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Abstract-- Optimum multiuser detection (MUD) in code
divison multiple access (CDMA) systems have a complexity
that increases exponentially with the number of usersin order
to achieve maximum likelihood performance. In [1] and [2], it
was realized that if the signal cross-correlations between users
are constant, then maximum likelihood performance can be
obtained with polynomial-complexity. Another polynomial-
complexity algorithm is proposed in [3] and [4] using graph
theory. It transforms the MUD problem into one that solves
for a minimum cut in a graph or network. Also, a minimum
cut problem is equivalent to a maximum flow problem [5] and
there are many polynomial-complexity max flow or min cut
algorithms available. Some of their complexities are
dependent on the number of edges. An alternative method to
transform the MUD problem into a network, that sees a
reduction in the number of edges by 50 percent, is proposed.
This results in minimizing the already polynomial-complexity
of some max flow algorithms.

Index Terms—CDMA, Multiuser Detection,
Complexity.

Polynomial

I. INTRODUCTION

The basic synchronous CDMA signal of K users consists of the
sum of antipodally modulated spreading sequence waveforms and
additive white Gaussian noise. It is expressed mathematically in
Equation (1). It should be noted that this signal is continuous-
time.
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where
- Tis the bit interval
- si(®) the deterministic spreading sequence of length N
chips assigned to the ™ user

[ HZZJ'Sf(I)dl =1 2

- Ay is the received amplitude of the &™ user signal. 4, is
the energy of the k™ user.

- b {-1,+1} is the antipodal bit signal transmitted by
the ™ user.

- n(t) is the white Gaussian noise with zero mean and
uniform power spectral density of N, /2.

Equation (2) simply states that the spreading sequence waveforms
have unit energy over [0,7]. Another parameter that is commonly
used here is the cross-correlation of the spreading sequence
waveforms (see Equation (3)). It quantifies the similarity between
two spreading sequence waveforms.

T
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The continuous-time signal y(f) can be converted into the discrete
form by correlating it with deterministic signals of spreading
sequence waveforms and conventional sampling. This is done by
passing y(#) through a bank of matched filters each matched to the
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spreading sequence waveform of different users. The output of
the matched filter is

y=RAb+n (@)
where
VAT O el
R={p;}isa K by K cross correlation matrix
A =diag[A4,,............. A ]
b=[b, e b 1"
and N =[7,0cccnenenn , My ]T is a zero mean Gaussian random

vector with covariance matrix of

E[nnT]z%R 5)

Maximum likelihood (ML) multiuser detection will result in the
lowest error probability achievable for equally likely priors. It
computes the conditional probability Pyj(y|b) for all possible
combinations of b and chooses the one that gives the maximum
Pyp(ylb). This particular b that maximizes Py(y|b) is known as
maximum likelihood estimate. It is the most likely b that was
being transmitted based on the observed vector y. The maximum
likelihood estimate can be expressed as [6, pgl62].

O
b,, =argmax p, (y|b) =arg maX[ZyTAb - bTARAb]
bO{-1,+1}% bOy-1,+1}1%
—argmax Q(b) 6)
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Looking at Equation (6), there are 2% possible values of b and
hence, there are 25 possible outcomes or computations. In other
words, a detector with a computational complexity, O(25), that
increases exponentially with the number of users is needed to get
maximum likelihood performance. The exponential complexity
may put a cap on the capacity and data rate of the CDMA system,
as increasing the number of users can increase computational time
for the maximum likelihood estimate.

Il. POLYNOMIAL-COMPLEXITY MULTIUSER DETECTION
USING GRAPH THEORY

The usual {-1,+1} multiuser detection (MUD) problem had been
converted into a {0,1} quadratic programming problem so that it
can be eventually transformed into a maximum flow and minimum
cut network problem [3, 4]. The reason is simply that there is a
bag of polynomial-complexity max flow and min cut algorithms
available [7, 8]. However, one condition needed for these to work
is that cross correlations between users must be non-positive.

