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This paper incorporates tracking techniques such as the extended Kalman, unscented Kalman, and
particle (PF) filters into geoacoustic inversion problems. This enables spatial and temporal tracking
of environmental parameters and their underlying probability densities, making geoacoustic tracking
a natural extension to geoacoustic inversion techniques. Water column and seabed properties are
tracked in simulation for both vertical (VLA) and horizontal (HLA) line arrays using the three
tracking filters. Filter performances are compared in terms of filter efficiencies using the posterior
Cramér—Rao lower bound. Tracking capabilities of the geoacoustic filters under slowly and quickly
changing environments are studied in terms of divergence statistics. Geoacoustic tracking can
provide continuously environmental estimates and their uncertainties using only a fraction of the
computational power of classical geoacoustic inversion schemes. Interfilter comparison show that
while a high-particle-number PF outperforms the Kalman filters, there are many cases where all
three filters perform equally well depending on the inversion configuration (such as the HLA versus

VLA and frequency) and the tracked parameters.
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I. INTRODUCTION

Geoacoustic inversion is a technique used to extract in-
formation about the ocean environment by analyzing the
acoustical field propagation in that medium. Typically, water
column and seabed parameters such as sound speed profiles
(SSPs), sediment densities, layer thicknesses, and attenua-
tions are estimated by finding an environmental model that
generates an acoustic field that matches closely the measured
field. There are different configurations that are typically
used in geoacoustic inversion, each with its own advantages
and drawbacks. Some of the most commonly used ones in-
clude vertical (VLA) or horizontal (HLA) line arrays, bottom
moored or towed arrays, and active or passive source con-
figurations that use either a separate towed source or ship
self-noise for inversion.'”” While some of the inversion tech-
niques focus on obtaining the optimum solution with mini-
mum computation time using efficient global optimizers such
as genetic algorithms8 or simulated annealing,9 the others
estimate the probability densities of the environmental pa-
rameters to compute the uncertainty in the estimated
parameters.lo’11 This enables them to project this environ-
mental uncertainty into parameters-of-interest such as the un-
certainties in transmission loss and statistical sonar perfor-
mance prediction.12

This paper reformulates the geoacoustic inversion algo-
rithms that estimate the geoacoustic environment between
the source and the receiver array at a given time into tracking
the evolution of these parameters and their associated uncer-
tainties in space and time. This is achieved by merging geoa-
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coustic inversion techniques with tracking algorithms such as
the Kalman and particle filters (PFs). These filters have been
used previously in estimation'” and temporal tracking14 of
the ocean SSP and similar acoustic applications.'s’16

Here, the geoacoustic tracking problem is formulated in
a Kalman framework, and depending on the source/receiver
configuration, the acoustic field is calculated using either the
normal mode code SNAP (Ref. 17) or the complex normal
mode code ORCA (Ref. 18) for near-field calculations. This
interaction between the environmental parameters and the
acoustic field can involve a high level of nonlinearity. In
addition, it is known from previous studies'®™?" that the pos-
terior probability densities (PPDs) of geoacoustic parameters
can be non-Gaussian. Therefore, geoacoustic tracking is a
challenging task and requires tracking filters that can handle
nonlinear, non-Gaussian systems. This paper studies the suit-
ability of three such filters, namely, the extended Kalman
filter” (EKF), the unscented Kalman filter> (UKF), and the
PF (Ref. 24) in geoacoustic tracking. All three filters use
different schemes to deal with such complex systems. The
EKF extends the best possible filter in a linear/Gaussian sys-
tem, i.e., the Kalman filter (KF), into the nonlinear/non-
Gaussian domain by analytical linearization of the problem.
Instead, the UKF uses statistical linearization with unscented
transform. Finally, the PF propagates a large number of par-
ticles to represent the evolving probability density function
(PDF) of the environmental parameters. In this paper, the
tracked parameters are restricted to environmental param-
eters since detection and tracking of a target/source using
tracking filters are already well-studied fields in applications
involving sonar and radars.

Most cases that require consecutive geoacoustic inver-
sions to obtain the spatial/temporal variation of geoacoustic
parameters effectively can be reformulated as tracking prob-
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FIG. 1. (Color online) Geoacoustic tracking for three configurations: (a)
Temporal tracking of the average, range-independent environment using a
fixed-VLA-receiver and a towed-source, (b) spatial tracking of range-
dependence using a towed-HLA-receiver and a towed-source, and (c) tem-
poral tracking of the ocean sound speed profile for a fixed-VLA-receiver and
a fixed-source.

lems. Three examples are shown in Fig. 1:

(a) Figure 1(a) shows a typical fixed hydrophone array
(VLA or HLA) configuration and a separate towed
source with the aim of capturing the environment be-
tween the moving source and the receiver array. The two
dimensional environment between the source and the ar-
ray changes as the source is towed, resulting in an evo-
lution of the range-independent model in time, as shown
in the figure as step indices k;. For example, such a sce-
nario could transform the following geoacoustic inver-
sion approaches into geoacoustic tracking:

* a towed source and fixed VLA [e.g., SWARM’95 (Ref.
21},

* a towed source and fixed HLA [e.g., SWAMI'98 (Ref.
2) and Barents Sea’03 (Ref. 6)],

e the test cases used in the Geoacoustic Inversion Tech-
niques Workshop with a moving source and fixed HLA
(Ref. 25), and

e a single hydrophone mounted on seafloor receiving
transmission from a towed source [e.g., SCARAB’98
(Ref. 26)].

(b) Figure 1(b) represents the type of configuration that is
designed to capture range-dependent environmental pa-
rameters at small range increments. The illustration
given in the figure uses a HLA and a source close to the
array, both towed by the same ship. Hence, the HLA
captures the near-field acoustic field that is affected only
by a small section of the water column and seabed. It is
possible to take each of these sections as a step index in
range and assume that the environment is constant
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within each k;, and therefore turn it into a range-
dependent environment tracking problem. The update
rate can be increased using overlapping blocks but for
the sake of simplicity, a nonoverlapping scheme is
shown here. This type of geoacoustic tracking could be
used in

* a towed source and HLA [e.g., MAPEX2000 (Refs. 1,
5, and 7)],

e tow-ship self-noise data acquired via a towed HLA
[e.g., MAPEX2000 (Ref. 3)], and

* passive fathometer using the ocean ambient noise field
measured by a drifting VLA [e.g., ASCOT’01 and
Boundary’03 (Ref. 27)].

