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SUMMARY

  
Very shallow water acoustic communication channels are known to exhibit 

fading due to time-varying multipath arrivals. This is further complicated by impulsive 

snapping shrimp noise that is commonly present in warm shallow waters. Channel 

measurements and analyses were done to study the local shallow water characteristics.  

These measurements had helped verify and set the communication channel model and 

adaptive receivers presented in this thesis. This thesis also presents results from the use 

of single-carrier differential phase shift keying (DPSK) modulation. The receiver 

designs in the simulation and trial data analysis were based on combinations of least 

mean square (LMS) and recursive least square (RLS) algorithms with adaptive linear 

equalizer (LE) and decision feedback equalizer (DFE). In addition, multichannel 

combining (MC) and forward error correction (FEC) scheme such as turbo product 

codes (TPC) were employed to improve performance by removing correctable errors. 

Performance results based on simulated data as well as for real data collected from the 

sea were also presented.  
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CHAPTER 1  INTRODUCTION 

1.1 Literature Review 

The recorded history of underwater acoustics dates back to 1490 when 

Leonardo da Vinci wrote [1]: If you cause your ship to stop, and place the head of a 

long tube in the water and place the outer extremity to your ear, you will hear ships at 

a great distance from you.  This remarkable disclosure has helped to develop many 

modern underwater acoustic technologies for civil and military applications. These 

include fishing, submarine, bathymetric and side scan SONARs, echo sounders, 

Doppler velocity loggers, acoustic positioning systems, and more importantly, 

underwater acoustic communications system, which is of considerable interest in 

today s research. The technological advent of underwater explorations and sensing 

applications such as unmanned/autonomous underwater vehicles (U/AUVs), offshore 

oil and gas operations, ocean bottom monitoring stations, remote mine hunting and 

underwater structure inspections have driven the need for underwater wireless 

communications. Sound transmission is the single most effective means of directing 

energy transfer over long distances in sea-water. Radio-wave propagation is ineffective 

for this purpose because all but the lowest usable frequencies attenuates rapidly in the 

conducting sea water. And, optical propagation is subjected to scattering by suspended 

material in the sea [2, pp. 1.1-1.2]. 

What do we know about the shallow acoustic communication channel and how 

do we characterize it? Very shallow water acoustic communication channel  is 

generally characterized as a multipath channel due to the acoustic signal reflections 

from the surface and the bottom of the sea [3]. However, it is also well known that the 

shallow water channel exhibits time varying multipath fading [4-6].  Time variability 

in the channel response results from a few underwater phenomena. Random signal 

fluctuation due to micro-paths [7] is one of the phenomenon but it is more dominant in 
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deep oceans where there are stronger presence of internal waves and turbulence [8]. 

For shallow waters, micro-paths of each signal path are less dominant in contributing 

to random signal fluctuation and these micro-paths are generated from the acoustic 

scattering caused by small inhomogeneities in the medium and other suspended 

scatterers. In addition, surface scattering due to surface waves and random Doppler 

spreading of surface reflected signals due to motion of reflection point may have added 

to the channel s time variability for shallow water [4]. As a result, the signal multipath 

components undergo time-varying propagation delays, resulting in signal fading. This 

is further complicated by impulsive snapping shrimp noise that is commonly present in 

Singapore's warm waters [6, 9].  Propagation in shallow water may be modeled using 

Ray theory, Normal mode, Fast Field or Parabolic Equation method [3, p. 223]. For 

high frequencies in shallow water, Ray theory is one such model that is adequate to 

describe the multipath structure of the channel [3]. Zielinksi [10] presented a simple 

and practical time invariant shallow water ray model for acoustic communications. 

Yeo [11] extended Zielinski s work and verified experimentally that the model is 

appropriate for shallow water channels. Later, Geng and Zielinski [12] also claimed 

that the underwater channel is not a fully scattering channel where there may be 

several distinct eigenpaths linking the transmitter and receiver.  Each distinct eigenpath 

may contain a dominant component and a number of random sub-eigenpath 

components.  Recently, Gutierrez [13] also proposed an eigenpath model with random 

sub-eigenpath components.  As there were a lack of sea experimental analysis to verify 

the models from [12, 13], this thesis adopted the model in [10]. As for time variability, 

Chitre [6, 14] had proposed using Rayleigh fading model with some local sea trial data 

analyses backing (very short distances < 100m). This is similar to the Rayleigh fading 

model that is commonly used in radio communications [15, pp. 222-223].  The model 
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presented in this thesis is based on [10] and its time variability effect is based on [6, 

14, 15]. 

One of the earliest underwater communication systems was a submarine s 

underwater telephone developed by the United States in 1945 [16]. It can be used for 

several kilometres and employed single side band modulation in the band of 8-11kHz. 

