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A low signal to noise ratio (SNR), single source/receiver, broadband, frequency-coherent matched-

field inversion procedure recently has been proposed. It exploits coherently repeated transmissions

to improve estimation of the geoacoustic parameters. The long observation time improves the SNR

and creates a synthetic aperture due to relative source-receiver motion. To model constant velocity

source/receiver horizontal motion, waveguide Doppler theory for normal modes is necessary.

However, the inversion performance degrades when source/receiver acceleration exists.

Furthermore processing a train of pulses all at once does not take advantage of the natural incre-

mental acquisition of data along with the ability to assess the temporal evolution of parameter

uncertainty. Here a recursive Bayesian estimation approach is developed that coherently processes

the data pulse by pulse and incrementally updates estimates of parameter uncertainty. It also

approximates source/receiver acceleration by assuming piecewise constant but linearly changing

source/receiver velocities. When the source/receiver acceleration exists, it is shown that modeling

acceleration can reduce further the parameter estimation biases and uncertainties. The method is

demonstrated in simulation and in the analysis of low SNR, 100–900 Hz linear frequency modu-

lated (LFM) pulses from the Shallow Water 2006 experiment.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4892788]
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I. INTRODUCTION

Based on the signal measured at a receiver that is some

distance away from the source, the general idea of geoacous-

tic inversion is to optimize the waveguide geoacoustic model

parameters by minimizing the difference between the meas-

ured and the replica (modeled) acoustic fields. In doing this,

seafloor properties are estimated without resorting to costly

direct measurements such as coring. Knowing the seafloor

acoustic properties is important for various applications such

as sonar performance prediction.

Recently, a single-source/receiver, broadband, fre-

quency coherent matched-field inversion procedure was pro-

posed in Ref. 1. It exploits coherently repeated transmissions

to improve estimation of the geoacoustic parameters in low

signal to noise (SNR) conditions. The long observation time

improves the SNR and creates a synthetic aperture due to rel-

ative source-receiver horizontal motion. However, due to the

temporal extent of the data observation, source/receiver

motion has to be taken in account using waveguide Doppler

theory where each horizontal wavenumber or mode under-

goes a different Doppler shift.1–3 Though successful, the

approach is limited to constant source/receiver radial veloc-

ities. Therefore the assumptions are violated in the region

near the closest point of approach (CPA) or when the radial

velocities change. This paper improves the broadband syn-

thetic aperture geoacoustic inversion approach for cases

where the radial velocity of the source/receiver changes.

This is done through pulse-by-pulse coherent processing that

in turn allows different source/receiver velocities.

Furthermore processing a train of pulses all at once does

not take advantage of the natural incremental acquisition of

new data along with the ability to assess the temporal evolu-

tion of parameter uncertainty. Here an equivalent pulse-by-

pulse coherent processing approach using Bayesian updating

is developed. With the Bayesian formulation, the estimated

posterior distribution provides quantitative uncertainty anal-

ysis.4 It also may be used to infer uncertainties in another

usage domain (e.g., transmission loss5). This recursive

Bayesian approach allows new data to be added incremen-

tally without having to wait for all data to be present before

processing can take place.6 At present, most single source

and receiver methods,1,7–18 except Ref. 19, do not use the

Bayesian approach for uncertainty analysis.

The improved method is well suited for rapid environ-

ment assessment using a moving source and/or receiver as

depicted in Fig. 1. The source or receiver may be towed hori-

zontally by a ship or an autonomous underwater vehicle

(AUV). Alternatively, a battery powered acoustic source

may be dropped onto the ocean bottom to aid AUV-based

geoacoustic inversion.20 AUV-based inversions recently

have been gaining research interest due to their operational

attractiveness.21–24

The theory of waveguide Doppler and modal propaga-

tion is reviewed briefly in Sec. II, followed by the formula-

tion of the inversion problem. Simulation results are

presented in Sec. III. Section IV presents results from the

analysis of low SNR, 100–900 Hz LFM data from the

Shallow Water 2006 experiment.
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II. THEORY

An overview of the recursive Bayesian approach is illus-

trated in Fig. 2. At the lth measurement yl, the likelihood

pðyljmÞ of the lth measurement conditioned on any particu-

lar set of model parameters m is computed (Sec. II B). This

means computing the difference between the measured field

yl and the replica (modeled) field. Taking into the account of

source/receiver motion, the replica field is generated using

the waveguide Doppler model in Sec. II A.

The recursive Bayesian estimation approach is derived

in Sec. II C. The general idea is to propagate the past poste-

rior probability density pðmjy1:l�1Þ as the prior information

to improve the current posterior probability density pðmjy1:lÞ
with the current likelihood pðyljmÞ via Bayes’ rule. The pos-

terior density is represented with a set of samples of m and

weights that are updated recursively as new measurements

become available. However, as the posterior density evolves

with the measurements, the importance density sampling the

posterior density needs to adapt correspondingly where sam-

ples are added to the high probability regions of the posterior

density. Sections II D and II E address the implementation

of the recursive Bayesian estimation approach using adapt-

ive importance sampling (AIS) of the time-evolving poste-

rior density.

The assumptions for the forward model and inversion

approach are listed in Table I.