(c) The last example, given in Fig. 1(c), estimates the evo-
lution in time of the water column SSP along a fixed
path. Such a scenario could be implemented in the fol-
lowing examples:

e a fixed source and fixed VLA [e.g., Yellow Shark’94
(Ref. 28)] and

e KFs used to track the SSP in a similar configuration
during the MREA/BP’07 experiment (Ref. 14)

The main objective of this paper is to incorporate tracking
filters into the geoacoustic inversion problem and test the
effectiveness of each filter in geoacoustic parameter tracking.

Il. GEOACOUSTIC ESTIMATION AS A TRACKING
PROBLEM

Geoacoustic inversion requires a measurement equation
relating the simulated acoustic field to the observed data
through a forward model. This is represented usinglo’11

d°® = sd(m) +e, (1)

where d°® represents the complex-valued acoustic data vec-
tor along the array, s is the complex source magnitude, d(m)
is the simulated field obtained using the acoustic propagation
model for an environment represented by the environmental
model vector m, and e is complex Gaussian noise. Using Eq.
(1), a geoacoustic inversion algorithm defines an objective
function to be used in the inversion to obtain the best pos-
sible model m.

Geoacoustic tracking, on the other hand, uses two dy-
namic equations to characterize the system:

* An equation modeling the evolution of the environmental
model parameters governed by the physical processes in
the medium such as ocean currents and mixing, bathym-
etry, and the expected rate of change in seabed parameters
in range.

e An acoustic measurement equation similar to Eq. (1).
However, this is a dynarr;ic equation that includes a con-

obs

tinuous stream of data d}”°, where k represents the tempo-
ral or spatial step index.

Following standard KF notation,29 the error e in the
measurement equation, the environmental model m, and the
acoustic field across the hydrophone array d° at step k
henceforth will be denoted by w;, x,, and y,, respectively.
Therefore, the set of equations at step k are
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X = f(X_1) + Vi, (2)

Y. = h(Xk) + W= Skd(Xk) + Wy, (3)

where f(-) is a known function of the state vector x;_;, and
h(-) is the nonlinear function that relates the environmental
parameters X, to the acoustic measurement vector y;. Hence,
h(-) includes both the unknown source term s; and the
known forward model d(x;) as given in Eq. (1). v, and w,
are the process/state and the measurement noise vectors, re-
spectively, with

E{viv]} = Q84
E{ww[} =R,

E{viw!}=0, Vik, (4)
where Q; and R, are the covariance matrices at time k of the
corresponding noise terms. Similar to geoacoustic inversion,
the state vector x; is composed of the n, parameters that
describe the environment at step k. In geoacoustic tracking,
however, these model parameters also evolve so the algo-
rithm continuously updates the best estimate and the uncer-
tainties in these estimates.

Equation (2) is the state equation modeling the evolution
of the environmental parameters. Any prior knowledge about
the environment and its evolution are modeled here. The
values of the environmental parameters at step k are related
to their values in the previous step k—1 by the function f(-).
If the environmental model evolution is linear, f(-) can be
modeled by the matrix F, which is assumed in this paper.
This assumption is reasonable if the parameter update rate is
higher than the rate of change in the environment. The pro-
cess noise v, is a function of how correctly the evolution is
modeled, which is usually taken as a zero-mean Gaussian
PDF, allowing the filter to capture the changes per step that
are not included in the evolution model. For example, the
geoacoustic parameters are assumed to vary slowly with F
=Ian,,x. Even though many geoacoustic parameters such as
the sediment layer thickness may satisfy this condition most
of the time, there can be sudden jumps at the boundaries of
geological formations, violating the evolution model selected
here. To continue tracking the parameters successfully
through the sudden jump, the geoacoustic tracking filters will
have to incorporate a state noise term with a high covariance
Q. The initial density p(x,) can be obtained by running a
Markov chain Monte Carlo geoacoustic inversion at k=0.

Equation (3) is the measurement equation relating the
environmental model parameters to acoustic measurements.
This process involves the selection of a suitable forward
model that propagates acoustic fields and simulates the field
observed across the receiver array for a given environmental
model. The forward model is selected, taking into account
the complexity of the model chosen to represent the environ-
ment, the selection of the source and receiver array configu-
rations, and the available computational power. The most
commonly used propagation models are normal mode (com-
plex versions when the near-field is needed, adiabatic ver-
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sions for mildly range-dependent configurations), ray trac-
ing, and parabolic equation (using either split-step fast
Fourier transform or Padé coefficients). SNAP is used here
with the long-range VLA configuration, and complex ORCA
is used with the near-field HLA simulations. The noise term
is assumed complex Gaussian with covariance R; obtained
from the array signal-to-noise ratio (SNR) [see Eq. (9)].
Since the synthetic data used here are generated using the
same forward model and environmental parameters, there is
no modeling error in the examples. Working with real data
will include unavoidably the modeling uncertainty, resulting
in an increase in the noise term.

The KFs necessitate a linear/Gaussian framework,
whereas any distribution can be used for the PF. This means
that the prior PDF p(x,), the state variables, state, and mea-
surement noise all have to be Gaussian to run any KF algo-
rithm as a geoacoustic tracking filter. PFs can work with any
PDF. However, in order to compare these two types of filters
under identical initial conditions, the prior densities at k=0
are taken as Gaussian PDF in this paper. The results of the
KFs will all be Gaussian, while the PF densities can be of
any distribution.

lll. THEORY

For a system with linear state and measurement equa-
tions and Gaussian PDFs the KF (Ref. 22) is the optimal
filter in a minimum mean square error (MSE) sense. How-
ever, for nonlinear, non-Gaussian problems such as geoa-
coustic tracking, it may not be possible to find an optimal
estimator. Therefore, three suboptimal filters are investi-
gated:

» EKF that uses analytical linearization where the measure-
ment equation is linearized using the first order Taylor se-
ries expansion,

o UKF that uses statistical linearization where the nonlinear-
ity in the parabolic equation is kept but PDFs are restricted
to be Gaussian, and

e PF or sequential Monte Carlo (SMC), which uses a se-
quential importance resampling (SIR) or bootstrap filter to
track the nonlinear, non-Gaussian system.

Each of these algorithms has their advantages and drawbacks
for different tracking applications. See Appendix A for filter
descriptions and implementation details.

The filters can be compared to each other using the root
mean square (RMS) error between the true environment X,
and the filter estimate X;;. However, this only shows if one
filter is doing better than the others, giving no indication
about whether and to what extent the information available
through previous states and current measurements are ex-
ploited by the filter, especially given the fact that all three of
these filters are suboptimal. Therefore, it is desirable to have
a tool that can not only assess the performances of these
techniques but also provide a limit to achievable perfor-
mance for a given environment.

