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[1] This paper addresses the problem of estimating the lower atmospheric refractivity
(M profile) under nonstandard propagation conditions frequently encountered in low-
altitude maritime radar applications. This is done by statistically estimating the duct
strength (range- and height-dependent atmospheric index of refraction) from the sea
surface reflected radar clutter. These environmental statistics can then be used to predict
the radar performance. In previous work, genetic algorithms (GA) and Markov chain
Monte Carlo (MCMC) samplers were used to calculate the atmospheric refractivity from
returned radar clutter. Although GA is fast and estimates the maximum a posteriori (MAP)
solution well, it poorly calculates the multidimensional integrals required to obtain the
means, variances, and underlying posterior probability distribution functions of the
estimated parameters. More accurate distributions and integral calculations can be
obtained using MCMC samplers, such as the Metropolis-Hastings and Gibbs sampling
(GS) algorithms. Their drawback is that they require a large number of samples relative to
the global optimization techniques such as GA and become impractical with an
increasing number of unknowns. A hybrid GA-MCMC method based on the nearest
neighborhood algorithm is implemented in this paper. It is an improved GA method which
improves integral calculation accuracy through hybridization with a MCMC sampler.
Since the number of forward models is determined by GA, it requires fewer forward model
samples than a MCMC, enabling inversion of atmospheric models with a larger number of
unknowns.
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1. Introduction

[2] In many maritime regions of the world, such as the
Mediterranean, Persian Gulf, East China Sea, and
California Coast, atmospheric ducts are common occur-
rences. They result in various anomalies such as signif-
icant variations in the maximum operational radar range
and increased sea clutter. Hence radar systems operating
in these environments would benefit from knowing the
effects of the environment on their system performance.
This requires knowledge of the atmospheric refractivity,

which is usually represented by the modified refractivity
(M profile) in the radar community [see Skolnik, 2001].
[3] Evaporation and surface-based ducts are associated

with increased sea clutter due to the heavy interaction
between the sea surface and the electromagnetic signal
trapped within the duct. However, this unwanted clutter
is a rich source of information about the environment and
can be used to determine the local atmospheric condi-
tions. This can be a valuable addition to other more
conventional techniques such as radiosondes, rocket-
sondes, microwave refractometers and meteorological
models such as the Coupled Ocean/Atmospheric Meso-
scale Prediction System (COAMPS) that give M profile
forecasts [Rowland and Babin, 1987; Thews, 1990;
Hodur, 1996; Skolnik, 2001]. In a Bayesian framework,
the results of one or several of these techniques and
regional duct statistics [Babin, 1996] can be coupled with
the clutter inversion to improve the overall estimation
quality. An attractive feature of inferring refractivity
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from sea surface clutter is that it does not use additional
hardware or extra meteorological/electromagnetic meas-
urements. It extracts the information from the radar
clutter obtained during normal radar operation, which
usually is readily available both as a function of range,
direction and time. For a fast inversion algorithm, a near-
real-time M profile structure is obtained. The need for a
fast algorithm that updates the environmental estimates
at intervals of 30 min or less is evident in work by
Rogers [1996], where the RMS error in propagation
factor exceeds 6 dB after 30 min because of temporal
decorrelation.
[4] Various techniques that estimate the M profile

using radar clutter return are proposed by Rogers et al.
[2000], Gerstoft et al. [2003,2004], Barrios [2004],
Rogers et al. [2005], Yardim et al. [2006], and Vasudevan
et al. [2007]. Most of these refractivity from clutter
(RFC) techniques use an electromagnetic fast Fourier
transform (FFT) split-step parabolic equation (SSPE)
approximation to the wave equation [Barrios, 1994;
Levy, 2000], whereas some also make use of ray-tracing
techniques. While the paper by Rogers et al. [2000]
exclusively deals with evaporation duct estimation, other
techniques are applicable to both evaporation, surface-
based and mixed type of ducts that contain both an
evaporation section and an surface-based type inversion
layer. Vasudevan et al. [2007] exploits the inherent
Markovian structure of the FFT parabolic equation
approximation and uses a particle filtering approach,
whereas Barrios [2004] uses rank correlation with ray
tracing to estimate the M profile.
[5] In contrast, Gerstoft et al. [2003, 2004] and Yardim

et al. [2006] use global parameterization within a Bayes-

ian framework. Since the unknown model parameters are
defined as random variables in a Bayesian framework,
the inversion results will be in terms of the means,
variances and marginal, as well as the n-dimensional
joint posterior probability distributions, where n repre-
sents the number of unknown duct parameters. This
gives the user not only the ability to obtain the maximum
a posteriori (MAP) solution, but also the prospect of
performing statistical analysis on the inversion results
and the means to convert these environmental statistics
into radar performance statistics. These statistical calcu-
lations can be performed by taking multidimensional
integrals of the joint probability distribution functions
(PPD). Gerstoft et al. [2003] use genetic algorithms to
estimate the MAP solution. However, no statistical
analysis is performed since classical genetic algorithms
(GA) are not suitable for the necessary integral calcu-
lations. While Gerstoft et al. [2004] use importance
sampling, Yardim et al. [2006] use Markov chain Monte
Carlo (MCMC) samplers to perform the MC integration
[Ó Ruanaidh and Fitzgerald, 1996; MacKay, 2003].
Although they provide the means to quantify the impact
of uncertainty in the estimated duct parameters, they
require large numbers of forward model runs and hence
they lack the speed to be near-real-time methods and are
not suitable for models with large numbers of unknowns.
[6] In this paper, a hybrid GA-MCMC technique is