A. Waveguide Doppler theory model for acceleration
dynamics

In a waveguide, the impact of Doppler is complicated

due to multipath. Discussions of waveguide Doppler include

Refs. 2, 3, and 25–28. In this paper, waveguide Doppler due

to source/receiver motion on a signal propagating in a range-

independent waveguide is adapted from Schmidt and

Kuperman.2,3 Each horizontal wavenumber or mode under-

goes a different Doppler shift. The scenario considered is

depicted in Fig. 1. Based on constant source and receiver

velocities and depth constraints, and a positive-exponent

Fourier transform convention, the waveguide Doppler

shifted field via a normal mode representation is1

w r; zr; xrð Þ �
ie�i p=4ð Þffiffiffiffiffiffi
8p
p

q zsð Þ

X
n

S x knð Þ
s

h i

�Wn zr; xrð ÞWn zs; xrð Þ
eiknr0ffiffiffiffiffiffiffiffi

knr0

p ; (1)

where

xðknÞ
s ¼ xr � knðvs � vrÞ; (2)

kn �
krn

1� vr
urn

� � ; (3)

SðxsÞ ¼
XL

l¼1

exp½ixsðl� 1ÞTr�ScðxsÞ: (4)

r0 is the source-receiver separation at t ¼ 0. vs, vr, zs, and zr

are the radial source and receiver velocities and depths,

respectively. qðzsÞ is the water density. kn and Wn are the

modal wavenumbers and modal functions evaluated at prop-

agation frequencies x. For numerical efficiency, construct-

ing the field in Eq. (1) is facilitated by some approximations

to the propagation modal wavenumbers and functions that

FIG. 1. Horizontally stratified ocean with a horizontally moving source and

receiver. The source is moving at initial velocity vs1 and bearing us1, while

the receiver is moving at initial velocity vr1 and bearing ur1. The range ori-

gin is the source position at time zero when the source begins transmitting.

TABLE I. Assumptions for the forward model and inversion approach.

Waveguide Doppler model (see Ref. 1 and Sec. II A)

� Range independent environment

� Known source spectrum

� v=c� 1, source/receiver speed v is much less than the acoustic wave

propagation speed c

� vsl and vrl are constant and horizontal

� Source-receiver displacement (due to motion) is much less than the

source-receiver separation. Therefore the radial velocities are approximately

constant vrl ¼ jvrlj cos url; vsl ¼ jvslj cos usl

� Wðz; xÞ � Wðz; xrÞ � Wðz; xsÞ
� Cutoffs or additions of modes due to Doppler shifts are neglected

� knl � krn= 1� vrl=urnð Þ½ � � ksn= 1� vsl=usnð Þ�
�

where knl is approximated

through Taylor’s first order expansion

� Source/receiver acceleration is constant and much smaller than source/re-

ceiver speed

Recursive Bayesian inversion (see Secs. II B and II C)

� Initial prior knowledge of the parameters

� Underlying model parameters are constant for all measurements

FIG. 2. Recursive Bayesian approach. The lth measurement is yl, and m is

the vector of model parameters. For illustration purpose, m is depicted here

as a scalar. The posterior density pðmjy1: lÞ is represented with a set of sam-

ples of m and weights. The importance density changes by introducing new

samples from other densities as the posterior density evolves.
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are computed instead at the receiver frequency xr [see Eqs.

(1) and (3)]. xðknÞ
s is the mode-dependent source frequency

mapping function used to construct the field at xr. urn

¼ dxr=dknðxrÞ is the nth modal group velocity and krn

¼ knðxrÞ is the nth modal wavenumber, both evaluated at

xr. SðxsÞ is the source spectrum of L pulses representing the

amplitude and phase of the moving point source. Tr is the

pulse repetition interval (PRI) and ScðxsÞ is the spectrum of

the common or repeated source transmission.

When the source traverses past the receiver, the radial ve-

locity vs changes even though the source velocity vs is constant

(see Fig. 3). As shown later in Sec. III, acceleration needs to be

modeled to perform a meaningful inversion near the CPA.

However, modeling acceleration is non-trivial as it results in

time-dependence in the modal wavenumbers and modal func-

tions.29 As an approximation to a constant acceleration, a prac-

tical approach is to assume multiple short duration

transmissions, e.g., multiple pulses as in Eq. (4), where the

source/receiver radial velocities are assumed piecewise con-

stant for the lth pulse but linearly changing from pulse to pulse.

Therefore the field can be generated for each pulse and coher-

ently combined for L pulses to form the received spectrum.

Substituting Eqs. (4) and (2) into Eq. (1) and introducing pulse

number dependent radial velocities, the replica field may be

represented as a sum of L fields wlðr; zr; xrÞ such that

wðr; zr; xrÞ ¼
XL

l¼1

wlðr; zr; xrÞ; (5)

where

wl r; zr; xrð Þ ¼
ie�i p=4ð Þffiffiffiffiffiffi
8p
p

q zsð Þ
exp ixr l� 1ð ÞTr½ �

�
X

n

Sc x kn; lð Þ
s

h i
Wn zr; xrð Þ

�Wn zs; xrð Þ
eiknlr0lffiffiffiffiffiffiffiffiffiffi
knlr0l

p ; (6)

xðknlÞ
s ¼ xr � knlðvsl � vrlÞ; (7)

knl �
krn

1� vrl

urn

� � ; (8)

vsl ¼ vs1 þ ðl� 1ÞTras; (9)

vrl ¼ vr1 þ ðl� 1ÞTrar; (10)

and

r0l ¼
r0; if l ¼ 1;

r0 þ
Xl�1

j¼1

Trðvrj � vsjÞ; if l ¼ 2;…; L:

8>><
>>:

(11)

Each pulse is propagated in the forward model with its

corresponding values of vsl and vrl then coherently combined

in Eq. (5). Note that all L pressure fields still are referenced

to t ¼ 0. In Eq. (8), the horizontal wavenumber knl depends

on mode n and pulse number l. Hence there also are mode

and pulse number dependent frequency mappings when trac-

ing back to xs in order to construct the field at xr, see Eq.