In recent years, significant advancements have been made in the development of 

underwater acoustic digital communications with improved communication distance 

and data throughput [4, 5]. The main performance limitations of the underwater 

acoustic communications are channel phase stability, available bandwidth and channel 

impulse response fluctuation rate [5]. To overcome these difficulties, the design of 

commercially available underwater modems has mostly relied on the use of robust 

non-coherent and spread spectrum modulation techniques. Unfortunately, these 

techniques were known to be bandwidth inefficient and it will be difficult to achieve 

high data rates in the severely band limited underwater acoustic channel ~ typically, 

less than 1 kilobits per second (kbps) or about 0.02 to 0.2 bits/Hz efficiency for 

distances between one to two kilometers (according to some COTS underwater modem  

specifications). Some of these commercial modems had been deployed in our local, 

very shallow waters of depths of less than 30m with impulsive noise. These modems, 

that had worked well in other channels, performed poorly by having to set its baud rate 

to the lowest in order to achieve reliable communications (~100-300bps) for distances 

up to 2km. On the other hand, research focus had shifted to phase-coherent modulation 

techniques. The most noticeable was the coherent detection of digital signals at 30-

40kbps for a time varying 1.8km shallow water channel presented by Stojanovic [4] in 

1997. These advanced techniques have yet to be used in commercially available 

acoustic modems. 
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Recently, channel measurements at medium frequency ranges (9-28kHz) in 

very shallow water (15-30m) at distances ranging from 80m to 2.7km in the coastal sea 

of Singapore have shown that it is possible to reliably send high data rate 

communication signals [17]. It also highlighted that it is more difficult to obtain the 

same high data rates (that is achievable at longer distances1) at shorter distances due to 

increased delay and Doppler spreads. These were supported by some local 

development work on orthogonal frequency division multiplexing (OFDM) by [14, 18, 

19].  OFDM has been successful in achieving higher data rates in multipath 

environment without the help of channel equalization as it avoid inter symbol 

interference (ISI) effects by sending multiple low rate sub-carrier signals 

simultaneously with time guards called cyclic prefix and postfix. In [19], the OFDM 

modem had a maximum data rate of 10kbps at 1700m but it had to step down its data 

rates as the distance reduces. This is because using OFDM alone (without 

equalization) to combat the multipath effect often force system designers to reduce 

data rate in more severe time-dispersive channels.  The increase in delay spread 

effectively increases the time guards required. Despite this, their frequency diversity or 

multi-carrier modulation techniques have produced reliable and higher data rates when 

compared to some of the COTS modems available. However, OFDM do have some 

drawbacks. High peak to average power ratio (PAPR) in OFDM transmission is 

inherent and it will need special coding scheme to reduce the PAPR. OFDM also have 

training/tracking problems in adaptive equalization of its low rate sub-carrier signals if 

it wants to maintain high bit rates for a wider range of delay spreads. Finally, in mobile 

underwater communications, a more complicated Doppler correction algorithm for the 

multi-carrier system is needed when compared to one in a single carrier system.  Some 

                                                

 

1 As the bottom depth for the sea trial experiments and simulation does not vary much (~15m to 30m), 
long distances mentioned here usually meant that the range  depth ratio is large (larger than 30). 
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other possible techniques/enablers for high data rate are single carrier modulation with 

adaptive equalization [8, 20-22], adaptive multichannel combining [20, 23-25] and 

multiple input multiple output (MIMO) / Time Reversal (TR) system [26-28].  MIMO 

system leverages on space-time diversity to increase data rate.  In a MIMO wireless 

link, the data stream is broken into separate signals and sent through separable 

multipath channels in space. In underwater, MIMO system, such as in [26, 27], may 

require the projector and receiver arrays to span across a few meters or even the water 

column in order to exploit the multipath channel. This will result in making the MIMO 

system setup too bulky. While adaptive equalization and multichannel combining has 

not been explored in our local waters, they do not suffer the drawbacks of OFDM and 

still remain physically compact unlike MIMO.  The disadvantage of single carrier - 

multichannel communication with adaptive equalization is the higher order of 

complexity of implementation when compared to multi-carrier - OFDM alone.  

Therefore this thesis will experiment the sea data with single carrier adaptive 

equalization and multichannel combining to provide consistent high and reliable data 

rate over the challenging channels described above. Single carrier DPSK was chosen 

as it does not require an elaborate method for estimating the carrier phase. 

Apart from using MIMO to exploit the multipath structure of the underwater 

channel, can we exploit some other knowledge about the channel in communication 

signal processing? Channel measurements in [17] had shown that the shallow water 

multipath power delay profiles were sparse and these were prevalent in short distances.  

Some proposed exploits in sparse multipath channels were found in [29, 30]. The 

length of adaptive equalizer in underwater communications was known to be 

excessively long due to long delay spreads.  This poses three problems: an increase in 

computational complexity, slower convergence rate and the increased noise in channel 
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equalization. In Kocic [29], the aim of the work was to reduce the complexity of the 

adaptive equalizer by exploiting the sparse multipath channel.  As the threshold to de-

activate taps in [29] was considered high, the effect would be a significant reduction in 

computational load with negligible loss in performance.  Similarly, having large 

number of filter taps also slows down the convergence process of the equalizer as the 

step size has to be reduced to guarantee stability.  To address the slow convergence 

problem in fast fading and long delay channels, Heo [30] proposed channel estimate 

based tap initialization and sparse equalization to hasten the convergence process. This 

result in faster initial and nominal convergence and a one-two decibel increase in 

signal to noise ratio (SNR), when compared to the conventional approach. This thesis 

will explore sparse equalization to reduce noise in the estimate of inverse channel so as 

to improve the BER performance of the equalizer.  