implemented. The method reduces the number of for-
ward model runs required to perform the RFC inversion,
while still being able to perform MC integration. It is
first tested on the synthetic data used by [Yardim et al.
[2006] with a four-parameter, range-independent, trilin-
ear M profile model (Figure 1). Then data collected
during the 1998 Wallops Island experiment (Wallops’98)
[seeGerstoft et al., 2003] are analyzed using a 16-parameter
range-dependent atmospheric model to show the capa-
bilities and limitations of the method. An evaporative
duct structure is not appended in this work but it can be
done by introducing a Jeske-Paulus (JP) [Jeske, 1973;
Paulus, 1985] or Liu-Katsaros-Businger (LKB) [Liu et
al., 1979] profile using one or more extra evaporation
duct parameters, depending on the conditions.

2. Model Formulation

[7] For electromagnetic propagation purposes, the
environment can be uniquely represented by the range
and height-dependent index of refraction, which itself is
a complex function of temperature, humidity, and pres-
sure [Cook and Burk, 1992]. Therefore the term envi-
ronmental parameters will be used exclusively for the M
profile parameters henceforth. To formulate the problem,
a classical Bayesian framework is adopted, where the M
profile model and the radar measured sea surface clutter
data are denoted by the vectors m and d, respectively. An

Figure 1. Four-parameter range-independent trilinear
M profile.
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electromagnetic FFT-SSPE is used to propagate the field
in an environment given by m and obtain synthetic
clutter returns f (m). Since the unknown environmental
parameters m are assumed to be random variables, the
solution to the inversion is given by their joint posterior
probability distribution function (PPD or p(mjd)). Bayes’
formula can be used to write the PPD as

p m djð Þ ¼ L mð Þp mð ÞR
m

0 L m
0ð Þp m

0ð Þdm0 ; ð1Þ

where p(m) is the prior probability distribution function
(pdf) of the parameters. Any information obtained from
other methods and regional duct statistics can be
incorporated in this step as a prior belief. Since this
paper investigates the ability to infer M profiles using
RFC, a uniform prior is used. However, it is possible to
include statistical meteorological priors from studies
such as that of Babin [1996], for some of the parameters
(e.g., the duct height).
[8] Assuming a zero-mean Gaussian error between the

measured and modeled clutter, the likelihood function is
given by

L mð Þ ¼ 2pð Þ�NR=2 Cdj j�1=2

� exp � d� f mð Þð ÞTC�1
d d� f mð Þð Þ
2

" #
; ð2Þ

where Cd is the data error covariance matrix, (	)T is the
transpose and NR is the number of range points used
(length of the data vector, d). Further simplification can
be achieved by assuming that the errors are spatially
uncorrelated with identical distribution for each data
point forming the vector d. For this case, Cd = nI, where
n is the variance and I the identity matrix. Then the
equation can be simplified to

L mð Þ ¼ 2pnð Þ�NR=2 exp �f mð Þ
2n

� �
; ð3Þ

where

f mð Þ ¼ d� f mð Þð ÞT d� f mð Þð Þ: ð4Þ

[9] The maximum likelihood (ML) estimate for the
error variance can be found by solving @L/@n = 0, which
results in

n̂ML ¼ f mð Þ
NR

: ð5Þ

[10] After inserting it back into the likelihood function,
L (m) finally can be reduced to

L mð Þ ¼ NR

2pef mð Þ

� �NR=2

ð6Þ

p m djð Þ / p mð Þ NR

2pef mð Þ

� �NR=2

: ð7Þ

[11] Having defined the posterior density, any statisti-
cal information about the unknown environmental and
radar parameters can now be calculated by taking these
multidimensional integrals:

mi ¼
Z

. . .

Z
m

0

ip m
0
dj

� �
dm

0 ð8Þ

s2
i ¼

Z
. . .

Z
m

0

i � mi

� �2

p m
0
dj

� �
dm

0 ð9Þ

p mi djð Þ ¼
Z

. . .

Z
d m

0

i � mi

� �
p m

0
dj

� �
dm

0
; ð10Þ

where mi, si
2, p(mijd) are posterior means (Bayesian

minimum mean square error (MMSE) estimate), var-
iances, and marginal PPDs of M profile parameters.
[12] Probability distributions of parameters of interest

to a radar operator are calculated in a similar fashion.
Assume that u is such a parameter of interest (e.g.,
propagation factor), which naturally is some function
u = g(m) of the radar environment m. A statistical analysis
of u can be carried out by transformation of random
variables. The classical transformation formula

p u djð Þ ¼ p m djð Þ
J mð Þj j

; ð11Þ

where J(m) represents the Jacobian of the transforma-
tion, can be written in integral form [Huang et al., 2006]

p u djð Þ ¼
Z

. . .