(7). As an approximation to a constant acceleration, the

source/receiver radial velocities vsl and vrl [Eqs. (9) and

(10)] are modeled to be piecewise constant for the lth pulse

but linearly changing from pulse to pulse. as and ar are the

source and receiver radial accelerations, respectively.

B. Likelihood functions

The broadband data model for frequency-coherent

match-field based geoacoustic inversion can be expressed as

L measurement vectors,

yl ¼ aEðnÞdlðmÞ þ gl ¼ ablðn; mÞ þ gl; (12)

where yl ¼ ½ylðxr1Þ � � � ylðxrJÞ�T is the K-point fast Fourier

transform (FFT) of the observed time series capturing the lth
pulse for J discrete frequencies. Note the lth pulse Fourier

transforms are synchronized to the first pulse transmission

time (t ¼ 0) so that only one timing error n between the

source and receiver clocks needs to be resolved. EðnÞ is a

diagonal matrix for correcting the timing error, EðnÞ
¼ diag½eixr1n � � � eixrJn�. m is the subset of forward model pa-

rameters that are being estimated (see Fig. 1). a is a scale

factor representing the unknown source level. To introduce

source/receiver motion or waveguide Doppler, the corre-

sponding replica field dlðmÞ ¼ ½wlðxr1; mÞ � � �wlðxrJ; mÞ�T
is generated using Eq. (6) with vector m. It is assumed the

model parameters m, a and n do not change between meas-

urements and thus the joint likelihood function will sharpen

as L increases.

The distribution of the error vector gl ¼ ½glðxr1Þ � � �
glðxrJÞ�T defines the likelihood function. It is assumed that

gl for l ¼ 1;…; L are independent and identically distributed

(i.i.d.) across L measurements. Error consists of both ambi-

ent noise and modeling errors. For low SNR processing, the

colored ambient noise will be considered the dominant

FIG. 3. (a) Top view of a constant velocity source with changing radial ve-

locity to the receiver due to the geometry of source/receiver positions. (b)

Source–receiver range and radial velocity curves near CPA. Here the change

in source radial velocity in the dotted box approximately is linear with time

corresponding to a constant acceleration.
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source of error. The frequency-dependent noise is modeled

as a wide sense stationary noise u½n� with power spectral

density PuuðxrÞ. PuuðxrÞ is estimated from noise only data

prior to the pulse transmissions.

Taking a K-point FFT of u½n�, let the lth error vector gl

be the FFT of u½n� evaluated at frequencies ½xr1 � � �xrJ � with

J 	 K. We will define the frequency domain noise gl as

complex Gaussian with mean E½gl� ¼ 0 for xr 6¼ 0 and

autocovariance30

Cg ¼ E½glg
H
l � ¼ cdiag½Puuðxr1Þ � � � PuuðxrJÞ�; (13)

where c is a scale factor for scaling the noise spectrum in

the data inversions. Thus it is assumed that the error

vector gl 
 CN ð0; CgÞ. Factoring Cg ¼ c~Cg with ~Cg

¼ diag½Puuðxr1Þ � � � PuuðxrJÞ�, the joint likelihood function

of the L measurements can be expressed as (based on i.i.d.

measurements)

L ~mð Þ¼ p y1 :Lj ~m
� 	

¼
YL

l¼1

p ylj ~m
� 	

¼
YL

l¼1

1

pcð ÞJj~Cgj

� expf� yl�abl n;mð Þ
� 
H ~C

�1

g

� yl�abl n;mð Þ
� 


=cg; (14)

where supervector y1:L ¼ ½yT
1 ;…; yT

L �
T

and ~m ¼ ½mT; c;
a; n�T. To simplify the notation, m is now redefined to also

include c, a, and n. For this empirical Bayesian estimation

problem, a and c are estimated jointly with the model param-

eters,5 instead of incorporating their maximum likelihood

estimates (MLE) as in Ref. 1.

C. Recursive Bayesian estimation

In low SNR conditions, long time integration is neces-

sary for acceptable parameter estimation uncertainty. The

time-dependent source-receiver range can be recast into a set

of initial value and constant parameters. This reformulation

includes initial value parameter such as initial source range

r0 at ðt ¼ 0Þ [Eq. (11)], initial velocities vs1 and vr1 and con-

stant accelerations as and ar [Eqs. (9) and (10)] for use with

the waveguide Doppler model [Eqs. (5) and (6)]. Thus the

need to track31,32 the time-dependent source-receiver range

is circumvented, and the measurements accumulate and

improve the likelihood/posterior densities. It is assumed that

other model parameters, such as the seafloor properties, do

not change for the L measurements.