1.2 Contributions 

Channel measurements and analyses were done to study the local shallow 

water characteristics. These measurements had helped verify the communication 

channel model presented in this thesis.  The reader may also find the channel 

measurement sections useful in designing communication system. This thesis had 

presented results from the use of single-carrier differential phase shift keying (DPSK) 

modulation. The receiver designs in sea trial data analyses were based on combinations 

of least mean square (LMS) and recursive least square (RLS) algorithms with adaptive 

linear equalizer (LE) and decision feedback equalizer (DFE). The LE-LMS receiver 

was simulated using the channel model simulator for all distances tested and the 

simulated results were approximately matched to the ones obtained from the sea trial.  

In order to achieve reliable communications, multichannel combining (MC) and 

forward error correction (FEC) scheme such as turbo product codes (TPC) were 
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employed to improve performance by removing correctable errors. These results a 

detailed performance analyses of different equalizers and adaptation algorithms over a 

range of communication distances (80m to 2740m).  In addition, sparse equalization 

had been explored in order to exploit the sparse channel and reduce the noise in the 

inverse channel estimate of adaptive equalizers.  Performance results were based on 

real data collected from the sea.   

1.3 Thesis Outline 

The thesis is organised into four main chapters. The first chapter presents the 

literature review.  The first half of chapter two presents a propagation channel model 

that is suitable for our shallow water geophysics.  Remaining parts of the second 

chapter attempts to characterize underwater communication channel as well as to 

obtain the parameters for channel model simulations and adaptive receivers.  Chapter 

three verifies the channel simulator, discussed in chapter one and two, by digital 

communication performance analysis via simulation as well as sea trial data. Finally, 

in chapter four, sea trial and some simulated performance of adaptive equalization 

algorithms, sparse equalization, multichannel combining and channel coding were 

presented.    
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CHAPTER 2  UNDERWATER ACOUSTIC CHANNEL  

An underwater acoustic channel is characterized as a multipath channel due to 

signal reflections from the surface and the bottom of the sea. Because of surface wave 

motion, the signal multipath components undergo time varying propagation delays that 

results in signal fading. In addition, there is frequency dependent attenuation which is 

approximately proportional to the square of the signal frequency. The sound velocity is 

nominally about 1540m/s but the actual value will vary either above or below the 

nominal value depending on the temperature, salinity and hydrostatic pressure at which 

the signal propagates. Ambient ocean acoustic noise is caused by shrimp, fish, and 

various mammals. Unfortunately, ocean ambient noise also includes man made 

acoustic noise such as seismic surveys, ship traffic and land reclamation. When sound 

propagates underwater, it undergoes a number of effects. The following sections will 

briefly explain these effects.  

2.1 Propagation Model 

There are many methods of multipath modeling. Figure 2.1 shows the general 

techniques used [3] to solve the Helmholtz (Wave) equation in acoustic propagation 

modeling. For shallow water channel, the acoustic characteristics of both the surface 

and bottom of the channel are important determinants of the sound field due to 

repeated reflections from both the surface and bottom. Propagation in shallow water 

may be modelled using Ray theory, Normal mode, Fast Field or Parabolic Equation 

method (see Figure 2-1 and Table 2-1). For high frequencies in shallow water, Ray 

theory is one such model that is adequate to describe the multipath structure of the 

channel [3, p. 223]. High frequency here refers to having acoustic wavelength that is 

smaller than the bottom depth (preferably less than 0.1 of the bottom depth). For this 



   

Page-9 

research work, the depth is roughly 30m maximum, the sound velocity is typically 

1540 m/s and the carrier frequency is typically at 18.5 kHz for medium range 

communication. Thus the wavelength to bottom depth ratio is 2.77 x10-3.                   

Figure 2-1. Methods to solve the Helmholtz equation   

Table 2-1. Applicability of propagation models [3] 

RI RD RI RD RI RD RI RD

Ray Trace

Normal Mode

Fast Field

Parabolic Equation

Legend -Good -Neutral -Inappropriate

Shallow Water Deep Water

LF HF LF HF

  

Zielinski [10] propose a multipath model for shallow waters shown in Figure 

2-2.  The channel model is characterized by Ray theory (simplified with constant 

sound velocity profile and constant bottom depth assumptions) and extending it to a 

Wave Equation 

Harmonic Source 

Helmholtz Equation 

Range Dependent Range Independent 

High Freq High Freq Low Freq Low Freq 

RAYS Normal Modes 

Fast Field 

RAYS 

Coupled Modes 

Parabolic Eq. 

LF-Low frequency HF-High Frequency      RI-Range Independent    RD-Range Dependent 
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multipath expansion for a series of reflections resulting in multipath arrival at the 

receiver. Figure 2-2 is slightly different from [10] so that a, and b now represent the 

transmitter s and receiver s depth instead of its height which is not so conventional. As 

such, the equations for path lengths, angle of arrivals and delays are re-stated here for 

clarity.  

