

_qc _qa _q2
a

" #
1þ q2

p

ð1$ q2
pÞ

2 ( ðlqpÞ
2 ð2p=c2Þ2 2pa=c2

2pa=c2 a2

" #

: (3)

As demonstrated in Fig. 1, the asymptotic expression of Eq. (3) provides a suitable
approximation to the numerical result calculated using Eq. (2). From Sec. 2, the FIM
for a duration T measurement is simply Ip # NIp.

Equation (3) exhibits a maximum at an aperture value lmax¼ (2a)$1. In inter-
preting this result, it is instructive to express the FIM in terms of a signal-to-noise met-
ric (SNR). A common approach to formulating SNR for ambient noise applications3

is to compare the expectation of the amplitude of the peak covariance to the expecta-
tion of the sample fluctuation magnitude. Using !N to denote the expectation of
the magnitude of the fluctuations of the covariance for a measurement comprising
N independent samples,15 the expectation of the SNR becomes Q#C(sd)/!N

( qp

ffiffiffiffi
N
p
/ ðN=lÞ1=2 exp($aal). Recasting I p in terms of SNR, Ip / (lQ),2 the depend-

ence of the FI on sensor separation can be interpreted as a tradeoff between resolution
and SNR. Though the SNR may be high for small values of sensor separation, the
aperture, l, is small, resulting in poor resolution and low FI (which implies high error).

Walker et al.: JASA Express Letters [http://dx.doi.org/10.1121/1.4792836] Published Online 1 March 2013

EL230 J. Acoust. Soc. Am. 133 (4), April 2013 Walker et al.: Fisher information for ambient noise

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  132.239.237.81 On: Tue, 22 Oct 2013 04:26:37



As aperture increases, improved directional discrimination tends to compensate for
decreasing SNR, resulting in an optimal sensor separation, d¼ k0lmax, for estimating
the speed and attenuation. The optimal separation distance increases with decreasing
attenuation. In a nonattenuating medium (a ! 0) the value of lmax diverges so that the
FI increases monotonically with sensor separation.

3.2 Estimation error for speed and attenuation parameters

In the context of parameter estimation applications, the practical importance of the FI
derives from its relationship with the CRB, V¼I$1, which sets a theoretical lower limit
on the observed parameter error covariance for an unbiased estimator.10 Depending on
the estimator, the observed error may or may not approach the theoretical limit set by
the CRB. When it does, the estimator is said to be efficient. In this case, the bound
can be treated as a predictive quantity. For the FI approach to be most useful, it
would be advantageous if it led to predictive bounds. To demonstrate that it does, this
section uses Eq. (3) to derive bounds for two different estimators of speed and attenua-
tion and compares them to the results of a parameter estimation carried out on simu-
lated data. The following definitions are used in the subsequent discussion:

Ic # ½Ip,11 ( Nð2pqpl=c2Þ2 and Ia # ½I p,22 ( NðqplaÞ2: (4)

For clarity, henceforth the notation eb is used to distinguish observed (or measured)
quantities from theoretical ones.

3.2.1 Fisher information for a covariance peak/travel-time estimator

Consider a duration T measurement of the sample covariance as a function of lag,
eCTðsÞ # T$1

Ð T
0 dt ~x1ðtÞ~x2ðtþ sÞ. A simple strategy (referred to here as the peak esti-

mator, PE) for estimating the medium speed from broadband isotropic noise in a non-
dispersive medium is to associate the lag at which the observed covariance exhibits a
peak (see es in Fig. 2) with a travel-time, sd # d/c, between the sensors.7,8 In formulating
the FI, it is important to recognize that the finite width of the peak introduces
an inherent temporal ambiguity to the estimate of sd. Consequently, the factor qp in Eq.
(4) should be replaced with qp ! (tp/tc)) qp¼ (D/2)qp, where the tp # (4f0)$1 represents
the half maximum width of the peak. Using this, the FI with respect to speed becomes
I PE

c ( (D2/4)Ic. As the observed peak magnitude (see eCp in Fig. 2) is unaffected by the
peak width, the appropriate FI for attenuation is simply IPE

a ( Ia.

Fig. 1. The FI (horizontal) with respect to speed as a function of sensor aperture (vertical). The asymptotic
form of [I p11] (black curve) is compared to the numerically evaluated exact result (gray curve). The speed and
attenuation parameters are taken as unity (c¼ a¼ 1) with a¼ 0.05. The FI is maximal at l¼lmax¼ (2a)$1¼ 10
(dotted line) and vanishes in the limit l! 0 (close up).
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3.2.2 Fisher information for a full covariance estimator

As a more sophisticated estimation strategy (referred to here as the full-signal estima-
tor, FE), consider an objective function, U #

Ð1
$1 dsðeCTðsÞ $ CðsÞÞ2, that utilizes

the information at all values of lag, not just the lag of the peak.16 To account for
the added information of this estimator, it is appropriate to define an FI that is accu-
mulated over all values of lag. Applying Parseval’s theorem in conjunction with
the additivity property discussed in Sec. 2, the appropriate FI for speed becomes
IFE

c # NF
Ð1
$1 ds½IðsÞ,11 ( ð2N=F Þ

Ð f þ

f$
df j _Ccj2 ( 4Ic, where the asymptotic form for

the parametric derivative of the noise coherence model, _Cc ( $
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4lf =f0c3

p

) cos ð2plf =f0cÞ $ ð3p=4Þð Þexpð$aalÞ, has been used [see discussion of Eq. (2)].