Recursive Bayesian estimation (see Fig. 2) is inspired

by recursive Bayesian online learning and particle filter theo-

ries.6,33–36 With initial prior knowledge of the parameters

pðmÞ and Bayes’ rule, the joint posterior probability density

function (PPD) of the model parameters for l pulse measure-

ments is6

p mjy1 : l

� 	
¼

p y1 : ljm
� 	

p mð Þ
p y1: lð Þ

(15)

¼
p yljm
� 	

p mjy1 : l�1ð Þ
� 	

Ð
p yljm
� 	

p mjy1 : l�1ð Þ
� 	

dm
: (16)

Equation (16) shows that the joint posterior density condi-

tioned on l measurements can be updated recursively from

the lth likelihood and the joint posterior density of the l� 1

measurements. Thus Bayesian updating of pðmjy1 : lÞ can

be done all at once [Eq. (15)] or recursively over time

[Eq. (16)]. In addition, assuming constant geoacoustic

model parameters for all l, no model mismatch error and no

bias error between the replica and measured fields, the var-

iance of the maximum a posteriori (MAP) parameter

estimate,

var½m̂ðLÞMAP� < var½m̂ðL�1Þ
MAP � < � � � < var½m̂ð1ÞMAP�; (17)

where

m̂
ðLÞ
MAP ¼ arg max

m

pðmjy1:LÞ ¼ arg max
m

pðmÞ
YL

l¼1

pðyljmÞ:

(18)

Ideally, the posterior density converges to a Dirac delta func-

tion centered at the true parameter value as L approaches infin-

ity.6 Practically, it is difficult to attain the true parameter value

as there will be some model mismatch error or bias in the esti-

mator. In addition, only a limited number of measurements can

be processed before time-dependent variations in the model pa-

rameters and model mismatch errors become significant.

D. Recursive Monte Carlo integration and importance
sampling

The posterior density pðmjy1 : lÞ is used to compute met-

rics of interest such as the MAP estimates, posterior means,

variances and marginal PPDs of the model parameter mi

(Refs. 4 and 37) [see Eqs. (18) and (19)–(22)]. A way of gen-

erating these metrics is Monte Carlo integration and impor-

tance sampling.38–41 Compared to Markov Chain Monte

Carlo methods that sequentially sample the posterior density,

the primary appeal of importance sampling is the ability to

carry out large-scale sampling of the posterior density in par-

allel. These metrics also can be updated as new data is made

available [see Eqs. (27)–(29)],

li ¼
ð

mipðmjy1 : lÞ dm; (19)

r2
i ¼

ð
ðmi � liÞ2pðmjy1:lÞ dm; (20)

pðmijy1:lÞ ¼
ð

dðm0i � miÞpðm0jy1:lÞ dm0; (21)

pðmi; mjjy1:lÞ ¼
ð

dðm0i � miÞdðm0j � mjÞ
�pðm0jy1: lÞ dm0:

(22)

For a parameter of interest such as the water column sound

speed profile (SSP), cw, that is inferred from the inversion

and is a function of empirical orthogonal functions (EOFs)
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and coefficients,1,42–44 cw ¼ CðmÞ, the probability distribu-

tion of cw is4,5

pðcwjy1: lÞ ¼
ð
d½cw � CðmÞ�pðmjy1: lÞ dm: (23)

As shown later in Sec. IV A, Eq. (23) is used to plot the SSP

estimation uncertainty in Figs. 12–14. Using the Monte Carlo

integration method,38–41 these integrals are of the form,

ð
h mð Þp mjy1: l

� 	
dm ¼ E h mð Þ½ � � 1

Q

XQ

q¼1

h mqð Þ; (24)

where the samples fmq; q ¼ 1;…; Qg are drawn from the

distribution pðmjy1: lÞ. Drawing samples from pðmjy1: lÞ is

difficult as it usually is a non-standard and high dimensional

probability density function (PDF).39,40 Alternatively, a stand-

ard or importance density xðmÞ may be used to generate the

samples. This is known as importance sampling.38–40 Therefore

ð
h mð Þp mjy1: l

� 	
dm �

XQ

q¼1

h mqð Þ~wq
l

XQ

j¼1

~wj
l

; (25)

where

~wq
l ¼

p y1: ljmq
� 	

p mqð Þ
x mqð Þ (26)

are the unnormalized weights, and they correct under- and

over-represented samples drawn from xðmÞ instead of

pðmjy1: lÞ. However, Eqs. (25) and (26) are non-recursive.

As new data is made available, the weights may be com-

puted recursively as33–35

~wq
l ¼ pðyljmqÞ~wq

l�1: (27)

Let normalized weights be wq
l ¼ ~wq

l =
Pj¼Q

j¼1 ~wj
l. Equation

(25) becomes

ð
hðmÞpðmjy1: lÞ dm �

XQ

q¼1

hðmqÞwq
l : (28)

Equations (27) and (28) are recognized as an implementation

of Eq. (16). The PPD can be approximated by33,34

pðmjy1: lÞ �
XQ

q¼1

dðm�mqÞwq
l ; (29)

and it approaches the true PPD as Q!1. For comparison,

see Eqs. (21) and (22).

E. Adaptive importance sampling

The PPDs, pðmjy1: lÞ, evolve with each new pulse. Thus

the importance density is a function of l and should adapt

correspondingly to sample the evolving PPDs effectively.

One solution is to employ a Gaussian mixture for the impor-

tance density. Let the importance density be given by45,46

xðm; lÞ ¼
Xl

n¼0

bnxnðmÞ; (30)

where the mixture coefficients bn ¼ Qn=Q, Qn is the number

of samples generated from the nth Gaussian density xnðmÞ
and Q ¼

Pl
n¼0 Qn, and thus

Pl
n¼0 bn ¼ 1.