Figure 2-2. Shallow water multipath model from [10] 

The transmitted signal path can be classified as direct path D or multipath. 

Multipaths are classified into four types and order of reflections, n. For example, 

notation SS1 will denote multipath signal which make the first and last boundary 

reflection with the surface with first order of reflection as shown in the figure. The 

channel can be visualized using Lyords mirror effect [31] to compute the signal path 

length, angle of arrivals and delays.  

The length of each signal path shown in Figure 2-2 is  

2 2L A .    (Eq. 2-1)  

The angle of arrival of the acoustic ray at the receiver is given by 

D 

BB1 

SS1

 

b 

h 

 

Tx 

 Rx

 

a 

BS1 

SB1

   

Bottom

 

Surface

 

L 
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1tanc

A
k

L

    
(Eq. 2-2) 

In the above 

A a b

   
1ck

 
for D  

2 ( 1)A h n a b

  
1ck

  
for SSn 

2A nh a b

  

1ck

 

for SBn   (Eq. 2-3) 

2A nh a b

  

1ck

  

for BSn 

2A nh a b

  

1ck

 

for BBn  

Therefore the length of signal path can be computed by substituting Eq. 2-3 into Eq. 2-

1. 

22D L a b

   

for D   

22 2 1nSS L h n a b

 

for SSn 

22 2nSB L nh a b

  

for SBn   (Eq. 2-4) 

22 2nBS L nh a b

  

for BSn 

22 2nBB L nh a b

  

for BBn  

The difference in arrival time between the direct path and the multipath signals can be 

written as follows:   

n n

n
SS SS D

SS D
t t

c

     

(Eq. 2-5)  

where Dt

 

and 
nSS

 

are arrival times of direct and SSn paths and c is the sound velocity. 

Similarly, we have:   

n n

n
SB SB D

SB D
t t

c

     

(Eq. 2-6)   

n n

n
BS BS D

BS D
t t

c

     

(Eq. 2-7)   

n n

n
BB BB D

BB D
t t

c

     

(Eq. 2-8) 
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2.1.1 Sound Velocity 

Because of the isovelocity assumption (constant sound velocity over all 

depths), the rays depicted here are straight. This is a fair assumption as most sound 

velocity profile recorded in our shallow water showed less than 1m/s variation in 

velocity over depth. This is reasonable as there is little variation of temperature over 

depth. Additionally, tidal currents usually establish a good mixing of salinity that lead 

to isovelocity conditions. A typical sound velocity profile is shown in Figure 2-3.  

Sound Veloctiy Profile
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Figure 2-3. Typical sound velocity profile in local waters  

If the sound velocity over depth changes considerably, rays bending will occur 

and the rays will always bend towards regions of lower propagation speed. The sound 

velocity of 1540m/s will be assumed here in this thesis. 

Water Temperature 28.2°C 
Salinity 32.8psu 
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2.1.2 Spreading Loss 

When sound pressure wave propagates outward from an omni-directional 

source, it decreases in acoustic intensity, due to the increasing surface area of the 

outward propagating wavefront and this constitutes spreading loss (SL). There are two 

estimates of spreading loss, namely spherical or free field spreading loss and 

cylindrical spreading loss [2]. The amplitude loss along a signal path length D will 

then be: 

Spherical Spreading    
2

1 1
( )SL D

D D

    

(Eq. 2-9) 

Cylindrical Spreading   
1 1

( )SL D
D D

    

(Eq. 2-10)  

Cylindrical spreading loss is valid in non-coherent processing where all the 

signal paths are lumped.  However, for coherent processing, where each path s 

contribution is considered, each path has to assume spherical spreading.  In this thesis, 

spherical spreading loss is adopted.  

2.1.3 Attenuation Loss 

Spreading loss constitute part of transmission loss. When the frequency of 

transmission is high or broadband, or if the distance of transmission is long (typically 

tens of kilometers), frequency dependent volume absorption becomes significant and is 

termed attenuation loss. There are several models available for different frequency 

range and channel types [32]. The model adopted here is the Hall-Watson Model [32]. 

Most of the other models are not suitable as they are suited for a lower temperature 

range, or the frequency range is rather limited. The Hall-Watson model is picked due 

to its adequate frequency range of 500Hz to 50kHz and unrestricted temperature range. 

The absorption coefficient, /dB km , is a function of frequency and temperature [32]: 
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(Eq. 2-11)  

where f  is the frequency in kHz and 
30 102

5 229721.9 10
T

T
Tf

 

We will assume f to be the carrier frequency of the signal. 

Tw is the water temperature in degrees Fahrenheit (Tw =32 + 1.8TdegC).  

A plot of the absorption coefficient against the frequency for temperature of 

29 c and Salinity of 35 ppt (Singapore s typical waters condition) is shown in Figure 

2-4. 
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Figure 2-4. Volume attenuation for sea water at temperature of 29 c given by the 
Hall-Watson formula 

Therefore the attenuation factor can be computed for each signal path length D as: 
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1000
20( ) 10

D

AL D

    
(Eq. 2-12) 

2.1.4 Surface Reflection Loss 

The acoustic pressure decrease for each reflection on the surface and it depends on the 

grazing angle. The complex surface reflection coefficient, sr , is evaluated empirically 

using the Beckmann-Spizzichino model in the form proposed by Coates [33].  