This is done by using the posterior or Bayesian Cramér—
Rao lower bound (PCRLB) introduced by van Trees™ (see
Appendix B). PCRLB is the Bayesian counterpart of the
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classical Cramér-Rao lower bound (CRLB) defined in a non-
Bayesian framework as the inverse of the Fisher information
matrix. There are studies on the calculation of both the
CRLB (Ref. 31) and the PCRLB (Ref. 32) for geoacoustic
inversion problems. Any filter that achieves a MSE equal to
the PCRLB is called an efficient estimator. For a linear and
Gaussian system, the KF is an efficient estimator. It may not
be possible to attain the PCRLB for a nonlinear, non-
Gaussian system.
The performance metrics used in this paper are

MMC (87 (Y _ wd (1))2 172
j=1 vc
(i) = I (i,)/RMS, (i), (6)
ky n : : 1/2
L e R - x}0))?
RTAMS(i) = Lg:,l Z‘; TR l)nMC] , (7)

RTAMSgkr — RTAMSg;¢e,
Improv = ) ()
RTAMSgkr

where x{;(i) is the ith parameter of the true state vector x at
time index k for the jth MC run, RMS,, J,, and 7, are the
root mean square error, the Fisher information matrix (in-
verse of the PCRLB), and the filter efficiency, respectively, at
step k. RTAMS is the root time averaged mean square error

calculated for the interval [k, ,k,], and Eq. (8) calculates the
performance improvement of a filter with respect to the EKF.

IV. EXAMPLES

This section is composed of three geoacoustic tracking
examples that either spatially or temporally track the evolv-
ing environment and the PPD. The first two use the configu-
ration in Fig. 1(a), and the last one uses the one in Fig. 1(b).
The simulation parameters such as the array structure, water
depth, and source frequencies are selected similar to the ones
that are used in Refs. 1 and 20. Each example evaluates and
compares different aspects of the tracking algorithms. These
three examples are

(1) Temporal tracking. Filter efficiencies, PCRLB calcula-
tions, performance limitation analysis, computational
costs, effects of increasing the particle size in PF, and
interfilter comparison of uncertainty propagation are
studied using temporal tracking of an effective range-
independent environment (with n,=4 unknown param-
eters at each step k).

(2) Divergence analysis. For both slowly varying and
abruptly changing environments, a divergence analysis is
carried out using n,=7 unknown parameters at each step
k.

(3) Spatial tracking. The effects of selection of geoacoustic
setup on filters and tracking performance of individual
geoacoustic parameters are investigated using spatial
tracking of a range-dependent environment represented
by n,=7 unknown parameters at each spatial step k.
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FIG. 2. (Color online) Seven-parameter geoacoustic model used in the
simulations.

A. Example 1: Temporal tracking using a VLA

This example compares the performance of the EKF,
UKF, and PF with the best possible limit given by the
PCRLB in terms of the RMS error and the filter efficiency.
The range-independent environment model used is given in
Fig. 2. Note that the selection of the environmental model is
arbitrary, and multiple more complex models can be incor-
porated into filters such as the multiple model particle filter
(MMPF).”

Only the four parameters representing the sediment
layer, namely, sound speed, thickness, attenuation, and den-
sity, are tracked in this example. A sandy silt with medium-
fine to fine sand sediment is used in the tracking.7 A VLA
spanning the entire 100 m water column with 20 hydro-
phones is used. A frequency of 250 Hz is selected. All the
environmental constants, state variables, their initial means
and covariances, and the filter parameters are given in Table
I. The covariance of the measurement error term R=11 is
computed from the array SNR (Ref. 20) defined as

SNR =10 log w

)

The PCRLB and the filter performances are calculated
using the Monte Carlo (MC) analysis as discussed in Appen-
dix B. First, nyc=100 evolving environments (each one a
MC trajectory) are created using the state equation, with
starting values selected from a Gaussian with a mean of x
and covariance P,,. These trajectories are given in Fig. 3(a).
Then the PCRLB is computed using Eq. (B2) where the first
term (D;2,) is estimated using Eq. (B8). Each of these 100
trajectories is also tracked by the EKF, UKF, and PFs using
200, 2000, and 10 000 particles designated by PF-200, PF-
2000, and PF-10 000, respectively. The normal mode code
SNAP is selected as the forward model.

The evolution of the RMS error in Eq. (5) of each pa-
rameter is computed for each filter and is given in Fig. 3(b)
as a function of step index k. Note that the region below the
square root of the PCRLB is shaded as unobtainable RMS
values. Also note that the filter RMS error estimates can
initially get lower than this limit before they increase and
stabilize to their real values. Hence, this region is discarded
in the calculations by setting the [k;,k,] interval as
[100,150] min for the RTAMS in Eq. (7) and their following
improvement-over-EKF computations in Eq. (8).
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TABLE I. Environmental and simulation parameters used in example 1.

Environment
State variables
Constants X E[x,] P> State noise (Q;'%)
Cut 1480 m/s Coeq (M/S) 1600 1 0.35
Cyb 1460 m/s Ngeq (M) 15 0.5 0.35
h,, 100 m Qeq (dB/N) 0.25 0.01 0.0015
Chot 1700 m/s Peea (g/cm) 1.8 0.1 0.03
Simulation parameters
Source depth 20 m Source frequency 250 Hz
Source range 5 km Array SNR (Ry) 40 dB
Receiver type VLA Track length 2.5 h (k=30)
No. of hydrophones 20 Track frequency 1 measurement/5 min
Array start, Az 5m,5m MC runs 100

The results given in Fig. 3(b) show that the PFs perform
better than the EKF and the UKF. While sediment thickness
and sound speed tracking using PF is clearly superior to the
KF variants, only PF with a large number of particles out-
performs the EKF and UKF tracking of the sediment density,
and all three types of filters perform well for attenuation
tracking, closely following the theoretical limit set by the
PCRLB. The RMS errors in sediment parameters, the aver-
age efficiency after 2.5 h of tracking, RTAMS values, and
improvement-over-EKF percentages are given in Table II.
Due to its inherent limitations, the EKF achieves an average
filter efficiency of 52%. The UKF performs only slightly

@ Coq {m/s)

better with a 2% improvement over the EKF. With an effi-
ciency of 63%, the PF-200 is 19% better than the EKF. In-
creasing the particle number improves performance to 80%
efficiency in the PF-2000. The PF-10 000 results show that
further increase in the particle number does not result in an
increase in the performance, with a 37% improvement over
the EKF out of a theoretical upper limit of 48% dictated by
the PCRLB. PF-10 000 results are not shown in Fig. 3(b) but
are given in Table II.