Conventionally, Gaussian mixtures are used in adaptive im-

portance sampling (AIS) to match the arbitrary and non-

evolving PPD (in Bayesian applications).45,46 The mixture coef-

ficients, means and covariance matrices of xnðmÞ are adaptively

improved based on the previous Monte Carlo draws that sample

the same PPD. In addition, the number of densities in the mixture

remains constant. However, adapting the mixture coefficients

bn, means and variances of xnðmÞ is computationally demanding

for each pulse measurement in the application discussed here.

This is because each adaptive iteration requires hundreds or

more forward model evaluations, and many iterations are needed

for the AIS density to converge to the current posterior density.

A simple alternative use of the Gaussian mixture that

directly uses the posterior information is proposed here. The

main difference between previous AIS implementations45,46

and our proposed AIS is that the importance density here

(Figs. 4 and 7) iteratively adapts as the PPD pðmjy1: lÞ
changes with l. The pseudo code for recursive Bayesian esti-

mation using AIS is provided in Table II. There are lþ 1

mixture components for a PPD conditioned on l measure-

ments (see Eq. 30 and Fig. 4).

The initial density x0ðmÞ is used in a preliminary explora-

tion of pðmjy1Þ. x0ðmÞ is chosen to be a Gaussian density

Nððsu þ slÞ=2; diag½ðsu � slÞ=2�2Þ, where su and sl are upper

and lower boundaries of the parameter search space. Using im-

portance samples drawn from x0ðmÞ and the first pulse mea-

surement, m̂
ð1Þ
MAP and the covariance matrix C1 of m can be

approximated [see Eqs. (18), (19), and (31)]. While retaining

the old importance samples for a new pulse, an additional set of

importance samples is included using the density

x1ðmÞ ¼ N ðm̂ð1ÞMAP; C1Þ. Then, using
P1

j¼0 Qj importance

samples from x0ðmÞ and x1ðmÞ, m̂
ðlÞ
MAP, and C1 can be updated.

It is important to note that both m̂
ðlÞ
MAP and Cl first are

approximated from the PPD pðmjy1: lÞ using the previousPl�1
j¼0 Qj importance samples and the current pulse measure-

ment embedded in the updated weights wq
l . Subsequently,

importance samples are drawn from Nðm̂ðlÞMAP; ClÞ to sample

the PPD pðmjy1: lÞ more effectively. Then, using past and

present importance samples
Pl

j¼0 Qj, m̂
ðlÞ
MAP and Cl can be

updated. Cl is computed from [see Eqs. (18) and (19)]39,41

Cl �
XQ

q¼1

ðmqÞðmqÞTwq
l � lll

T
l : (31)

The importance density xðm; lÞ now is dependent on l.
The weight corrections [Eq. (26)] should be applied after the

weight recursion but before the weight normalization. Let

un-corrected and un-normalized weights be redefined as

ŵq
l ¼ pðy1: ljmqÞpðmqÞ and the new recursion be ŵq

l

¼ pðyljmqÞŵq
l�1. The weights then are corrected by ~wq

l

¼ ŵq
l =xðmq; lÞ before normalization. Importance sampling
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potentially can have numerical stability issues in the weight

correction ~wq
l ¼ ŵq

l =xðmq; lÞ if xðmq; lÞ is very small.

Retaining the older densities in the mixture has the desirable

effect of increasing the tails of the overall density while

maintaining the main mass of samples in the high PPD

region.39,40

The overall effect of this cumulative update of m̂
ðlÞ
MAP

and Cl and accumulation of Gaussian densities is an AIS

process. The last Gaussian density added will have a covari-

ance that is an estimate of the covariance of the current PPD.

III. RECURSIVE BAYESIAN SIMULATION

This section will demonstrate the recursive Bayesian esti-

mation approach that coherently processes the data pulse by

pulse and incrementally updates estimates of parameter

uncertainty. It also approximates source/receiver radial accel-

eration by assuming piecewise constant but linearly changing

source/receiver velocities. When source/receiver radial accel-

eration exists, it is demonstrated that modeling acceleration

[Eqs. (5)–(11)] can further reduce the parameter estimation

biases and uncertainties. The ocean model is illustrated in Fig.

1 and model parameters are tabulated in Table III. Based on

the theory presented in Sec. II A, this simulation models a

constant velocity moving source that is slowing down radially

with respect to the static receiver for L ¼ ½1;…; 64� pulses

(see Fig. 3). The range-independent geoacoustic parameters

were based on previous SW06 inversion results.1,43,44,47,48

The source emits 100–900 Hz LFM pulses with 1 s pulse

width and PRI. Thus vs64 ¼ 1:52 m/s. [see Eq. (9)]. The noise,

Eq. (13), was generated to be similar to the measured power

spectrum of SW06 ambient noise data. The frequency sam-

pling is 5 Hz starting from 100 to 700 Hz. KRAKEN is used to

compute the modes and wavenumbers.49

The sediment parameters (qsed; c1; s, and ased) are esti-

mated using the recursive Bayesian estimation procedure in

Sec. II D, while the rest of the model parameters are assumed

known. The parameter search space is kept small so that

exhaustive-search based on 244 samples (instead of random

importance samples) can be used to plot the true PPDs.

Source acceleration is modeled in the replica field using Eq.

(9). We first show that the method does indeed reduce the

parameter uncertainty as L increases. Using Eqs. (21), (22),

(27), and (28), Fig. 5 shows both one-dimensional (1-D)

(along the diagonal) and two-dimensional (2-D) (off-diagonal)

marginal PPDs. In the 2-D PPDs, the densities are contoured

according to their percentage highest posterior density

(HPD) regions.4,37 This percentage HPD is also equal to per-

centage of the total probability. The PPDs of the model pa-

rameters are not Gaussian. This is due to the non-linear

relationship between the acoustic field and the geoacoustic

parameters. Comparing the posterior densities in Figs. 5(a)

and 5(b), the reduction in the HPD regions indicates that

there is much improvement. The 2-D PPDs also provide in-

formation about the correlation between any two parameters.