From [3] and [4], the problem of maximizing the Q(b) function

for b[] {-1,+1}X has been converted to a problem of minimizing
the Q(x) quadratic function for X [1{0,1}* in order to calculate the

maximum likelihood estimate (See Equation (7)).



o
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where X is a K elements column vector with x; [] {0,1}, uis a
column vector with all X elements equal to one and H=ARA={A,;}
is the unnormalized cross correlation matrix. Note that /; can be
assumed to be zero as both /4; in H and p cancels each other out.

Given a directed graph, G=[V,E] where
V = {0, Vs Vyseees Vies Vier

is the set of vertices and v,=a is the source and vg.,;=z is the sink.
E is the set of edges connecting the vertices.

The capacity of a cut was transformed into a function of vector X
and manipulated in [3] and [4] to be:

K K 0
c(x)= z Elﬂikﬂ - COi + zcg,‘ El':i - z z Cij'xi'xj
=T = i

K
+ z C()j +Coxn ©)
=
where Cj; is the capacity of the directed edge from i to ;.

By comparing the Equations (8) and (9), the conditions for
defining the capacities can be determined. And because the
number of edges is more than the conditions given, the assignment
of capacities can sometimes be arbitrary. The conditions set by [3]
and [4] were:

« C,=~h; 0i,j0{2,..K} (10)
g kO

¢ Cixn ~Co + ch 0= P (11)
ad = 0
K

* ZCOj +Coxn =0 (12)
J=1

Note that both [3] and [4] have negative (source incident)
capacities in their resultant network conversion due to Condition
(12). In this paper, it is desired to have only non-negative
capacities so that not only min cut algorithms but polynomial max
flow algorithms can also be implemented. Max flow algorithms
work within the boundary of 0 < Fj; < Cj; for i not equal j. On top
of that, it is possible to reduce the number of edges by half in
exploiting the symmetry of H and Condition (11). The
implication will be a reduction in any graph algorithm’s
complexity that is edge dependent.

An Alternative Approach

Since H is symmetric, h;=h; and h;=0. Equation (8) can be
rewritten as

Q' (x) =ZZ Zhijxixj + ipixi +& (13)
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The number of terms in the first summation has been reduced from
K? to (K?-K)/2. Tt will be clear in the later part of this section that
this will significantly reduce the number of edges not incident to
the source and the sink by half. £ is an arbitrary constant and is

added so that Condition (12) is not equal to zero when Equation

(13) and (9) are compared, this will result non-negative capacities
unlike in [3] and [4]. Note that the addition of & to the

minimizing equation will not affect the result of Equation (10), the
maximum likelihood estimate.

Comparing Equation (9) and Equation (13), it is now clear that if
we choose the edge capacities according to

e C,==2h; Ui jO{2,.,K}andi < j (14)
ad LS 0
e Wikn —Co * Zcij 0o=Pp; (15)
d =0
K
* zco,' +Copn =€ (16)
ba
then
C(X):Q*(X) DXD{O,l}K 17)

Thus, finding X that minimizes Q*(x) or Q(x) is equivalent to
finding a minimum cut in a network G. The minimum cut
problem is also a maximum flow problem as both maximum flow
condition and minimum cut condition must co-exist together
which is proven by the max flow min cut theorem [5].

Given the parameters of p and H of the {0,1} quadratic
programming problem, the corresponding network can be
constructed by satisfying the three conditions set by Conditions
(14) to (16).

Condition (14) assigns the capacities, C; that are not incident to
the source and the sink and are properly oriented, to —2h; for i # .
The improperly oriented ones that are not incident to the source
and the sink are assigned to zero, that is, the edge does not exist.
Because h; = A;4;p; where A; A; are positive and Cj; > 0 then £;
need to be non-positive. This means p; need to be non-positive
too. In other words, all cross correlation between different users
must be non-positive for Condition (14) to be satisfied. Note that
in [3] and [4], the number of capacities not incident to the sink and
source is (K-K). Here, the number of capacities have been
reduced to (K*-K)/2.