Beckmann-Spizzichino surface reflection loss 
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f
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(Eq. 2-13) 

where 1 210f f  , 2
2 378f w  and w is wind speed knots,  fc is the carrier frequency 

in kHz, and =  is the ray grazing at an angle to the surface. Considering the -180

 

phase shift due to the reflection from the sea surface, 

s sr r

    

(Eq. 2-14)   

2.1.5 Bottom Reflection Loss 

When the incident acoustic ray strike on the bottom, depending on the grazing 

angle, some of the acoustic energy will penetrate into the bottom as refracted ray and 

the remaining acoustic ray gets reflected back into sea water medium. Let 1  and 1c  be 

the density and sound speed of sea water. Let 2

 

and 2c

 

be the density and sound 

speed of the bottom. The bottom reflection loss can be evaluated using the Rayleigh 

model [34].  

2 2

2 2

sin cos

sin cos

c

b

c

m n
r

m n

   

(Eq. 2-15) 
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where 2

1

m  and 1

2
c

c
n

c
 and  is the grazing angle of the acoustic incident 

ray with the bottom. 

Therefore the combined repeated surface and/or bottom reflection for any type 

of multipath of order n are given by:  

1

n

n n
SS s bR r r

     

(Eq. 2-16) 

n

n n
SB s bR r r

     

(Eq. 2-17) 

n

n n
BS s bR r r

     

(Eq. 2-18) 
1

n

n n
BB s bR r r

     

(Eq. 2-19)     

2.1.6 Combined Received Response 

The received signal, r t , via a multipath channel can be expressed in the 

following equation: 

1
i i

i

r t x t

     

(Eq. 2-20) 

where i

 

and i

 

is the amplitude and propagation delay of the signal received via the 

ith path respectively and x(t) is the transmitted signal. Using Eq. 2-1 to Eq. 2-9, and Eq. 

2-11 to Eq. 2-20, 

1

( ) ( )
( )

( ) ( )
( ) ( )

          
( ) ( )

( ) ( )

( ) ( )
      

( ) (
( )

          

n n

n n

n n

n n

n

n

A D

A n SS A n SB
SS SB

n n

n A n BS A n BB
BS BB

n n

A

A n SS A
SS

n

L D x t t
y t

D
L SS R L SB R

x t t x t t
SS SB

L BS R L BB R
x t t x t t

BS BB

L D x t

D
L SS R L SB

x t
SS

1

)
( )

( ) ( )
( ) ( )

n

n

n n

n n

n SB
SB

n

n A n BS A n BB
BS BB

n n

R
x t

SB

L BS R L BB R
x t x t

BS BB

  

(Eq. 2-21) 
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The equation is modified with a change of variable t2=t-tD for simulation 

purpose. Rewriting the above equation lumping the amplitude of individual path into a 

signal variable i , we have: 

1

( ) ( )
( ) ( )

( ) ( )
n n n n

n n n n

SS SS SB SB

D D
n BS BS BB BB

x t t x t t
r t x t t

x t t x t t

  

(Eq. 2-22)  

where 
( )A

D

L D

D
,  

( )
n

n

A n SS
SS

n

L SS R

SS
, 

( )
n

n

A n SB
SB

n

L SB R

SB
, 

( )
n

n

A n BS
BS

n

L BS R

BS

 

and 
( )

n

n

A n BB
BB

n

L BB R

BB
.   

The first term represents the amplitude of the direct path signal and subsequent 

terms are the amplitude of the multipath components respectively. 

2.1.7 Time Varying Channel Response 

Up to this point, our discussions have been on a time-invariant propagation 

model. However, it is well known that the shallow water channel exhibits time varying 

multipath fading [4-6]. Chitre [6, 14] has made several observations on short range 

(~50m) variations of individual signal paths. The individual signal path is observed to 

exhibit approximate Rayleigh fading.  

To model the time variation of individual paths, the method from [7, 15] is 

adopted here where each amplitude of signal path is modeled as a Rayleigh random 

process with a median determined by i

 

as described in Eq. 2-22. To model the time 

correlation determined by the Doppler spread Wd, the method from [14, Appendix A] 

is adopted.  

In order to validate this model, we made channel measurements in our local 

waters that will be detailed in the next few sections and compared these plots with 

simulated ones. 
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2.2 Channel Measurements 

2.2.1 Experimental Setup  

The experiments were conducted in the coastal sea of Singapore. The transmitter 

was on one ship and the receiver on the other (see Figure 2-5). An omni-directional 

medium frequency (resonant at 18.5 kHz) projector was used to transmit the signal 

(with a source level of up to 180 dB re 1 Pa

 

1m). The receiver was a three band 

nested linear vertical array of nine hydrophones. In this experiment, we utilized the 

18.5 kHz receiving band. For both dry ends equipment, we had a portable personal 

computer (PC) with a National Instrument multi-function data acquisition card. During 

the sea trial, the receiving ship (ship B) remained at a fixed position while the 

transmitting ship (ship A), moved to different locations. GPS of the ship s locations 

were logged in as well. The multi-channel received signal was low pass filtered at 50 

kHz and then acquired at a sampling rate of 200 kHz by the receiver PC.  