FIG. 4. Importance density evolution with l.

TABLE II. Pseudo code for recursive Bayesian estimation using adaptive

importance sampling.

Preliminary exploration of PPD pðmjy1Þ

Draw Q0 samples fm1 � � �mQ0g from density

x0ðmÞ 
 N ððsu þ slÞ=2; diag½ðsu � slÞ=2�2Þ
Initialize weights ŵq

0 ¼ pðmqÞ

Recursive Bayesian estimation

for l ¼ 1 to L

Using current lth measurement yl

and the past importance samples Q ¼
Pl�1

j¼0 Qj:

Update weights ŵq
l ¼ pðyljmqÞŵq

l�1

Correct weights ~wq
l ¼ ŵq

l =xðmq; l� 1Þ
Normalize weights wq

l ¼ ~wq
l =
Pj¼Q

j¼1 ~wj
l

Using the ðl� 1Þ th importance density xðm; l� 1Þ
Approximate MAP estimate m̂

ðlÞ
MAP Eq. (18)

Approximate PPD covariance Cl Eqs. (19) and (31)

Draw Ql importance samples from density

xlðmÞ 
 N ðm̂ðlÞMAP; ClÞ:
For the new Ql importance samples:

Compute weights ŵq
l ¼ pðmqÞ

Ql
j¼1 pðyjjmqÞ

For all importance samples Q ¼
Pl

j¼0 Qj:

Correct weights ~wq
l ¼ ŵq

l =xðmq; lÞ
Normalize weights wq

l ¼ ~wq
l =
Pj¼Q

j¼1 ~wj
l

Bayesian statistical estimation for y1:l

Finalize MAP estimate m̂
ðlÞ
MAP Eq. (18)

Finalize covariance Cl Eqs. (19) and (31)

Compute PPD estimate Eqs. (21), (22), and (29)

Compute Bayesian inference Eqs. (23) and (29)

endfor

TABLE III. Baseline model parameters.

Simulation model parameters Value

Source range at t ¼ 0, r0 (m) 600

Source depth, zs1 (m) 30

Receiver depth, zr1 (m) 45

Source initial radial velocity, vs1 ðm=sÞ 1.9

Receiver initial radial velocity, vr1 ðm=sÞ 0

Source radial acceleration, as ðmm=s2Þ �6

Receiver radial acceleration, ar ðmm=s2Þ 0

Water depth, zw (m) 78

Sediment depth, hsed (m) 22

Sediment density, qsed ðg=cm3Þ 1.8

Sediment attenuation., ased ðdB=kÞ 0.2

Sediment top velocity, c1 ðm=sÞ 1640

Sediment velocity slope, s ð1=sÞ 0

Bottom density, qbot ðg=cm3Þ 2.2

Bottom attenuation., abot ðdB=kÞ 0.2

Bottom velocity, cb ðm=sÞ 1740
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Recursive Bayesian estimation is repeated with no

source acceleration modeled [as ¼ 0 in Eq. (9)] in the replica

field while the measured field contains as ¼ �0:006 m/s. As

the number of pulse measurements increases, the replica-to-

measured field mismatch increases and the MAP and PPD

estimation results deteriorate and deviate from the baseline

values [see Fig. 6(a)]. This is due to the replica field not

modeling pulse-number (l) dependent radial velocity

changes. In addition, the importance sampling utilized in

this recursive Bayesian formulation also will have difficulty

sampling the high probability regions of parameter space

because there is a range of possible radial velocities to

match. As a result, the MAP estimates and 1-D marginal

PPD plots in Fig. 6(a) were adversely affected and provided

little or biased information about the geoacoustic properties.

On the other hand, if source acceleration is modeled in

the replica field, the joint PPD of the model parameters will

evolve and be more informative (peaky) as the number of

pulse measurements increases, Eq. (16). Equivalently, this is

observed in Fig. 6(b) in the evolution of the 1-D marginal

PPDs with increasing number of pulse measurements.

Figures 5(b) and 6(b) are repeated using the AIS

approach starting with only 3000 samples that eventually

grows to 18 120 samples [see Figs. 5(c) and 6(c)].

Comparing Figs. 5(b) and 5(c) and 6(b) and 6(c), the AIS

PPDs look similar to the true PPDs, and they gradually will

converge to the true PPD as more AIS samples are added.

This has demonstrated that AIS is effective in estimating the

PPD using 15 times less importance samples than the num-

ber used for the exhaustive sampling method. Figure 7 shows

how the AIS importance distribution xðm; LÞ adaptively

changes with L to follow the evolving PPD.

These simulations have demonstrated the reduction of

biases and uncertainty of parameter estimates as L increases.

There are two contributions to this improvement. One is the

coherent gain from processing multiple pulses. The other is

the spatial gain when the source moves toward the receiver.

A way to check the incremental contribution due to spatial

gain is to carry out a parameter sensitivity analysis compar-

ing static and moving source–receiver configurations for 64

pulses (see Fig. 8). As the synthetic aperture created in this

simulation is short (109 m), the synthetic aperture/spatial

gain is not significant compared to the gain from processing

multiple pulses.