Z
d u� g m

0
� �� �

p m
0
dj

� �
dm

0
; ð12Þ

in the same form as (8)–(10). This form is preferred
since it enables the evaluation of desired quantities with
MC integration.

3. Hybrid GA-MCMC Method

[13] To improve the lack of accuracy in GA and lack of
speed in MCMC, a hybrid method based on the nearest
neighborhood algorithm (NA) [Sambridge, 1999a,
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1999b, 2001, 2003] is adopted here. This method effec-
tively converts the samples gathered during a typical
global optimization run (e.g., GA) into a form that can be
used in MC integration. Then it uses a fast MCMC to
compute these integrals.

3.1. Monte Carlo Integration and Genetic
Algorithms

[14] Notice that all of the integrals in (8)–(10) and (12)
are of the form

I ¼
Z

g xð Þp xð Þdx; ð13Þ

where x is a random variable with a pdf of p(x), and g(x)
is some function of x. These multidimensional integrals
can be estimated numerically using the Monte Carlo
integration technique [Ó Ruanaidh and Fitzgerald,
1996]. Assuming a large number of random x values
are drawn from a sampling distribution ps(x), {x

1, x2,
x3,. . ., xNs}, the integral I can be estimated as

I ’

PNs

i¼1

p xið Þg xið Þ
ps x

ið ÞPNs

i¼1

p xið Þ
ps x

ið Þ

: ð14Þ

[15] By introducing a weight function the integral can
be approximated as

w xi

 �

¼4 p xið Þ
ps x

ið Þ ; ð15Þ

I ’
PNs

i¼1 w xið Þg xið ÞPNs

i¼1 w xið Þ
: ð16Þ

[16] This is the well known importance sampling
formula, where ps(x) is usually selected to be a uniform
or Gaussian density. The main drawback of this approach
is the slow convergence and relatively low accuracy
resulting from the difference between the parameter pdf
p(x) and the sampling pdf ps(x). The best result is
obtained if ps(x) = p(x), which is used by MCMC
techniques such as Metropolis-Hastings [Metropolis et
al., 1953; Hastings, 1970] and Gibbs samplers [Geman
and Geman, 1984].
[17] Importance sampling is used for RFC inversion by

Gerstoft et al. [2004], where the prior p(m) is used as the
sampling density. However, the results depend on how
close p(m) is to p(mjd). Both Metropolis and Gibbs
samplers are used by Yardim et al. [2006] with ps(m) =
p(mjd). A drawback of these techniques is the necessity
to run many forward modeling runs. Many global
optimizers such as the classical GA do not have a

ps(x). Every run will result in a different distribution
concentrated around the higher-density regions. However,
because of its speed, it is desirable to use GA in MC
integration. Such an approach requires a technique that
estimates the integrals (8)–(10) and (12) using an ensem-
ble of GA samples without a ps(x).

3.2. Voronoi Decomposition

[18] A sampling density ps(x) that is an approximation
to p(mjd), is created using the information gathered from
the ensemble of GA samples. Then this approximate
PPD bp(mjd) is used to calculate the Bayesian integrals
by replacing (15)–(16) with

w mi

 �

¼ p mi djð Þbp mi djð Þ ’ 1 ð17Þ

I ’ 1

NS

XNs

i¼1

g mi

 �

: ð18Þ

Here bp(mjd) is obtained by using Voronoi decomposition
(or Dirichlet tessellation) of the n-dimensional model
space [Voronoi, 1908; Okabe et al., 2000]. It creates a
convex n-dimensional polytope (a polygon if n = 2, a
polyhedron if n = 3) called a Voronoi cell (or Dirichlet
domain) around the nearest neighborhood of each GA
point. For a given set of GA samples there exists a
unique set of corresponding Voronoi cells that tessellates
the model space. This structure is adaptable and if points
are changed, removed or added, the cells rearrange
themselves, shrink and enlarge to reflect the changes.
Therefore, even if the ensemble of GA samples change
with every independent simulation, Voronoi lattice will
adjust and likely provide accurate Bayesian integral
calculations.
[19] For nearest neighborhood calculations a weighted

L2 norm is used to compute the distances. The weight
removes the units of the parameters, specifically between
the M layer slopes (M units/m) and layer thicknesses (m).
If available, the prior model covariance matrix can be
used as the norm weight. Since no a priori information is
used, the weight is only used to scale each parameter so
that all parameters lie within [0, 1] range, contributing
equally to norm calculations. Therefore, with an initial set
of GA samples {m1, m2, m3,. . ., mNGA} without a ps(m),

m�mi
�� ��2

W
¼ m�mi


 �T
W m�mi

 �

ð19Þ

Vi ¼ m : i ¼ argmin
i0

m�mi0
�� ��

W

� �
ð20Þ

bp m 2 Vi djð Þ ¼ p mi dj

 �

; ð21Þ
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where W is the weight and Vi is the ith Voronoi cell
centered at the ith GA sample mi. bp(mjd) is constant
inside the cell, effectively discretizing the original PPD
into NGA possible levels. Similar to an A/D converter, it
will convert the true ‘‘analog’’ PPD into a ‘‘digitized’’
approximation. The only difference is that, this A/D
converter is n dimensional, and hence discrete levels are
n-dimensional polytopes.
[20] With this assumption, bp(mjd) is known at any

point anywhere in the entire search space and there is no
need for any further forward model runs.