As for Condition (15), the equation can be further simplified into:

a K 0
Cikn —Co * ZCijD_pi
d 7= d

a X 0O LS
gjikﬂ -Cy —ZZhijEF—ZZhﬁ -4

J>i J>i

K K
[CiK+l _COi] :zzhij _zzhji — V4, (18)

J>i J>i
Note C; represents all the capacities from the source to other
vertices except the sink and there are K of them. C; g.; represents
all the capacities from all the vertices except the source to the sink
and there are K of them too. It is desired for C;;> 0. So if the right
hand side (RHS) of Equation (18) is positive, then let C; g,; > Cy,.
To minimize the number of edges, let C; x.; = RHS of Equation
(18) and Cj = 0. However if the RHS of Equation (18) is
negative, then let C; x; < Cy;. Again, to minimize the number of
edges, let C; x+; = 0 and C; = RHS of Equation (18). This also
results in the reduction in the number of edges incident to the
source or the sink from 2K to K.

Finally, Cj k-, is assigned zero in Condition (16). In summary, a
MUD problem that has been converted into a graph with K>+K+]1
edges, has been reduced to a graph with (K+K)/2 edges. All the
edges will only have non-negative capacities. In Figure 3, there
are two curves representing the resultant number of edges when a
MUD problem is converted into a network problem. The number



of edges depends on the number of users. In the legend, Network-
C means the network derived from the MUD problem using the
conventional method in [3] and [4]. And Network-A means the
network derived from the MUD problem using the alternative
approach presented here in this paper.

Comparison of methods for converting MUD into network by
the number of resultant edges
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Figure 3 Comparing Methods for Converting MUD into Network
Problem

It clearly shows that the reduction in the number of edges for the
alternative method as compared to the conventional method is
slightly more than 50 percent. If any polynomial-complexity
algorithm is directly proportional to the number of edges, then the
complexity is reduced by 50 percent when Network-A is used as
compared to Network-C. Examples of edge dependent algorithms
are successive shortest path and the highest-label preflow-push
algorithms with complexity of 0(,12 m) (50 percent reduction in the
order of complexity) and O(nzﬁ) (30 percent reduction in the
order of complexity) respectively where n is the number of
vertices and m is the number of edges [8].

II. A 3-USER MUD EXAMPLE

The objective of this section is to show, by example, that the min
cut or max flow of Network-A and Network-C, derived from a

MUD problem, leads to the same minimized function Q(X;L) and

maximum likelihood estimate X;lL . For Network-C, it is already

shown in [4], using an example, that solving the min cut problem
is equivalent to solving X that minimizes function Q(x). In this

section, it will be shown by example that solving a min cut
problem in Network-A is also equivalent to that of minimizing
Q(x). A numerical example, each for Network-A and Network-

C, is also included to illustrate that computing the maximum flow
is also equivalent to solving the MUD problem, that is, Q(x )
and x .

Consider a 3-user (K=3) MUD example with the unnormalized
cross correlation matrix,

S 0 — 44,0, —44:p; E
H :D_ A4,4,p, 0 _A2A3p23|:| (19)
E—A3A1p31 = 4,4, s, 0 E

where Pa = P> P13~ Py and Ps ™ Py

Note that the diagonal elements have been equated to zero as it is
insensitive to the multiuser detection problem shown in Section
III. Based on Equation (13), the minimizing function is:

Q'(x) = ZZ zhijxixj + i px; +&
i= =T

Computing the minimizingifunction for all possible manifestations
of X, we have:
Q'(0,0,0) =&
Q'(0,0,1) =&+ A4,A4,p5+ A, A,0,, = v, 4,
Q(0,1,0) =&+ A,4,p,, + A, 4,0, — v, 4,
QOL1) =E+A4,0, +AAP,—y,4, -4,
Q'(1,0,00 =&+ A44,p, +AApP,— V4
Q'(1,0,)) =&+ AA,p, + A A0, — V4 — .4,
Q' (1,L,0) =&+ A4, + A A0, — A — v, 4,
QL) =&-y, 4 -y, 4, -4,