3.2.3 Comparison with parameter inversion
To demonstrate that the calculated bounds are indeed predictive they are compared to
the results of a set of inversions for speed and attenuation carried out on simulated
data generated using a standard matrix decomposition approach.17 The data ensemble
comprises M¼ 1000 realizations of duration T samples of ~x1ðtÞ and ~x2ðtÞ. As the 2D
scenario considered has relevance for efforts in seismics7,18 to characterize Rayleigh
surface waves (which are essentially 2D, though they do exhibit dispersion), it is inter-
esting to frame the analysis in the context of seismic ambient noise in the microseism
regime: characteristic frequency f0¼ 0.2 Hz, relative bandwidth D¼ 1(f$¼ 0.1 Hz,
fþ¼ 0.3 Hz), medium phase speed c0¼ 3.0 km/s (characteristic wavelength k0¼ 15 km),
and medium attenuation a0¼ 3.33) 10$3 Np/km (i.e., a¼ 0.05 per characteristic wave-
length). Two sample durations are considered: T¼ 100 ks and T¼ 500 ks (approxi-
mately 27 h and 139 h) corresponding, respectively, to N¼ 4) 104 and N¼ 2) 105

independent samples at the chosen bandwidth.
Figure 2 presents a selection of realizations of the sample covariance at a com-

bination of values of sensor separation and sample duration. Denoting the observed
magnitude of the peak of the sample covariance and its corresponding lag as ~Cp and
~s, respectively, the sample SNR is defined eQ # eCp=~! , where ~! represents the observed
root-mean-square amplitude of the fluctuations over the sample. As demonstrated
in Fig. 2, the observed SNR (ensemble average of eQ) compares favorably with its

Fig. 2. Comparison of observed and predicted inversion error. A selection of realizations of the sample covar-
iance for duration T¼ 100 ks (gray) and T¼ 500 ks (black) measurements at sensor separations, d¼ 120 km
and d¼ 240 km (left panel) includes schematic examples of eC p, ~s, and ~! . The ensemble average of the
observed SNR, eQ(*), is compared to its expectation, Q (solid curves). The observed ensemble average of the
errors, ~d, for the PE ()) and FE (•) speed estimates are compared to the PE (dashed) and FE (solid) CRB. A
similar comparison between the observed PE result ()) and corresponding bound (dashed) is presented for
the attenuation parameter (FE attenuation estimate omitted to facilitate viewing). Finally, the ensemble of PE esti-
mates (gray dots) appears along with the corresponding observed error ellipse ()) and the bound (black curve).
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expectation, Q, derived in Sec. 3.1. Note the increase of SNR with sample duration
and its decrease with aperture.

From Sec. 3.1 the speed and attenuation parameter estimates for the PE are
given by ~c # d=ð~sc0Þ and ~a # (al)$1 ln[(2p

ffiffiffiffiffiffi
2l
p eCpÞ=ð~!

ffiffiffi
~c
p
Þ], respectively. For the FE,

the minimum mean square error of the objective function ~c ¼ argminc{U} yields the
speed parameter estimate (and similarly for the attenuation). For each parameter and
estimation strategy the percent error of the ensemble, ~d # ½M$1PM

m¼1 ð eJ $ 1Þ2,1=2

) 100 ð eJ ¼ ~c; ~aÞ, is presented in Fig. 2. As an example, the percent error of the en-
semble of joint estimates for speed and attenuation are plotted along with the data en-
semble error ellipse for the case d¼ 150 km (l¼ 10) and T¼ 100 ks. For comparison,
the predicted bound on the percent error, d # J $1/2) 100 (J ¼ IPE

c ; IFE
c ; IPE

a ), is plot-
ted along with each observed result in Fig. 2.

The favorable agreement between the observed inversion error and the calcu-
lated bounds suggests that the derived CRB expressions can be predictive for uncer-
tainty. As expected, the observed error decreases with sample duration and exhibits a
minimum at the predicted optimal value of sensor separation, dmax¼ lmaxk0¼ k0/(2a)
¼ 150 km. At the smallest separation considered, d ¼ 15 km (l¼ 1), the inversion error
is quite large (i.e., information vanishes at small separation). The PE strategy fails
below an SNR threshold value of about eQ - 5 (when the peak coherent power
approaches the power of the fluctuations). A failure in this regime is not expected nor
observed with the FE. As there is more information in the phase than the amplitude of
the measurement, the relative error of the attenuation estimates is significantly larger
than that of the phase speed.

4. Conclusion
A general approach has been presented for quantifying the FI and corresponding
CRBs for ambient noise correlation parameter estimates. As a demonstration, the FI
was calculated for the canonical case of a pair of sensors in isotropic noise in a 2D
attenuating free space medium. From this, the CRB for medium speed and attenuation
were derived in terms of the measurement duration, bandwidth, and sensor separation.
As a validation, the calculated bounds were shown to be predictive of the estimation
error observed in an inversion applied to simulated data. Though the estimation error
decreases monotonically with increasing duration, it does not vary monotonically with
separation. Rather, the error exhibits a global minimum at a value that depends on the
tradeoff between sensor aperture resolution and SNR.19

While the approach has been demonstrated for two sensors in an isotropic
seismic scenario, it is easily adapted to multiple sensors for scenarios for which canoni-
cal models exist, for example, isotropic noise in the deep20 and shallow21 ocean, as
well as directional scenarios in both seismics22 and the ocean.23 The approach can be
useful for predicting and analyzing the potential of existing data to yield useful results
(e.g., has enough data been collected to achieve a desired level of confidence?) as well
as for optimizing experimental design (e.g., sensor placement and operating frequen-
cies, etc.). Further, the technique can complement efforts, such as bootstrapping,18

to assign confidence to experimental measures generated from a small number of
observations.24
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