Even though PF performs better than the KFs in terms of
RMS errors, it is also important to compare the computa-
tional cost of each algorithm both with each other and with
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FIG. 3. (Color online) Example 1: Comparison of the tracking algorithms: (a) Evolution of 100 different environments (Monte Carlo trajectories), and (b)
RMS errors for the EKF, UKF, 200-point PF, and 2000-point PF obtained from tracking each of these 100 trajectories along with the theoretical lower limit

for the RMS error, the square root of the posterior CRLB.
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TABLE II. Performance comparison for example 1.
RMS at =150 min RTAMS (100-150 min)
Avg. Avg. %

Csed hscd Aged Psed 7 Csed hscd Aged Psed lmprov.
Method (m/s) (m) (dB/\) (g/cm®) (%) (m/s) (m) (dB/N) (g/cm®) over EKF
EKF 0.43 0.77 6.5%x1073 10.7x 107 52 0.44 0.82 6.1x1073 11.3x 1073 0
UKF 0.45 0.80 5.0x1073 11.1x 1073 55 0.46 0.84 49x%1073 11.8x 1073 2
PF-200 0.30 0.53 5.8%x1073 9.9%x 1073 63 0.31 0.54 5.8x1073 10.4x 1073 19
PF-2000 0.22 0.39 42x1073 9.3x1073 80 0.24 0.39 3.9%x1073 9.6x1073 36
PF-10 000 0.22 0.39 42%1073 9.3x1073 81 0.24 0.39 3.9x 1073 9.6X1073 37
VPCRLB 0.22 0.16 3.5x1073 8.8 1073 100 0.22 0.17 3.5x 1073 8.8 1073 48

previous classical geoacoustic inversion techniques. The for-
ward model runs are by far the most computationally inten-
sive section in a geoacoustic inversion or tracking problem.
Therefore, the computational costs are given in terms of the
number of forward models needed to run at each step k.
First, if these parameters were to be inverted as a geoacoustic
inversion problem using a global optimizer such as genetic
algorithms, one would need around 10 000-40 000 forward
model runs'® for each step k. If the uncertainties or
the parameter PDF are also required, techniques such as im-
portance,'O Gibbs," and Metropolis—Hastings sampling”"z‘33
would be needed at each step requiring typically 100 000-
1 000 000 samples per k. Using a hybrid genetic algorithms—
Markov chain Monte Carlo (GA-MCMC) sampler may re-
duce this number,34 but still the required number of forward
model runs is large compared to the techniques discussed
here. Instead, geoacoustic tracking requires an initial mean
and a PDF that is obtained by running a classical geoacoustic
inversion at k=0 and then tracking this density, and the op-
timum solution is done using the filter. The EKF requires 2
X n, forward model runs at each step to compute the Jaco-
bians needed for linearization and one forward model at the
prediction step (nine forward model runs per k for this par-
ticular example). Similarly, the UKF uses (2 Xn,+1) sigma
points to propagate the mean and covariance using the un-
scented transformation (UT). The PF-200, -2000, and
—10 000 require factors of 20, 200, and 1000 more CPU time
than those of the EKF, respectively, for this scenario. There-
fore, the selection of the filter type is a trade-off between the
gain in performance and the extra computational burden of
the PF.

Since the PF is computationally expensive compared to
the KFs, it is desirable to know how much improvement can
be obtained by using PF with a large number of particles.
Unfortunately, the optimum n, is scenario dependent. The
effect of increasing particle size for this problem is shown in
Fig. 4. A value of around 2000 particles per k provides maxi-
mum filter efficiency (81%) with minimum computational
cost.

B. Example 2: Divergence analysis for slowly and
fast changing environments

Divergence is an important issue in tracking problems.
There are many reasons a track will diverge, such as the
limitations in the filter (e.g., a KF structure in a highly non-
Gaussian problem), errors in the forward model, and incor-
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rect assumptions about the state and/or measurement noise.
A frequently encountered problem is the error in the state
equation model. The state equation models how we expect
the state parameters to behave with k. If the real values of the
state parameters evolve differently from this state evolution
model, the filter may be unable to track these changes. Even
though the measurement equation may tell the filter that the
parameters are changing in an unexpected way, the filter may
ignore the measurement information coming from Eq. (3) if
this contradicts the state evolution model in Eq. (2). The
filter type selected will affect the level of state modeling
error that can be handled without resulting in divergence.
Geoacoustic tracking is no different. The state model
used here assumes that the environment is evolving slowly.
Therefore, comparing filter behavior under both slowly and
fast changing environments is desirable. The environment in
Fig. 2 is selected with n,=7 environmental parameters to
track, with the same VLA configuration and forward model
as in the previous example. The simulation and measurement
configuration parameters are selected from the sensitivity

O

Filter Efficiency,n (%)

g

Improvement over EKF (%)

3
10
Number of particles

FIG. 4. (Color online) Example 1: Performance improvement of PF as a
function of number of particles expressed in terms of (a) filter efficiency,
and (b) improvement over the EKF. The dashed line shows the attainable
improvement limit.
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FIG. 5. (Color online) Example 2: Normalized objective functions for three different frequencies. The cost function for each parameter is obtained by fixing

all other parameters to their true values (dashed line).

plots at r=0, given in Fig. 5. These plots are obtained by
varying one parameter at a time from their values at =0,
while the other six are the same as those of x,. The normal-
ized objective function used here is similar to ones used in
Refs. 20 and 10 as a MSE metric. It is given as

d(x)"y;

2
y - .
T laxlP

d(x;) (10)

1

D, (x)=1-

W=,

The objective functions in Fig. 5 are given for three
different frequencies at 50, 100, and 250 Hz, respectively.
Note that the penetration depth of the field decreases as the
frequency is increased. Since the source and VLA are sepa-
rated by 5 km, most of the high-incidence angle deep pen-
etrating modes have attenuated at longer ranges and may not
be detected by the receiver array. Note that @, (x) for sedi-
ment thickness becomes insensitive after a certain value,
which decreases with increasing frequency. The same also
applies to the bottom sound speed. For the given environ-
ment, most of the signal is restricted to the sediment, not
penetrating deep enough; hence ®,(x) is not sensitive to the
bottom parameters.

Simulation parameters different from the previous ex-
ample are provided in Table III. The tracking is carried out
for 200 min with one update every 2 min. A frequency of
250 Hz is selected for the tracking problem. At this fre-
quency, the bottom parameters give an entirely flat sensitiv-
ity plot, and sediment thickness above around 20 m is poorly

TABLE III. Simulation parameters for example 2.

determined. The evolutions of the seven parameters are
given as solid lines in Fig. 6. These variations include a
fluctuation in the top water sound speed, simultaneous
gradual variations in all seven parameters, and a simulta-
neous sudden jump in two sediment parameters, sediment
thickness from 30 to 20 m followed by a similar increase in
the sediment sound speed. Note that one of the two environ-
mental parameter jumps is in the sediment, a poorly deter-
mined parameter. Therefore, the filters are expected to give
high divergence percentages due to the selection of such an
environment and frequency, enabling a comparison between
them under conditions difficult for tracking purposes. The
evolving environment is tracked using the EKF, UKF, and PF
that use 200, 2000, and 5000 particles, respectively. PF-2000
results are not shown in Fig. 6 but are given in Table IV.