3.3. MCMC (Gibbs) Resampling

[21] Now that a sampling density ps(m) = bp(mjd) is
defined, the next step is drawing samples from this PPD
to compute (18) for any desired function g(	). Unlike
classical MCMC, this MCMC sampler will not suffer
from the high number of forward model runs required for
MCMC because it operates on the approximate PPD,
requiring no forward modeling.
[22] The perfect MCMC sampler for this task is

the Gibbs sampler (GS) [Geman and Geman, 1984;
Ó Ruanaidh and Fitzgerald, 1996; Yardim et al., 2006]
and is also used in the neighborhood algorithm
[Sambridge, 1999b]. Therefore the term GS will be used
instead of the MCMC henceforth. GS gets samples by
updating one parameter at a time in a circulatory fashion
and it uses the local conditional one-dimensional (1-D)
PPD to update each parameter. After all of the parameters
are updated once, the result will form the next Gibbs
sample. This is a particularly fast algorithm since the
Metropolis acceptance/rejection criterion used in MCMC
samplers is always met and every proposed point is
accepted. The difficulty is that, it requires the knowledge
of conditional 1-D PPDs, which often are not available
for many inversion problems. However, here the condi-
tional is available via Voronoi cells.
[23] A simple example in Figure 2 illustrates the

approach with only two unknown parameters. Voronoi
cells are constructed around each GA sample (stars) to
create the approximate PPD where bp(mjd) is constant in
each polygon. To obtain the next Gibbs sample (dia-
monds) first the local 1-D conditional probability density
is calculated along the line intersecting the original Gibbs
sample. The local conditional density p(m1jm2, d) for the
first Gibbs sample (PPD along AA0) is plotted above the
Voronoi diagram. Since the conditional PPD only
changes at the cell boundaries, computation of the
intersection points with AA0 is sufficient to extract the
local PPD. This lets us use the Voronoi decomposition
without actually having to estimate the Voronoi cell
structures or calculate their vertices. Afterward, a sample
is drawn from this simple 1-D PPD and the parameter m1

is updated accordingly. To complete the cyclic updating
of each parameter, parameter m2 is also updated using the

local conditional PPD p(m2jm1, d) (PPD along BB0),
plotted on the right-hand side of the Voronoi diagram.
[24] The intersection between Voronoi cells and the

conditional line is calculated using the procedure given
by Sambridge [1999a]. Two neighboring Voronoi cells
Vi and Vj intersecting the conditional line are given in
Figure 3. They are created around their corresponding
cell centers (GA samples mi and m j) and Gibbs sampler
is updating along the kth axis by sampling from bp(mkj8ml

l 6¼ k, d). The boundary can be calculated using the fact
that the distances from both cell centers mi and m j to the
boundary point bij must be same by the definition of
nearest neighborhood. Hence using W = I,

mi � bij
�� ��2¼ m j � bij

�� ��2 ð22Þ

di?

 �2þ mi

k � b
ij
k


 �2¼ d
j
?


 �2þ m
j
k � b

ij
k


 �2 ð23Þ

b
ij
k ¼

1

2
mi

k þ m
j
k þ

di?

 �2� d

j
?


 �2
mi

k � m
j
k

" #
; ð24Þ

where d? represent the distances of the cell centers (GA
points) to the current conditional line, subscripts show
the current axis components of the n-dimensional
vectors, superscripts show the Voronoi cell index (or
GA point index), and bk

ij is the kth component of the
boundary point bij, defined by the intersection of Vi, Vj,
and the local conditional line. The method is summarized
by the following steps:
[25] 1. GA: Run a classical GA, minimizing the misfit

f(m), save all the populations (sampled model vectors)
and their likelihood values. MAP solution is obtained as
the best fit model vector.
[26] 2. Voronoi decomposition and approximate PPD:

Using the GA samples {mi} and their corresponding
p(mijd) construct the Voronoi cell structure and create
the approximate PPD, bp(mjd).
[27] 3. Gibbs resampling: Run a fast GS on the

approximate PPD. No forward modeling is needed.
[28] 4. MC integral calculations: Calculate the Bayes-

ian minimum mean square estimate (MMSE), variance
and posterior distributions of desired environmental
parameters, statistics for the end-user parameters, such
as propagation loss L, propagation factor F, coverage
diagrams, statistical radar performance prediction,
such as the probability of detection and false alarm using
(8)–(10), and (12) in the form of (18) as a MC integra-
tion.
[29] The accuracy of the results depends mostly on the

quality of the approximate PPD, which means that, GA
should gather enough samples from the entire n-dimensional
search space to allow the hybrid algorithm to construct an
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adequate n-dimensional mesh. Because of the approxima-
tion of the PPD, the method cannot guarantee convergence
unlike MCMC samplers which are guaranteed to converge
as more samples are collected.