2.2.2 Multipath Power Delay Profile, Delay Spread and Coherence Bandwidth 

Multipath power delay profiles (MPDP) of the channels were obtained by 

making use of broadband binary phase shift keying (BPSK) signals modulated with 

pseudo noise (PN) like m-sequences [35]. The symbol rate used was 4625 bps (choice 

of symbol rate was limited by transducer bandwidth). The carrier frequency was 18.5 

kHz. This type of sequence approximately provides us with 0.43 ms of delay 

resolution. Computation of the MPDP was based on [36] whereas time dispersion 

parameters are detailed in [15]. The m-sequence length was 255 (55 milliseconds) and 

was generated using the primitive polynomial of degree 8, or [435] in octal 

representation. 
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Figure 2-5. Sea trial setup  

Table 2-2. Sea trial parameters  

Range(m) Fc(kHz) Fd(ksps) Tx 
Depth 

(m) 

Rx 
Depth 

(m) 

Tx 
Bottom 
Depth 

(m) 

Rx 
Bottom 
Depth 

(m) 
80 18.5 4625 10 5 15.6 16.5 

130 18.5 4625 5 5 21.6 17.4 
560 18.5 4625 10 5 15.6 16.5 

1040 18.5 4625 10 5 23.0 16.5 
1510 18.5 4625 10 5 26.9 16.5 
1740 18.5 4625 8 5 17.2 18.9 
2740 18.5 4625 10 5 26.0 18.9 

  

Based on ray paths modelling described in Section 2.1, we deduced that PN 

periods of 55 ms were adequately long for multipath profiling and processing gain for 

all cases from 80 m to 2.7 km (see Figure 2-6). The signal was transmitted and 

acquired for 60 seconds for the various distances.  
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Figure 2-6. Simulated channel impulse response for 80m and 2740m respectively   

The MPDP for each m-sequence frame were computed based on [36].  Each 

MPDP was placed next to each other over time to allow the reader to interpret the time 

history (y-axis) changes in multipath arrivals (in terms of delay (x-axis) and magnitude 

changes (intensity of z-axis)) (see Figure 2-7). It was noted that the MPDP frames 

were shifted in time due to transmitter and receiver motion, even though the ships were 

anchored (Figure 2-7). Hence, an additional step of aligning the frames was needed to 

align the first arrivals of all MPDP frames. The MPDP frames were re-aligned in a 

mean square error (MSE) fashion by comparing the first frame with the subsequent 

frames (Figure 2-8).   

We refer to Cox [36] who used the following to compute the average power 

delay profile with a set of N envelope delay profiles, 

                      221
( ) ( ) ( )  ,

N

i
i i

P E h
N

   

(Eq. 2-23) 

where ( )h  is the bandpass impulse response and 2 ( )iE  is the ith power delay profile.  

The average power delay profile can be viewed in Figure 2-9. 
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Figure 2-7. Multipath delay profiles with time shifts due to ships motion.  

 

Figure 2-8. Multipath delay profiles after MSE alignment.  

 

Figure 2-9. Average multipath power delay profile  
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Figure 2-8 shows the variation in the multipath structure. The (first) direct path 

did not vary too much as scattering may only be due to micropaths that were caused by 

small inhomogeneities in the medium and other suspended scatterers. The (second) 

surface reflected or the SS1 path showed more variation and was more severely 

scattered due to micropaths as well as sea surface wave motion on the reflection point.    

Transmission range approx 453m  

 

Figure 2-10. Channel impulse response - MPDPs close up plot for first five 
seconds  

Figure 2-10 shows another way of plotting the impulse response that depicts 

the multipath reception at the receiver due to reflections from the physical boundaries 

of the channel. This test was done at a distance of 453m. As such the D and SS1 path 

would probably have combined together to give a less faded first arrival component. It 

showed that the transmitted signal was time spread. The second characteristic derived 

from the time variation in the structure of the multipath. The time variations appeared 

to be unpredictable to the user and it was reasonable to characterize the time variant 

1st and 2nd Arrival 

3rd Arrival 

4th Arrival 
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multipath channel statistically. We also note the scattering seemed uncorrelated and 

the variation of magnitude of each arrival indicated some Doppler spread.  

2.2.2.1 Delay Spread  

Two different ways were used to quantify the delay spread. The first is the 

excessive delay spread Tm (20dB). It is the time span whereby the multipath energy 

remains above a certain threshold (in this case we use 20dB) with respect to the 

strongest arrival. Tm is preferred in designing waveforms that are sensitive to inter 

symbol interference (ISI).   

However, a more reliable measure of delay spread is the root mean square 

(rms) delay spread,  instead of Tm [15]. 

                                      
22

   

(Eq. 2-24) 

where 

                                     
2

2
k k
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k
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P
     (Eq. 2-25) 

and                                
k k

k

k
k

P

P

   

(Eq. 2-26)     

In practice, values of , 2 , and 

 

depend on the choice of noise threshold 

used to derive ( )P . The noise threshold is needed to prevent the thermal noise from 

being included as part of the multipath component. If the threshold is set too low, the 

rms delay estimated may be too high. Time dispersion parameter estimation usually 

requires a good noise margin. Otherwise, the estimation will be unrealistically high. 