The corresponding temporal evolution of the amplitude
of the vertical acoustic field at 5 km as a function of time is
given in Fig. 7. Note how the vertical mode structure evolves
with time. Also note that only a sampled version of this field
is used in tracking, as shown in the figure as circles repre-
senting the vertical hydrophone locations of the VLA. A
lower spatial sampling frequency of the vertical field may
result in the loss of some of the evolving trends in the field
and higher divergence rates.

A typical track result for each filter is given in Fig. 6
along with the true trajectories of the parameters, and the
results are summarized in Table IV. Some of the important

Cyt Cywb Csed
hsed a P Chot
Parameter (m/s) (m) (dB/N) (g/cm?) (m/s)
State noise Q, 0.5 0.5 0.5 1.0 0.002 0.02 1.5
Initial cov. P} 1.0 1.0 1.0 1.0 0.002 0.02 3.0
Divergence threshold 1.0 1.0 1.0 1.0 0.01 0.05 10.0
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FIG. 6. (Color online) Example 2: Tracking results of EKF, UKF, PF-200, and PF-5000 for the seven-parameter environment given in Fig. 1 using the long
range VLA. True trajectories (dashed) are provided along with the tracking filter estimates (solid).

features in this figure are as follows:

All four filters are sensitive to the water column sound
speed parameters and are able to track them. Water column
parameters only start to diverge after the jump at ¢
=140 min for the EKF, UKF, and PF-200 because these
filters are unable to track some of the sediment parameters
that are coupled to the water column sound speed values.

TABLE IV. Results for example 2.

The PF-5000 is able to track these parameters perfectly
both during slow (#<<140 min) and rapid (#> =140 min)
changes. Although the PF-200 could track the slowly
changing sound speed values, the track is much noisier
than the KF filters and the high-particle PF. A similar pat-
tern emerges for the sediment density.

 All four filters are mostly able to track the sediment sound

After 140 min

After 200 min

% divergence

RTAMS 9% Tmp. % Avg. RTAMS 9% Tmp.
Method Ngeq (M) EKF Diverg. Ngeq (M) EKF Cyy sed Neeq a p
EKF 0.75 0 16 10.6 0 82 100 68 6
UKF 0.71 24 0 11.2 15 62 100 1 12
PF-200 2.92 =70 39 9.2 3 58 90 61 48
PF-2000 0.83 16 1 4.8 42 29 40 7 12
PF-5000 0.82 20 0 3.1 60 11 19 1 5
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FIG. 7. (Color online) Example 2: Evolution of the magnitude of the verti-
cal acoustic field in the water column at the receiver array as the environ-
ment evolves in time. Hydrophone locations (circle) show the vertical sam-
pling interval of the time-varying field.

speed, including the sudden jump in the parameter. Again,
the track given by PF-5000 is superior to the other three.
As expected, the first three filters fail to track the sudden
jump in the sediment thickness. Only PF-5000 is able to
track the true trajectory. Also note how noisy the track is
even for the PF-5000 due to the low sensitivity predicted
in Fig. 5.

Attenuation is the only parameter where there is a marked
difference between the EKF and the UKF. The improve-
ments introduced by the UKF over the linearized EKF en-
able it to track the attenuation, whereas the EKF diver-
gence rates are much higher. PF-200 performance lies
somewhere between the two KFs, and PF-5000 perfor-
mance is very similar to the UKF performance, except for
the superior performance after the jump due to divergence
of other parameters in the UKF.

All four filters are unable to track the bottom sound speed.
This is an expected result, taking into account the entirely
flat sensitivity curve given in Fig. 5.

The divergence percentages are given in Table IV for
slowly changing (before =140 min) and fast changing (after
t=140 min) environments. A parameter track is declared di-
verged if the RMS error is greater than the corresponding
threshold given in Table III for any 30 consecutive min (i.e.,
15 samples). All the average values in Table IV are computed
using the first six parameters, excluding the bottom sound
speed, which always diverge. Note how the KFs have low
RTAMS for the sediment thickness compared to the RTAMS
of PFs before the jump. The average improvement over EKF
is 20% for PF-5000, and overall, the UKF performs best in
this region. The UKF, PF-2000, and PF-5000 almost always
successfully track the trajectory, while the average diver-
gence rates are 16% and 39% for the EKF and PF-200, re-
spectively.

However, both KFs have difficulties at the jump in the
sediment thickness. The UKEF still outperforms the EKF by
15%, but the improvement goes up to 60% for the PF-5000
(Table IV). The average divergence in the water column and
sediment layer sound speed values (designated as c,, .q) are
given after the jump. The UKF diverges less than the EKF in
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sound speed tracking and more in attenuation tracking, both
filters have a 100% divergence for the sediment thickness,
and the UKEF still tracks the attenuation whereas the EKF
diverges 68% of the time after the jump. The PF-5000, on the
other hand, diverges only 19% of the time for the hard-to-
track sediment thickness, and overall, the PF performs much
better than the KF structures after the jump.

It is also of interest to observe the underlying PDFs of
the evolving parameters and examine how the uncertainty in
parameters change with filter. The evolving PPD of the sedi-
ment thickness as a function of time is given for a PF-10 000
and the EKF in Fig. 8. They start with the same initial Gauss-
ian PDF as seen at r=0. Both filters are able to follow the
parameter until the sudden decrease in the sediment thick-
ness. Note that the PDF of the EKF is always a Gaussian
(due to the initial Gaussian assumption and linearization),
whereas the PF density can take different forms, which en-
ables the filter to simultaneously follow multiple regions in
the state space with high likelihoods (such as at t=116 and
152 min. As the parameter starts to evolve quickly, the EKF
is unable to follow, and it diverges, as can be seen from the
large error in the PDFs given after =140 min between the
PF and the EKF. Note how stable the PDF evolution in Fig.
8(b) is at heq=20 m compared to the 30 m sediment thick-
ness region due to the flat sensitivity curve for larger sedi-
ment thickness values.