4. Examples

4.1. Synthetic Data

[30] The method is first tested on the synthetic data
given by Yardim et al. [2006]. In that paper, the PPD was
estimated using exhaustive search, GA only, and MCMC
only. Radar system and environmental parameters are
given in Table 1. A typical four-parameter range-
independent trilinear profile (Figure 1) is used with the
unknown environment parameters and the selected upper

and lower limits given in Table 2. The unknown model
parameters are the slope and height of the base layer
(c1 and h1) and the slope and thickness of the
inversion layer (c2 and h2). Since the RFC is insensi-
tive to the M profile parameters above the duct, the
top layer slope corresponds to standard atmosphere.
[31] 1-D marginal model parameter PPDs are given in

Figure 4 for exhaustive search (Figure 4a), Metropolis-
Hastings sampler (conventional MCMC, Figure 4b),
pure GA (Figure 4c), and hybrid GA-MCMC method
(Figure 4d). Exhaustive search results are assumed to
have a dense enough grid to give the true distributions
and will be used as the benchmark. As expected, the
Gibbs sampler results are close to the true distribution
but requires 70,000 samples to converge. The GA uses
15,000 samples (5000 is enough to get the MAP

Figure 2. Voronoi cells and a single GS step for a simple two-parameter search space.
Conditional PPDs used in the Gibbs step for the given conditional cut lines (AA0 and BB0) are
shown on the top and to the right of the Voronoi diagram. GA and Gibbs samples are represented
by asterisks and diamonds, respectively.
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solution). The distributions are clearly not accurate,
however, as a global optimizer it does its job of
minimizing f(m) and obtaining MAP very fast. The
GA sample histograms presented here are not unique.
Every GA run will result in a different set of curves,
without any specific sampling density ps(mjd). The
hybrid method actually uses the 15,000 GA samples

obtained in (c) to perform the Voronoi decomposition.
When a fast Gibbs resampling is performed on the
approximate PPD, results comparable to the conventional
MCMC solution is obtained. A Gibbs resampling of just
20,000 samples is sufficient to calculate the MC integral
accurately (40,000 is used in (d)). It should be noted that
(d) is extracted using the forward model samples
obtained in (c). All information about the search space
comes from the GA samples and the hybrid method
makes the information hidden in the GA set available for
MC integration through Voronoi decomposition.
[32] Figures 5 provides further comparison between

the benchmark exhaustive search and the hybrid method
results. The off-diagonal plots are the 2-D marginal
posterior densities, while 1-D parameter PPDs are given
in diagonal plots. The results are given in terms of
highest posterior density (HPD) regions [Box and Tiao,
1992]. Full Bayesian solutions in terms of posterior
densities may be important in many cases and give
information about the inversion quality. These marginal
distributions and the interparameter correlations shown
in 2-D plots may also help in understanding the under-
lying physics. For example the last parameter, inversion
layer thickness, shows a highly non-Gaussian behavior
with a high posterior probability from 15 m to 50 m. The
physical explanation is that, since the selected inversion
layer is very strong it will trap all of the EM signal
provided that the layer has at least a certain thickness
(25 m in these plots). Therefore, having an environment
with a thicker inversion layer will not affect the sea
clutter, so any model with h2 > 25 m appears as equally
likely in the plot. Hence just using the mean (MMSE) or
MAP solutions may be misleading and can have signif-
icant errors. Also notice how some parameters are
strongly correlated, such as the inversion layer slope c2
and the base layer height h1.
[33] One drawback of the hybrid method is a lack of

rigorous convergence criterion. Because of its MCMC
nature, the resampling converges to the sampling density.
However, it is sampling the approximate density bp(mjd),
not the real p(mjd). Therefore two separate conditions
must be met simultaneously for the convergence of the
hybrid method:

Table 1. System Parameters

Parameter Value

Simulation
Frequency, MHz 2840
3 dB beam width, deg 0.4
Source height, m 30.78
Polarization VV
Duct type SBD only
Top layer slope, M units/m 0.118
Range bin width, m 600

Environmental Model: Synthetic Data
Number of parameters 4
M profile model type range independent
Inversion range interval, km 10–60
Clutter standard deviation, dB 10

Environmental Model: Wallops’98 Data
Number of parameters 16
M profile model type range dependent
Inversion range interval, km 10–70
Ranges at which M profile is defined, km 0, 20, 40, 60

Figure 3. Two adjacent Voronoi cells Vi and Vj

intersecting a conditional line in the kth dimension;
mi and mj are the corresponding GA samples. The
conditional approximate PPD, which is constant except
for the cell boundary intersection, is given above the
Voronoi cell structure.