IV. EXPERIMENTAL DATA ANALYSIS

The SW06 experiment was carried out near the shelf

break on the New Jersey continental shelf from July to

September 2006. The sequence of transmission in Ref. 1 do

FIG. 5. (Color online) True marginal PPD via 244 exhaustive-search based samples with SNR fixed at 0 dB and number of LFM pulses (a) L ¼ 1 (b) L ¼ 64.

(c) Estimated marginal PPD via AIS 18 120 samples with SNR fixed at 0 dB and number of LFM pulses L ¼ 64.

FIG. 6. (Color online) True 1-D marginal PPD evolution with L ¼ ½1;…; 64�: (a) Acceleration not modeled in the replica field, (b) acceleration modeled in

the replica field. (c) Estimated 1-D marginal PPD evolution with L ¼ ½1;…; 64� with acceleration modeled in the replica field and 3000–18 120 AIS samples.
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not have enough acceleration to demonstrate the effects of

modeling motion dynamics. Hence a new sequence that is

closer to the CPA was selected for analysis. The data set has a

linearly changing radial velocity moving source and a static

receiver over a range-independent track, see Figs. 9 and 10.

The acoustic data were recorded on JD238 2040 coordinated

universal time (UTC) (t ¼ 0) from a 44.6 m deep single re-

ceiver (Channel 8) of a vertical line array (VLA1). The data

set consisted of 64 LFM pulse (100–900 Hz) transmissions

from a 29.5 m deep J–15 source towed by the R/V Knorr at an

initial radial velocity of 1.6 m/s and radial acceleration of

�0:006 m/s2. The LFM pulse width was 1 s and was repeated

every second. The initial R/V Knorr global positioning system

(GPS) range to VLA1 was 525 m with a CPA distance of

410 m and the source is known to be trailing 115 m behind the

ship’s GPS mast. Based on the ship and VLA1 positions, the

actual source to VLA1 distance at t ¼ 0 is estimated to be

603 m. In addition, by factoring in that the source is trailing

115 m behind the GPS antenna, the actual radial velocity

between source and VLA1 is 1.9 m/s. Correspondingly, the

towed source displacement with respect to VLA1 or synthetic

aperture is [1.9 m/s � 64 s/2 � (0.006 m/s2)]� 64 s ¼ 109 m

long.

The water depths measured at the source and receiver

were 78 and 79 m, respectively. Water column SSPs are im-

portant and considered sensitive parameters in geoacoustic

inversion. In the simulation, the SSP was assumed known to

simplify and compute the true PPD. The true PPD confirms

empirically that AIS in the inversion adequately samples the

PPD (see Fig. 5). In the SW06 experimental data, the

measured SSP is known to be range dependent and is not a

good substitute for an averaged range independent SSP. In

addition, due to the lack of conductivity, temperature and

depth (CTD) measurements during this period and location,

sound speed profile inversion was included using empirical

orthogonal functions42–44 (EOFs) based on SSPs derived

from thermistors along the SHARK array (see Fig. 9).1

A. Data preprocessing and inversion results

Pre-processing of the single receiver data for all L
pulses includes LFM pulse matched filtering for coarse

synchronization (Fig. 11). The data then are sliced accord-

ing to the synchronization and FFT’d to obtain the meas-

ured field yl for each pulse in the frequency domain. The

matched filter output is not used in the inversion itself.

Finally, the frequency domain data are phase-adjusted

according to the synchronization times such that coherent

combination will follow Eq. (5). This makes the timing ref-

erence the same for all frequency domain data. For compu-

tational reasons, the frequency sampling interval is 5 Hz

from 100 to 700 Hz. As explained in Ref. 1 and in Sec. II

FIG. 7. AIS importance distribution xðm; LÞ marginalized onto ased for

L ¼ ½1; 32; 64�.

FIG. 8. Likelihood function pðy1: 64jmiÞ while fixing the remaining model

parameters to the baseline values (see Table III) for moving/static source-

receiver configurations.

FIG. 9. (Color online) SW06 experiment site, bathymetry, source, and re-

ceiver positions on JD238 (26 Aug 2006) 2000–2059 UTC.

FIG. 10. R/V Knorr range and radial velocity to VLA1. Highlighted is the

period of time corresponding to the 64 s data analyzed.
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A, the advantage of the waveguide Doppler model is that

the forward model is computed on the receiver frequencies.

To construct the replica field for a receiver frequency, the

forward model has to trace backward to multiple source

frequencies due to mode-dependent Doppler shifts. This is

done analytically using the backward frequency mapping

in Eq. (7). The forward and backward mapping relation-

ships between the source, propagation and receiver fre-

quencies are provided in Table IV.1

The lower and upper bounds for the model parameters

priors were set for the forward model depicted in Fig. 1

based on the background information at the experiment

site,1,19,43,44,47,48 see Table V. Importance samples are drawn

from Gaussian mixtures, and uniform priors are assumed.

The 18-parameter recursive Bayesian inversion was done for

L ¼ ½1;…; 64� using an initial 240 000 importance samples

ðL ¼ 1Þ that eventually grows to 840 000 importance sam-

ples ðL ¼ 64Þ. Note that a high number of importance sam-

ples is necessary for good PPD estimation.4 On the other

hand, MAP estimates require considerably fewer importance

samples than required for PPD estimation.41

Table V tabulates the inversion MAP results using

waveguide Doppler without and with acceleration modeled

for the 64 LFM pulses. For the inversion results using the

acceleration model, the estimated sediment thickness, veloc-

ity, and density are consistent with other published

results1,19,43,44,47,48 at the VLA1 site. For example, these

inversion results range from 1600 to 1670 m/s for the top

sediment velocity and 20 to 25 m for the sediment thickness.