C. Example 3: Spatial tracking using a HLA

The final example uses a HLA towed together with the
source to map the spatially evolving environment. The con-
figuration in Fig. 1(b) is used with a HLA of 254 m and a
distance of 300 m from the source.' A nonoverlapping spatial
partitioning with each step k representing 500 m is selected.
Since the source and HLA are close to each other, the com-
plex normal mode code ORCA capable of computing the near
field is used as the forward model. The simulation param-
eters different from the previous examples are summarized in
Table V. Again the seven-parameter environment in Fig. 2 is
used. To compare the effects of different configurations on an
identical geoacoustic tracking problem, the evolution of the
environmental parameters is the same as in the previous ex-
ample.

A typical track for each type of filter is shown in Fig. 9.
Note how the tracking capabilities of the filters for individual
parameters change from the previous long-range VLA con-
figuration to the short-range HLA configuration used here.
Geoacoustic tracking behaves very similarly to previous
studies comparing geoacoustic inversions using HLA versus
VLA in that a parameter that is not readily estimated by
geoacoustic inversion will also be poorly tracked."** The
major difference of a source close to the receiver is the abil-
ity of the receiver to detect higher order modes with large
incidence angles that can penetrate deeper into the sediment
since the signal does not propagate enough to attenuate these
fields. This means that the field across the HLA is much
more sensitive to some of the sediment and bottom param-
eters such as the bottom sound speed and sediment thickness.
Notice how all four filters are able to track, in general, the
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FIG. 8. (Color online) Example 2: Posterior probability density evolution p(xy) for the sediment thickness /.4 for a 10000-point particle filter and the EKF:
(a) Six snapshots at r=0, 40, 84, 116, 152, and 180 min with the local particle histograms representing the PF distribution (solid) and the EKF Gaussian QF
(line) along with the true trajectory (dashed). (b) The continuous evolution of the PF PPD together with the local mean *3 standard deviation (X, = 3\5Pk‘k)

of the EKF Gaussian.

bottom sound speed, sediment thickness, sediment sound
speed, and density both in slowly and fast changing environ-
ments. Since the field is not that sensitive to the attenuation,
it is now a relatively poorly determined parameter and the
EKEF fails to track it, while the UKF and PF-5000 are able to
maintain the track, albeit a noisy one. Similarly, the filters
are unable to track the top sound speed value most of the
time. Only PF is able to track this parameter on occasion.

The improvement percentages of the filters are obtained
by repeating the track using 100 MC realizations. The results
are given in Table V. The improvement of the UKF over
EKF is similar to the previous example with 25% and 33%
for slowly and fast changing regions, respectively. PF-200
performs poorly due to an insufficient number of particles
used in tracking. On the other hand, the PF-5000 outper-
forms the EKF by 60%.

V. DISCUSSION

It is possible to extend the state space from just the
environmental parameters by appending other parameters-of-

interest such as the source range, depth, and speed. Also a
single frequency is used throughout the paper. However,
multiple frequencies are frequently employed for geoacous-
tic inversion due to the varying levels of sensitivities to dif-
ferent frequencies and robustness. It is possible to include
multiple frequencies by appending the array data at different
frequencies forming a long measurement vector y, and a
forward model h(x;) composed of multiple normal mode
runs at different frequencies.

The filter performance strongly depends on where x is in
the state space. The most common scenario is where the
performance improves from the EKF to the UKF to a PF
with enough particles. However, there are regions in the state
space where the KFs give better tracking results depending
on the local linearity of the forward model and the Gaussian
nature of the densities involved.

Although not given here, there are some special cases in
geoacoustic tracking that can result in track divergence. One
example observed during spatial tracking using the HLA
configuration (example 3) is when a layer gets thin and then

TABLE V. Simulation parameters and percent improvement of filters for example 3.

% Imp. over EKF

Simulation parameters Method 35 km 50 km
Source depth 20 m Source frequency 100 Hz
Receiver type HLA Array SNR (R)) 40 dB EKF 0 0
Receiver depth 26 m Array start, Ar 300 m, 2 m UKF 25 33
No. of hydrophones 128 Track length 50 km (k=100) PF-200 -12 =73
MC runs 100 Track frequency 1 meas./500 m PF-5000 60 64
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FIG. 9. (Color online) Example 3: Tracking results of EKF, UKF, PF-200, and PF-5000 for the seven-parameter environment given in Fig.
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1 using the short

range HLA configuration. True trajectories (dashed) are provided along with the tracking filter estimates (solid).

thickens again. When the layer gets thin, other parameters
such as the sound speed, attenuation, and density character-
izing the layer have little or no effect on the acoustic field
across the array, temporarily making the field insensitive to
that layer’s parameters. This results in deviations from their
true values for these parameters, and when the layer starts to
thicken again the filters diverge since the starting points for
the layer parameters other than the layer thickness are too far
from their current true values.

Another case is the coupling between the parameters.
When the sediment thickness increases, less signal reaches
the bottom layer, resulting in degrading performance of these
bottom parameters similar to the previous case and may
cause divergence as the sediment gets less thick again. In
general, PFs show more robust tracking under such condi-
tions.

Also the seabed can have spatial layer changes. While
one sediment layer and a semi-infinite bottom are adequate
initially, a second sediment layer can form. Or the sediment
type becomes sand, whereas the model given to the PF as-
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sumed that the region is clay, limiting the possible parameter
values via priors. Such environments can be tracked using
multiple environmental models, one for each possible sce-
nario. This will require Gaussian sum filters such as the in-
teractive multiple model EKF/UKF that involves a filter
bank composed of multiple KFs running in parallel for each
possible model **¢ Similarly, this can be accomplished us-
ing their PF counterpart, the MMPE.*’

One interesting observation from the simulations is the
KFs ability to continue to track some parameters while other
parameters diverge and can only be tracked by the PF. This
means that the marginal densities for these parameters are
close to Gaussian and the measurement equations connecting
those parameters to the acoustic field are close to being lin-
ear. This is unlike many other tracking problems such that
when one parameter starts to diverge, so do all the others,
usually resulting in a total divergence. However, there are
many cases where such marginal Gaussian densities occur. In
these cases, one common approach is to use a Rao-
Blackwellized particle filter also known as the marginalized
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particle filter that groups the state parameters into linear/
Gaussian and nonlinear/non-Gaussian ones and uses a mixed
EKF/PF approach, reducing the dimension of the state space
that the PF has to sample, which, in return, reduces signifi-
cantly the required number of particles for a desired
accuracy.””®

VI. SUMMARY

Tracking of geoacoustic environmental parameters has
been addressed. Spatial and temporal evolutions of the water
column and seabed parameters were estimated using EKFs,
UKEFs, and PFs with acoustic measurements as inputs. These
tracking filters enabled providing real-time, continuously up-
dated estimates of the geoacoustic parameters and their un-
certainties, requiring far fewer forward model runs compared
to alternatives such as successively running geoacoustic in-
version algorithms.