Table 2. Synthetic Data Case: Model Parameters

Model
Parameter Units

True
Value

Lower
Bound

Upper
Bound

c1 M units/m 0.13 0 0.25
c2 M units/m �2.5 �3.5 �1
h1 m 40 0 50
h2 m 20 0 50
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[34] 1. Convergence in GA: The set of GA samples
converges when bp(mjd) obtained from the Voronoi
decomposition of the GA sample set is close enough to
the real PPD to yield sufficiently accurate MC integral
calculations, assuming a perfect Gibbs resampling.
[35] 2. Convergence in GS: The set of Gibbs samples

obtained during the resampling phase converges if the
sample histograms obtained by this set is close to bp(mjd).
[36] Hence a poor Gibbs resampling after a perfect

Voronoi decomposition or a perfect Gibbs resampling on
a poor Voronoi lattice may both end up with poor
estimates.
[37] Figure 6 shows how the estimated 1-D marginal

PPDs evolve to their true distributions with increasing
GA samples for a fixed number of Gibbs samples
(40,000). The metric (D) used to check the quality of
the inversion result is calculated for each parameter as

Dj ¼ max
mj

P mj dj

 �

� PTRUE mj dj

 ��� ��; ð25Þ

where P(mjjd) and PTRUE(mjjd) represent the cumulative
marginal distribution functions of the jth model para-
meter for the hybrid method and the exhaustive search
result, respectively. This metric is similar to the
Kolmogorov-Smirnov test statistic [Press et al., 1995].
Similarly, Figure 7 explores the effect of the number of
Gibbs samples in the resampling phase for a fixed

Voronoi decomposition obtained from 15,000 GA points.
Note how quickly the 1-D marginals obtained by GS
converge to the approximate marginal PPD (about 5000
is enough) as long as bp(mjd) is a good Voronoi
approximation to the real PPD.
[38] The convergence plots for the hybrid method are

given on Figure 8. Figure 8a is obtained by performing
multiple inversions using GA sample sizes varying from
10,000 to 25,000 For each GA size the inversion is
repeated 40 times and the mean D value is used. Note
how D improves as GA sample size is increased. Since
an adequate number of Gibbs samples are used in the
resampling phase, most of the error comes from the
difference between the true and the approximate PPDs.
Figure 8b shows the convergence in GS with different
Gibbs sample sizes varying from 10,000 to 200,000.
Again each simulation is repeated 40 times and the mean
D is used. Given enough samples, the Gibbs sampling
converges to the Voronoi-approximated PPD. Because of
the inherent residual between the Voronoi approximateFigure 4. Marginal posterior probability distributions

for the synthetic test case. Vertical lines show the true
values of the parameters. Shown are (a) exhaustive
search, (b) Metropolis sampler (MCMC), (c) GA, and
(d) hybrid GA-MCMC using 15,000 GA and 40,000
Gibbs samples.

Figure 5. Both 1-D marginal (diagonal) and 2-D
marginal (upper diagonal) PPDs for the synthetic test
case obtained by (a) exhaustive search and (b) hybrid
GA-MCMC. Vertical lines (in 1-D plots) and crosses (in
2-D plots) show the true values of the parameters.
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and the real PPD, increasing the GS sample size (here
past about 20,000) will not improve convergence.

4.2. Wallops’98 Data

[39] To further demonstrate the capabilities and limi-
tations of the hybrid method, a range-dependent envi-
ronmental model comprising 16 parameters is employed
during the inversion of the 1998 Wallops Island exper-
iment data collected by the Naval Surface Warfare
Center, Dahlgren Division. The radar clutter was gath-
ered by the Space Range Radar (SPANDAR). Radar and
environmental model parameters are both provided in
Table 1. Range-dependent M profiles were measured by
a helicopter provided by the Johns Hopkins University,
Applied Physics Laboratory (JHU-APL). Data used in
the inversion were taken during a surface-based ducting
event on 2 April 1998 [Rogers et al., 2000; Gerstoft et
al., 2003].
[40] A range-dependent inversion is achieved by

defining vertical, four-parameter trilinear M profiles at
certain ranges (0, 20, 40, and 60 km) and linearly
interpolating the parameters in between, see Figure 9.
Slopes for both the first and the second layers can be
negative and positive to give more flexibility in the
modeling. Hence they are only referred to by their layer
numbers. Layer slopes at different ranges can vary
independent of each other. On the contrary, a Markovian
structure is used for the layer heights with a maximum of

30 m variation relative to the height value at the previous
range.
[41] It has been shown by Goldhirsh and Dockery

[1998] that for ranges larger than 30 km, the lateral
homogeneity assumption can result in significant errors.
They suggest using multiple profiles for long-range
applications. In the paper by Brooks et al. [1999], it is
suggested that a range-independent assumption for long
ranges leads to significant errors in propagation factor
40% of the time and the results by Goldhirsh and
Dockery [1998] are optimistic. Hence, in this work, a
range-dependent approach with multiple profiles, each
20 km apart, is adopted. The parameters and their bounds
are given in Table 3 along with the MAP solution
obtained by GA. Lower and upper bounds are selected
in consistency with Rogers [1996] and Gossard and
Strauch [1983].
[42] Inversion results are given in Figures 10, 11, 12,

and 13. Estimated range-dependent M profile (MAP
solution) is given in Figure 10a. This solution is similar
to the ones obtained by Gerstoft et al. [2003] and
Vasudevan et al. [2007] and agrees well with the heli-
copter measured profile (Figure 10a. Although the heli-
copter profiles give a good approximation to the
environment, they might not represent ground truth at
the time the clutter is measured. These profiles are
collected while the helicopter flies in and out radially
along 150� azimuth with a sawtooth up-and-down mo-

Figure 6. Convergence in GA: effect of GA sample size
on 1-D marginal posterior densities for a 40,000 Gibbs
sample size. Distributions were calculated using
(a) exhaustive search (true distribution) and the hybrid
method with (b) 1000, (c) 5000, and (d) 15,000 GA
samples. Vertical lines represent the true values.