Here, the threshold margin was set to be 20dB. Figure 2-11 shows the delay profiles 

for 80m and 2740m after flooring out the noise. The reduction of the delay spread at 

2740m was expected as the range-depth ratio was larger, thereby reducing the time 

difference of arrivals between the direct and reflected rays. 
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Figure 2-11. Average multipath power delay profiles (Top:80m, Bottom:2740m) 

after flooring at 20dB 

Comparing Figure 2-6 and Figure 2-11, similarities in both figures could be 

noted.  The simulated and actual magnitude decay of multipath arrivals was 

approximately the same.  This means they had similar delay spreads and multipath 

structures.     

2.2.2.2 Coherence Bandwidth  

The coherence bandwidth is a statistical measure of the range of frequencies 

over which the channel can be considered flat . In other words, coherence bandwidth 

is the frequency range where all frequency components are correlated and basically 

fade together. The coherence bandwidth is taken to be the reciprocal of five times the 

rms delay spread,

 

[37].  

                                                 
1

5cB                (Eq. 2-27) 

Excessive Time Delay (<20dB): 5.5ms 
Average Delay Spread (<20dB):0.8ms 
RMS Delay Spread (<20dB):1.2ms   

 

Excessive Time Delay (<20dB): 0.5ms 
Average Delay Spread (<20dB):0.02ms 
RMS Delay Spread (<20dB):0.1ms 
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Note that the coherence bandwidth estimates here are ball park estimates . 

Spectral analysis and simulation would be required to determine the actual impact the 

time varying multipath has on a particular transmitted signal.   

The time averaged MPDPs were used to compute the rms delay spread, which 

was used to determine the coherence bandwidth using Eq.2-27. Table 2-3 summarizes 

the delay measurements for distances from 80m to 2740m. 

Shown below is a table to summarize the delay spread and coherence 

bandwidth results. 

Table 2-3. Delay spread and coherence bandwidth results for different ranges  

Range 
(m) 

Tm (ms) 
Excessive Time 

Delay 

 (ms) RMS Time 
Delay 

Approx 
Coherence 

Bandwidth (Hz) 
80 5.5 1.2 167 

130 7 1.9 105 
560 3 0.85 235 

1040 3.5 0.85 235 
1510 2.5 0.38 526 
1740 1.3 0.13 1538 
2740 0.5 0.10 2000 

 

It was noted that the delay spread generally decreases as distance increases. It s 

also noted that the density (over time delay) and reverberations of multipath arrivals 

reduces with range. Multipath and reverberations were stronger in shorter ranges.   

Correspondingly, the coherence bandwidth of the channel increases with 

distance. Due to the 0.43ms delay resolution of the BPSK signal, the actual rms delay 

spread at 2.7km might be even smaller than estimated here. Unfortunately, the 

projector s limited bandwidth did not permit a higher delay resolution BPSK signal to 

be used.  

From communication design perspective, we gather that if Tm>Ts or >0.1Ts, 

then the channel has frequency selective fading. These means that there is considerable 

ISI or inter symbol interference. One countermeasure on ISI is to adopt a rake receiver 
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structure. If Tm<<Ts or <0.1Ts occurs in a channel, then flat fading occurs. However, 

the Signal to Noise Ratio (SNR) can still decrease due to destructive multipath so 

designs should focus on power control or diversity. Other than indicating the type of 

fading, Tm also determines the guard time in waveform design and if required, the 

length of a receiver s equalizer. Frequency domain nulls are prevalent in a multipath 

environment and it is more severe when the multipath arrivals are stronger (deeper 

nulling) and sparsely located in delay time (frequent nulling). Therefore, with shorter 

delay spread in time, the frequency nulls will be further apart creating a larger 

coherence bandwidth. The coherence bandwidth is useful when designing a 

modulation scheme which utilizes frequency diversity. For example, in orthogonal 

frequency division multiplexing (OFDM), a high data rate signal is broken into many 

narrowband low rate signals to counter ISI. For a narrow band signal, distortion is 

usually minimized if the bandwidth of the signal is less than the coherence bandwidth. 

Results collected tend to conclude that it is basically a frequency selective fading 

channel. 

2.2.3 Doppler Effects 

Conventionally, CW signals can be used to determine the Doppler effects. 

However, the Doppler resolution in the cross ambiguity function of CW signals is 

always a trade off with delay resolution (longer pulse width). Moreover, it is a 

narrowband signal that may not represent the total Doppler effects on our broadband 

communication signals. Hence, Doppler effects of the channel were captured by 

transmitting, acquiring and analyzing m-sequence BPSK signals. These large 

bandwidth-duration BPSK signals are able to provide high Doppler and delay 

resolution [38]. It is similar to the BPSK signals used to measure the multipath power 

delay profiles, but the sequence length is much longer. The m-sequence length is 
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16383 and is generated using primitive polynomial of degree 14, or [42103] in octal 

representation [35]. This type of long sequence can approximately give 0.43ms of 

delay resolution as well as 0.3Hz of Doppler resolution. The method for delay-Doppler 

computation is detailed in [38] and the functional diagram is shown in the figure 

below.            