In addition, the geometric parameters (r0; zs; zr; vs1; as;
and zw) results also agree very well with the measured or

best known values. However, the gradient of the sediment

velocity remains inconclusive.19 There have been negative,

zero, and positive gradient sediment profile inversion

results obtained by different investigators. The negative

gradient sediment profile results here are similar to the

results in Ref. 44.

The posterior densities of the model parameters are illus-

trated in Figs. 12–14, where only the 1-D (plots along the di-

agonal) and 2-D (plots above the diagonal) marginal PPDs are

shown. Only the most relevant 11 or 12 of 18 parameters are

given in Figs. 12–14. The three EOF coefficients PPDs are

difficult to interpret in terms of the water column SSP uncer-

tainties. Therefore the uncertainties or PPDs of the water col-

umn SSP, using Bayesian inference [Eq. (23)], are plotted

from the PPD statistics of the EOF coefficients.

Comparing Figs. 12 and 14, the reduction in uncertain-

ties between L ¼ 1 and L ¼ 64 is remarkably good across all

parameters. Uncertainty reduction in the water column SSP

also is observed (see Figs. 12 and 14). The largest uncer-

tainty in the water column SSP is between 35 and 45 m

depth. This compares well to the SHARK SSP measure-

ments between 1830 and 2229 UTC where the largest sound

speed variation is around 40 m depth (see Fig. 14). Because

the SSPs are known to be range dependent in SW06, the

SHARK SSP measured at 2040 UTC was not a good substi-

tute for an averaged range independent SSP. The EOFs have

enabled the inversion to optimize for the best average SSP

and the SSP inverted here is consistent with the SSP inver-

sion results from Ref. 1.

In contrast, the MAP results in Table V for L ¼ 64 with-

out using the acceleration model yield more biased geomet-

ric and geophysical (r0; zs; zr, zw, and qsed) results when

compared to measured or best known values. The biased

geometric results are an indication that this inversion is not

reliable. For example, the source range r0 is 50 m short and

the water, source and receiver depth, are, respectively, 4.8,

1.2, and 3.6 m too shallow. These differences cannot be

explained by the effective parameter calculations for a

mildly range dependent environment.50 This further is

FIG. 11. LFM pulse matched filtering for coarse synchronization.

TABLE IV. Mapping relationships for the source, propagation and receiver

frequencies.

Source Propagation Receiver

xðknlÞ
s ¼ xr� knlðvsl � vrlÞ x ¼ xr þ knlvrl xr

xs x ¼ xs þ knlvsl xðknlÞ
r ¼ xsþ knlðvsl � vrlÞ

TABLE V. SW06 data inversion parameters prior bounds and MAP results

for L ¼ 64.

Prior Prior Without With

Model parameters Lower limit Upper limit as option as option

Src range at t ¼ 0, r0 (m) 520 630 550 594

Src depth, zs (m) 27 32 28.8 29.7

Rcv depth, zr (m) 39 46 41.0 42.6

Timing error, n (ms) �50 50 9 �20

Src rad. vel., vs1 ðm=sÞ 1.5 2.0 1.84 1.94

Src rad. accel., as ðmm=s2Þ �7 �5 N/A �6

EOF1 coef. �50 50 22.5 42.3

EOF2 coef. �20 20 6.6 14.0

EOF3 coef. �10 10 0.9 5.2

Sed. thickness, hsed (m) 10 30 20.5 21.5

Sed. dens., qsed ðg=cm3Þ 1 3 2.5 2.1

Sed. attn., ased ðdB=kÞ 0.001 1 0.2 0.3

Sed. top. vel., c1 ðm=sÞ 1550 1700 1644 1655

Sed. vel. slope, s ð1=sÞ �10 10 �3.3 �4.3

Bot. vel., cb ðm=sÞ 1600 2200 1967 1993

Water depth, zw (m) 74 81 74.2 76.9

Src level, a 0.1 0.8 0.2 0.5

Noise level, c 0.5 1.9 1.5 1.1
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supported by the parameter estimation uncertainties or the

95% HPD region results when not using acceleration which

are about 100% more than the results when using the accel-

eration model (compare Figs. 13 and 14). The inverted water

column velocity profile also is different than the results

when using the acceleration model. Thus the quality of the

inversion results without modeling acceleration is lower than

that with acceleration modeled.

FIG. 12. (Color online) SW06 data recursive Bayesian inversion results using the waveguide Doppler model with acceleration modeled in the replica for

L ¼ 1.

FIG. 13. (Color online) SW06 data recursive Bayesian inversion results using the waveguide Doppler model with no acceleration modeled in the replica for

L ¼ 64.
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V. CONCLUSIONS

A broadband, frequency coherent matched-field inversion

procedure for a moving source and receiver at low SNR using

a recursive Bayesian pulse-by-pulse approach has been devel-

oped. This enabled a time-evolving uncertainty analysis of the

model parameters and an approximation for a horizontally

accelerating source and receiver. Through simulation and data

analysis from the Shallow Water 2006 experiment, it was

demonstrated that: (1) Via online uncertainty analysis, param-

eter uncertainty reduces with an increasing number of pulses

and (2) when source/receiver acceleration exists, modeling

acceleration in the inversion can reduce further parameter esti-

mation biases and uncertainties.
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