Figure 7. Convergence in GS: effect of GS sample size
on 1-D marginal posterior densities for a 15,000 GA
sample size. Distributions were calculated using
(a) exhaustive search (true distribution) and the hybrid
method with (b) 1000, (c) 5000, and (d) 20,000 Gibbs
samples. Vertical lines represent the true values.
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tion to measure the range-height-dependent refractivity.
Each measurement takes about 25 min, comparable to
the 30-min limit by Rogers [1996]. For the analyzed
case the helicopter fly time is between 13:19–13:49 EST
and the clutter return is measured at 13:40 EST. The
sharp gradient around 60 km range disappears at the next
helicopter measurement taken between 13:51–14:14
EST [see Gerstoft et al., 2003, Figure 3]. So there
are discrepancies between helicopter-measured and clut-
ter-inferred profiles. In fact, the absolute mean error at
0–70 km between the helicopter and SPANDAR clutter
is quite large (11.9 dB). This error value drops to 6.8 and
2.6 dB, respectively between the SPANDAR and the
range-independent profile and between the SPANDAR
and the range-dependent profile clutter returns. As
expected, the range-dependent profile matches the rela-
tive clutter power of the SPANDAR radar (Figure 10b)
better than the range-independent inversion [from Yardim
et al., 2006] because of the increased degrees of freedom.
[43] The environmental posterior density is given in

Figure 11a. Since the full PPD is 16-D, only 1-D
(diagonal plots) and 2-D (upper diagonal) marginal
densities calculated using (10) are given. Some of the
parameters such as m10, m13, and m14 have a highly non-
Gaussian marginals, while others such as m2, m3, and m9

have Gaussian-like features. The highly skewed 1-D

marginals given for m10 and m14 are encountered fre-
quently with the refractivity slope pdfs. The reason is
that the slope very rarely exceeds values such as 0.3–
0.4 M units/m and usually is concentrated around values
such as 0.118 M units/m (standard atmosphere) and
0.13 M units/m. This creates a sharp peak for the positive
end of the spectrum since the negative slope values can
be in excess of the �2 M units/m, usually with a quickly
decreasing probability. The result is a pdf structure
similar to the ones obtained here. In fact [Gerstoft
et al., 2004] use such a pdf as prior density to do
importance sampling.
[44] Only 13 out of 16 parameters are given in

Figure 11a. The height parameters of the second layers
m8, m12, and m16 are omitted, as they are not important
(see discussion about Figure 4. Since clutter is mostly
due to the EM signal trapped inside the duct, it mostly
contains information about the parameters inside the
duct, making the second layer heights poorly determined
except for very close ranges. To demonstrate this, nor-
malized error function f(m)/f(mMAP) for various condi-
tional planes are given in Figure 11b. These curves are
obtained by fixing other parameters to their MAP values
and calculating f(m) while varying only two parameters
at a time. Except for the bottom plots all the plots show
quickly varying complex patterns whereas the last ones
are flat since the horizontal axis for these is either m8,
m12, or m16 (second layer heights). Some plots such as
m1 versus m12 have zero likelihood regions since the
height parameters which are Dh at 20, 40, and 60 km
cannot be less than values that would make the actual
layer thickness negative.
[45] Therefore only 13 parameters are used in the

resampling phase. This decreases computation time and
reduces misleading results. For a uniformly distributed
parameter the hybrid method will require much larger

Figure 9. Example of range-dependent 16-parameter
M profile with 4 parameters per 20 km. Vertical profile at
any given range is calculated by linear interpolation of
both the slopes and the layer thicknesses.

Figure 8. Convergence of the hybrid method showing
D for each parameter as a function of (a) GA sample size
for a 40,000 Gibbs sample size and (b) Gibbs sample size
for a 15,000 GA sample size.
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numbers of initial GA samples. This can be explained
using the conditional plot of m1 versus m16 in Figure 11b.
Assume we have only two samples on the plane with
[m1

1, m16
1 ] = [�1.5 �20] and [m1

2, m16
2 ] = [�0.5 20]. The

first sample m1 has a low likelihood whereas m2 has a
much higher value, entirely due to the difference in m1.
Hence resampling after Voronoi decomposition of this
sparsely sampled space will result in a nonuniform
marginal for m16. An interesting observation is that the
other parameter m1 is affected much less severely and
indeed increasing the number of samples slightly will be
enough to obtain an accurate PPD for m1, whereas m16

will require much denser Voronoi cell structures. This
can be problematic as the dimension size is increased. A
sparse mesh will result in poor results for the uniformly
distributed parameters with minimal effect on the results
for other parameters. However, in RFC, because of the
physics of the inversion problem, we know a priori the
uniformly distributed parameters and do not include
them.
[46] The environmental statistics can be projected into

statistics for user parameters (see section 2). One typical
parameter of interest to an end user is the propagation
factor F. The results in Figure 12 are obtained from the
parameter PPD in Figure 11. It shows the PPD for F at
ranges 18 (Figure 11a), 40 (Figure 11b), and 60 km
(Figure 11c). Contour plots show the PPD of F for height