Using the details furnished in the sub-section “The Alternative
Approach”, the 3-user MUD problem can be converted into a
network. Condition (14) will result in ¢, =244,p,>

C,, =24,4,p,, and Cyy =24,4,0,,- While Condition (15) will

have the following equations:
[C14 _C01] ==A4,4,0,, = A4 4,015 — 14

Assuming that the RHS of the equation is negative, let C;,= 0 and
Cor = A4 4,0,, + 44,015 + 014,

[C24 _Coz] =A44,0, ~ 440y — 1,4,

Assuming that the RHS of the equation is positive, let Cyp, = 0
andC,, = 4, 4,p,, = 4,4,y = 4, -

[C34 _Cos] = A AP+ A, 4,055~ y3 4,

Assuming that the RHS of the equation is positive, let Cyp; = 0
and C,, = 4,4,p,, + 4, 4, Py — y3 Ay

From Condition (16), let
§=Cy =AA4,0, + AAp; + 14

C04 = 0 and



Hence, the resultant network can be shown in the following:

C€(0.0.0) C(1.0.0) C(1.1.0) C(1.1.1)
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Figure 4 Network Derived from MUD Problem of K=3

Computing the capacities
manifestations of X, we have:

of cut, C(x), for all possible

C(0,0,0) = 4,4,p,, + 4,405 + y, 4,
=&

C00,1) =A44,0, + A 405 + y A+ A A5 + A, A 055 — 3 4,
SCHA AP + Ay 4,055~y 4,

C(0.1,0)= A4, 4,0, + A A, 0,5+ y A +24,4,0,, + A, 4, 0,5

=4, 4,05, = ¥, 4,
=&+ 44,0, + A, A0 = 1,4,

COLD) = A4A4,0, + A A, 015+ y, Ay + A A, 015 + Ay Ay Poy — 3 4,
+ A4, P, ~ A A0y — vy 4,

=&+ A AP, + AAPs — 4, — V4,

C(1,0,0)=24,4,p,, +24,4;p;;
=E+ A AP, +AAPL— 04

CLOL) =24, 4,0, + A 4,05 + A, 4, 0,5 = y3 4
=&+ A4P, + A0y~ 1A 134,

CLLO)=2A4/4,0,5 + 4, 4,005 + A4, 01, = 24,
=&+ AApy + A A0 — 1A~ 04,

CALLY) = 44,0, =y, 4, + A 4,0, = y,4,
=& =4 =y, 4~y 4,

Notice the equivalence of the minimizing function Q*(x) and the
capacity cut function C(x). Hence, C(x) = Q"(x) Ox0{0,1}¥ is

illustrated here and solving the min cut problem is equivalent to
solving X that minimizes Q(x). Note that Q"(x) = Q(x) +¢& -

IV. CONCLUSION

The optimum MUD is known to be NP-hard, that is, its
computational complexity increases exponentially, (O(2%)), with
the number of users, K. One perspective of solving the multiuser
detection problem with polynomial-complexity is found in [3] and
[4]. It involves converting the MUD problem into a network
problem that can be solve with polynomial-complexity max flow

or min cut algorithms provided that the cross-correlations between
users are non-positive. Some of these polynomial algorithms are
edge dependent forming the motivation to find an alternative
method to convert the MUD into a network with minimal number
of edges. The result is a 50 percent reduction in number of edges
for the network using this new method as compared to the one
suggested in [3] and [4]. Hence, edge dependent polynomial
algorithms such as highest label preflow push max flow algorithm,
which is known to be the most effective algorithm [8], can benefit
from such improvements (30 percent reduction in the order of
complexity).
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