This paper investigated how the three filters behaved for
the nonlinear, non-Gaussian geoacoustic tracking problem
using three examples with both the VLA and HLA simulated
data. An efficient way of computing the local PCRLB to
compute the filter efficiencies was shown. The results
showed that all three filters performed well in geoacoustic
applications. It was found that a PF with enough particles
could typically achieve 80% filter efficiency in geoacoustic
tracking while providing PPD evolutions for the environ-
mental parameters. Even though KFs had less efficiency and
high divergence rates and were unable to track some param-
eters while the PF was still able to maintain track, they also
showed robust tracking in many cases. Since they are com-
putationally very fast compared to the PF, they can be used
in many applications where the performances are similar.
The UKF outperformed the EKF in most of the simulations,
but the improvement-over-EKF values of the UKF were
modest compared to the PF. The PF was able to maintain
track in environments that include sudden changes such as
the sediment thickness. The two KFs used here showed
mixed success in tracking sudden jumps in the parameter
values.

PFs proved to be very promising in the nonlinear, non-
Gaussian geoacoustic tracking problem. It was shown that
the performance could degrade below that of the EKF if a
small number of particles were used. However, in this paper,
the PF with enough particles showed robust tracking in a
number of cases involving different measurement configura-
tions that use HLA and VLA data, slowly and quickly chang-
ing environments, and environmental parameters with rela-
tively flat sensitivity curves. The limitations of all three
filters were discussed using an example of tracking a quickly
changing environment with parameters having medium to
totally flat sensitivity curves.
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APPENDIX A: FILTER EQUATIONS
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1. Extended Kalman filter

The first filter choice is the EKF (Ref. 22). Since KF is
the best possible linear tracking filter, its extended version
that can operate on nonlinear systems can still be near opti-
mal. The EKF works by converting the system into a form
over which the KF can operate. This is done by locally lin-
earizing the equations using the first terms in the Taylor se-
ries expansions of the nonlinear transformations (such as the
normal mode code in h) and assuming that the nonlinearities
are small so that EKF will perform well. Once the equations
are linearized, starting with a Gaussian PDF for x, will en-
sure that the evolving parameters will remain Gaussian, and
it is necessary to propagate only the mean and covariance as
in the KF. However, due to this approximation, the EKF
cannot claim the optimality enjoyed by the KF for linear-
Gaussian systems. The EKF has been implemented success-
fully in a large number of applications such as radar and
sonar target tracking applications, and its speed and ease of
implementation make the EKF the filter of choice.

In geoacoustic tracking, the complex source magnitude
sy 1s usually not known. Therefore, the EKF equations are
modified by inserting a maximum likelihood (ML) estimator
that estimates the source every time the forward normal
d(x,) is run."’ This is done by writing the likelihood function
at step k as

1
L(x;) = #’T|R| expl— (v — s, d(x)) R (y; — 5,d(x)))],
(A1)

where ny is the number of hydrophones. Assuming that the
complex Gaussian noise w; is uncorrelated with the same
variance along the array (R=vI),

_ ||Yk - Skd(xk)Hz)
, .

1
L(x;) = ex ( A2
(%)= o (A2)
The ML estimate for the source s is then obtained by solv-
ing for dL/ds,=0, giving

. d(x)"y,

= . A3
%= JaxoP (43)

This source estimate is used in the following EKF equations
both for the calculation of h and during the linearization of h
to obtain the matrix H:

Xpfk-1 = FXp gt (A4)

Pyo1 = Qi + Py F7, (AS)

X = X1 + Ke(yi = h(Xgp1)) s (A6)

Py =Py - KiSK], (A7)
where

Sy =HPy_ H, + R, (A8)

K, =P, H/S;', (A9)
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h(Xy) = ; (A10)

H, = [V, h' ()] (A11)
Equations (A4) and (A5) are the prediction steps that give
the environmental model estimate X, and its associated un-
certainty in terms of the covariance matrix P, at step index k
given the previous history {xy.Xx;,...,X,_;}, Egs. (A6) and
(A7) are the correction equations that give X; and Py, at step
index k given its previous history {xy,X;,...,X;_;} and the
set of measurements {y,,y5,...,¥s}, and K is the Kalman
gain.

Note that the insertion of the ML estimate of the source
in Eq. (A3) into the Kalman update equation violates the
Kalman formulation. This is true for Eq. (A6) where the
Kalman gain is applied to the measured minus predicted data
(Yx—Y¥prea) since the predicted data include y, itself due to the
ML source estimate in Eq. (A3). However, the ML estimator
in Eq. (A3) simply normalizes the amplitude of the predicted
data so that the acoustic field variation across the array is
compared, not the actual amplitudes, eliminating the effects
of the unknown source amplitude. Moreover, the averaging
inherent in the inner product in Eq. (A3) over the array ele-
ments makes the source estimate less noisy and more robust
relative to the environmental parameters. Finally, the perfor-
mance calculations of the KFs used here are not affected
since the synthetic data enable us to compute the true filter
RMS error E[ (X, —Xy;)?] instead of the conventional perfor-
mance metric for the KF (covariance matrix Py). An alter-
native approach would be to include the unknown source
term into the state model x;. However, this will increase the
dimension of the state space for a nuisance parameter in
which we are not interested.

2. Unscented Kalman filter

The analytical linearization used in the EKF results in
poor estimates of the mean and covariance as the nonlinear-
ity in the forward model increases. To mitigate this the
UKF?* has been introduced. Instead of analytical lineariza-
tion, the UKF uses a concept called statistical linearization in
which the filter enforces Gaussianity and keeps the nonlin-
earity. Enforcing Gaussian PDFs enables the filter to carry all
the necessary information by propagating only the mean and
covariance as does the KF. This is achieved by the UT that
enables the propagation of the mean and variance through
nonlinear functions. The UKF represents initial densities us-
ing only a few predetermined particles called sigma points.
These points are chosen deterministically by the UT algo-
rithm, and they describe accurately the mean and covariance
of a PDF. As the random variable undergoes a nonlinear
transformation, these points are propagated through the non-
linear function and used to reconstruct the new mean and
covariance using the UT weights. Hence, unlike the EKF,
they can compute accurately the mean and covariance to at
least second order (third if the initial PDF is Gaussian) of the
nonlinearity.
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Similar to the EKF, the UKF algorithm used here incor-
porates a ML estimator for the unknown source term. The
UKF uses the following recursive formulation where 2n,
+1 sigma points {ék"}?fg and their corresponding weights W'
are generated and used with the UT algorithm to perform the
mean (X;) and covariance (P,) calculations required in the
Kalman framework. The UT weights are given in terms of
the scaling parameter \ = a?(n,+ k)—n, and prior knowledge
parameter 3, where « is used to control the spread of the
sigma points around the mean and « is the secondary scaling
parameter. «, (3, and « are taken as 0.1, 2, and 0, respec-
tively.