Table 3. Wallops’98 Experiment: Model Parameters

Model
Parameter Units

MAP
Estimate

Lower
Bound

Upper
Bound

m1: c1 at 0 km M units/m �0.404 �2 0.4
m2: c2 at 0 km M units/m �0.721 �2 0.4
m3: h1 at 0 km m 29.98 0 100
m4: h2 at 0 km m 21.94 0 100
m5: c1 at 20 km M units/m �0.185 �2 0.4
m6: c2 at 20 km M units/m �0.895 �2 0.4
m7: Dh1 at 20 km m �5.03 �30 30
m8: Dh2 at 20 km m 3.02 �30 30
m9: c1 at 40 km M units/m �0.391 �2 0.4
m10: c2 at 40 km M units/m 0.060 �2 0.4
m11: Dh1 at 40 km m 13.18 �30 30
m12: Dh2 at 40 km m 9.94 �30 30
m13: c1 at 60 km M units/m �0.373 �2 0.4
m14: c2 at 60 km M units/m �0.098 �2 0.4
m15: D h1 at 60 km m �14.25 �30 30
m16: D h2 at 60 km m �14.27 �30 30

Figure 10. Inversion results for the Wallops Island experiment: (a) estimated (dashed lines) and
helicopter-measured (solid lines) profiles at various ranges and (b) clutter measured by SPANDAR
together with the clutter that would have been obtained from the estimated range-dependent and
range-independent environments.
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values between 0–200 m, with the MAP solution
(dashed white). Horizontal lines represent the three
altitudes analyzed in detail in the small plots shown next
to the color plots. Comparison of plots at the same range
and different altitudes reveals some important aspects of
RFC.
[47] First, the propagation factor PPDs inside the duct

(at 20 m) are sharper than those outside the duct (100 and

180 m). This is expected since we used the sea clutter
which is usually affected only by the lower portions of
the atmosphere to infer the environment. The PPDs do
also become flatter with increasing range. Note how the
error made by using the standard atmospheric assump-
tion (black dashed lines) increases with range, especially
inside the duct. At [H, R] = [20 m, 18 km] all three
curves (MAP, helicopter profile, and standard atmo-

Figure 11. Marginal and conditional distributions. (a) The 1-D (diagonal) and 2-D (upper
diagonal) posterior probability distributions in terms of percent HPD for the range-dependent
SPANDAR data inversion. Thirteen parameters (m1–7, m9–11, m13–15) out of 16 are given. Vertical
lines in the 1-D plots show the GA MAP solution. (b) Normalized error function for various
conditional planes. Each 2-D plot is obtained by fixing the other 14 parameters to their MAP
values.
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sphere) are almost identical whereas standard atmospheric
assumption leads to more than 40 dB error for [H, R] =
[20 m, 60 km] while MAP and helicopter profile comply
with the underlying PPD. Finally, the difference between
the helicopter profile and MAP tends to be larger outside
the duct.
[48] Similar results are obtained for F at two altitudes

in Figure 13 (top) at 20 m and Figure 13 (bottom) at
100 m, inside and outside the duct, respectively. Color
plots again show the PPD of F for ranges between 0 km
and 90 km in terms of percent HPD, with the dashed
white line showing the MAP solution. The increase in
the variance of F as a function of range can clearly be
seen for both inside and outside the duct cases. The
variance of 100 m case is also larger than the 20 m case
as also witnessed in Figure 12. It should be noted that the
helicopter and MAP solution results almost always
conform with the underlying density even when they
are not same. Plots such as these can be used by the radar
operator to update radar performance or even be included
in detection algorithms as a fluctuation in the returned

signal due to the atmosphere, similar to the Swerling
models [Skolnik, 2001].

5. Conclusion

[49] A hybrid genetic algorithm–Markov chain Monte
Carlo (GA-MCMC) method has been used for statistical
maritime radar performance estimation under nonstan-
dard propagation conditions. Statistical refractivity-from-
clutter (RFC) inversion is used to gather information
about the environment, such as the range-dependent
vertical structure of the atmospheric index of refraction,
and then these environmental uncertainties are used to
estimate parameters of interest to be used by the radar
operator.
[50] As a forward model, a fast Fourier transform split-

step parabolic equation (FFT-SSPE) approximation to
the wave equation was used to propagate the electro-
magnetic signal in complex environments. The hybrid
method uses fewer forward model calculations than a
classical MCMC while obtaining more accurate distri-

Figure 12. Posterior probability densities for propagation factor F at three different ranges: (left)
18 km, (middle) 40 km, and (right) 60 km. Color plots show the PPD of F for height values
between 0 and 200 m in terms of percent HPD, with the MAP solution (dashed white lines).
Horizontal lines represent the three altitudes analyzed in detail in the small plots shown next to the
color plots at heights (top to bottom) 180, 100, and 20 m. Vertical lines in the small plots represent
the values of F at the corresponding height and range for the MAP solution (blue line with circles),
helicopter measurement (red line), and standard atmospheric assumption (black line).
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butions than GA. This enables inclusion of more un-
known parameters and range-dependent atmospheric
models. The capabilities of the technique were illustrated
for a 16 dimensional range-dependent inversion.
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