UT weights and sigma points are generated using

Xok—l = f‘k—l\k—l’

A
m= > W(c)ov=W21+18+1_a25 (A12)
n.+ A\
X =R = e+ P )i
; : 0.5 .
W =W, = i=12,...,2n,, (A13)

- _—7
m cov nx+)\

mo . .
where (V.); is the ith column of the matrix square root. The
prediction step is composed of

d(-X;;‘k_l)Hka(‘Xilqk—l)
lacg

‘X;c\k—l = F‘X;;—l’ y;c\k—l =

2n, 2n,

A i [ A i [
Xilk—1= 2 Wm‘)(;dk—l’ Yi=1= 2 me;c\k—l’
i=0 i=0

2n,
Pric1 = Qe + 2 chov[‘/vk\k—l - ’A‘k\k—ﬂ[%\k_l - f(k|k_1]T,
i=0

(A14)
and the update step uses
2n,
P,= > Weorl Vot = Kaeo1 Lyt = i1’
i=0
2n,
P, = 2 Wf:ov[y;(\k—l - )A’k|k—1][y;c|k—1 - yk\k—l]Ts
i=0
K,=P, (P, +Rp™", (A15)
K = Xt + KW= Viet)» (A16)
Py =Py - Ki(P,, + RYK]. (A17)

Although it is fast relative to more advanced techniques,
derivative-free, and an improvement over the EKF, there still
are two weaknesses. The first is that the nonlinearity may be
so severe that it may require an even higher order accuracy
than the UKF can provide to correctly capture the mean and
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covariance. The other is that the densities may be highly
non-Gaussian so that the first two moments will not be suf-
ficient even if they can be calculated correctly.

3. Particle filter

The third algorithm used in this paper is the SMC com-
monly known as the PE* Rapid increases in the available
computational power have made the PF very popular for
many nonlinear, non-Gaussian tracking problems. Unlike the
Kalman framework, neither Gaussian nor linearity assump-
tions are necessary for the PF. However, this means that
propagating only the mean and covariance is not sufficient
anymore. Instead, the PF propagates an ensemble of particles
to represent the densities. These particles are selected ran-
domly by MC runs. Compared with the sigma points of the
UKEF, a much larger number of particles are needed to repre-
sent the PDF. Therefore, the PF can perform much better
than its KF variants, but it does this with an order of magni-
tude increase in the required computational resources. There
are many different variants® of the PF such as the regular-
ized particle filter, Markov chain MC step PF, and auxiliary
and classical SIR PFs. The SIR (Ref. 40) algorithm is used
throughout this work. Normally, degeneracy can be a prob-
lem for the SIR algorithm, especially for low process noise
systems. However, due to the environmental uncertainty in
the model, Qy is selected to be relatively large, thus mostly
eliminating the need for more complex PFs with improved
sample diversity.

The SIR algorithm uses n, particles {x}/?| to represent
the PDF at each step k. The filter has the predict and update
sections just as in a KF, but the SIR filter will use these
sections to propagate the particles instead of mean and cova-
riance calculations. The initial set of particles {Xf)};’zﬂl are
sampled from the prior p(x,). The SIR filter uses the impor-
tance sampling®' density as the transitional prior P(Xe|X42y).
Although this is a suboptimal choice, it is easy to sample
from this density. This selection results in particle weights
proportional to the likelihood W, p(y,|x,).

The prediction step consists of sampling from the prior.
Then the normalized weight W, of each particle is calculated
from its likelihood function. As with the KFs, the source
term is estimated with a ML estimator during the likelihood
calculation of each particle in the ensemble. The update step
includes the resampling section where a new set of n, par-
ticles is generated from the parent set according to the
weights of the parent particles, with high likelihood particles
generating more particles than the low likelihood ones.
Hence, a single iteration of the recursive SIR algorithm can
be summarized as

{X;{\k—l}:‘lﬁl ~ p(XilXe-1)s (A18)
. P(Yk|Xi )
W= o, (A19)
E[ﬁlp(yk|){;<|k—1)
{ Az, = Resample[ W, {1z, ],
such that Pr{X}, = X}, ,} = W} (A20)
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APPENDIX B: POSTERIOR CRAMER-RAO LOWER
BOUND

One issue with the tracking problems is that the compu-
tation of the full PCRLB is not feasible. Unlike geoacoustic
inversion where there is a fixed number (n,) of random vari-
ables in the model vector x, geoacoustic tracking introduces
n, new random variables with every new step k. Therefore,
we will use a (n, X n,) matrix PCRLB; instead of the full
PCRLB matrix. PCRLBy is defined as the inverse of the
filtering information matrix J; so that the MSE of any filter
estimate at tracking step index k will be bounded as

E{(Rye — x0) Rygpe —x,) '} = I (B1)

A computationally efficient way of computing this PCRLB
recursively for discrete-time nonlinear filtering problems is
given in Ref. 42,

J,=D2 -[D;2 17 J, + D) D2, (B2)
where

D!, =—E{V,_[V,_, log p(xi/x;-)]"}, (B3)

D2 =— E{Vy [V log p(xifxic)]™, (B4)

D, = - E{V, [V, log p(x;/x;-)]"}
— E{V, [V log p(yix)]"}- (BS)

It is important to note that the computations only require
(n, X n,) matrices, and the computation cost is independent
of the step index k. The geoacoustic tracking problem with
the system of equations defined in Egs. (2) and (3) has a
linear state equation, and both of the random noise sequences
v and w are additive and Gaussian. Therefore, the above
equations can be reduced to*

D!, =F'Q;' F,
D%, =-F'Q.,, (B6)
D’ = Q| + E{H/R'H,}, (B7)

where Hy, is the jacobian of h(x) computed similar to Egs.
(A10) and (All) at its true value x;. Unfortunately the ex-
pectation in Eq. (B7) has to be evaluated numerically using a
MC analysis. D{?, is computed as

1 Mmc ) )
D2 =Ql + — > Vh&)R;'[Vh(x)]", (B8)
nMe j=1
where nyc is the number of MC trajectories, assuming a
Gaussian prior PDF with a covariance matrix P. The recur-
sion in Eq. (B2) is initiated with

Jo=~E{V, [V log p(x)]"} = 5. (B9)

Once the PCRLB, the inverse of J; in Eq. (B2), is computed,
the filters can be compared with each other and the CRLB.
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