Figure 2-12. Multi-Doppler matched filter after demodulation [38]  

Figure 2-12 shows the complex baseband equivalent of the received signal, r(t), 

has been correlated with many different Dopplerized copies of the complex baseband 

equivalent of transmitted signal, s(t).  These will generate a 2-D plot of Doppler 

spectrum where x-axis is the time delay, y-axis is the Doppler and the z-axis shows the 

magnitude of the Doppler spectrum.   

The challenge here was the numerical calculation of the compression time. This 

required either to widely oversample the signal or to interpolate it. Here, we tried the 

resample() function in MATLAB® to compress or expand the original signal and it 

was able to give a 1Hz resolution. The resample function uses a poly-phase filter to 

change the sampling rate, which in turn compresses or expands the signal in time 

index. Any higher Doppler resolution than 1 Hz will cause a six digit length FIR filter 

Received 
signal 

Original transmitted 
signal being used to 
create many 
Dopplerized copies 
and correlates the 
received signal 
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to be implemented in the MATLAB® resample function and the function will hang or 

exit prematurely as the FIR length is too long for MATLAB® to handle. When we 

replaced r(t) with the original signal s(t) in Figure 2-12, we are effectively calculating 

its cross ambiguity function (across Doppler and time delay) at the output, 

 

sr r .  

Figure 2-13 shows the cross ambiguity function using the numerical calculation 

mentioned above. Each sequence s length is increased to give better Doppler 

resolutions. 

Figure 2-13 clearly shows that the Doppler resolution is dependent on the time 

duration of the BPSK modulated m-sequence.  As this duration increases (from top to 

bottom of Figure 2-13), the Doppler resolution in the ambiguity plots start to increase 

too.  Unlike in conventional CW methods, which time delay resolution will decrease 

with increased Doppler resolution, the right hand side of Figure 2-13 also shows that 

the time delay resolution remain the same (determine by its bit rate) even as the m-

sequence length/Doppler resolution increases. 
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Figure 2-13. Doppler resolution/ambiguity functions of various length BPSK m-
sequence 
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2.2.3.1 Doppler Spread 

The mean frequency shift of a received signal due to relative motion between 

the receiver and the transmitter over some window of time is referred to as the Doppler 

shift,  whereas the fluctuations of frequency around this Doppler shift is referred to as 

the Doppler spread. Doppler spread arises from variations in the height of the surface 

reflection point, which is caused by wind driven waves. In our case, it could also be 

caused by the rocking motion of the projector and hydrophones being tethered from 

ships. These would, in turn, cause time-variations in the direct and reflected path 

lengths. As a result, the signal would be phase modulated and the bandwidth of this 

phase modulation (via Carson s rule) will be known as the estimated Doppler spread, fd 

[4]. Doppler shifts and spread indicates the time variations in the multipath structure. 

These Doppler effects increases with the centre frequency.   

The Doppler spectrum (see Figure 2-14) will provide some form of reference 

for the communication designer in implementing Doppler correction algorithms. 

Doppler spread, fd, is defined here as the null to null bandwidth. If (B=1/Ts) < fd, then 

the channel develops fast fading which could lead to severe distortion, irreducible BER 

and synchronisation problems. If B>fd, then slow fading (the time duration that the 

channel remains correlated is long compared to the transmitted symbol) occurs and the 

primary degradation is low SNR. No signal distortion is present. This was the case for 

all the channel measurements carried out and also due to the high bandwidth 

communication signal we employed. 
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Figure 2-14. Typical Doppler spectrum  

2.2.3.2 Coherence TIme  

Coherence time is the expected time duration within which two signals remain 

correlated. Coherence time can be approximated from Doppler spread using (Eq. 2-

28). A shorter coherence time will translate to a multipath structure that varies more 

frequently. 

                                            0

0.5

d

T
f

    

(Eq. 2-28)  

Graphically we can view coherence time from the space time correlation 

function [37] which is derived from the scattering function S(v). The space time 

correlation function and the Doppler power spectrum are known to be fourier 

transform pairs hence the inverse relationship in (Eq. 2-29)      

2( ) ( ) j tvt S v e dv

   

(Eq. 2-29)  

If ( )t

 

is a unit or levelled function, then the channel is time invariant. 

Similarly, if To<Ts, fast fading will occur and if To>Ts, then slow fading occurs.       

( )S f

f

Spectral Broadening 

fc fc+(fd) fc-(fd) 

(mobile shallow water case 
may behave like this) 
similar to RF mobile 
wireless case 

 (static shallow water case 
behave with Doppler spreading 
centered on fixed Doppler shifts) 
similar to RF troposcatter case 
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Figure 2-15. Spaced time correlation function  

The delay-Doppler measurement plots at 90m and 2740m are illustrated in 

Figure 2-16 to Figure 2-19 to give an overview of Doppler spreading trends versus 

range. In Figure 2-16 and Figure 2-17, it shows the time history of Doppler effects of 

short range channel (80m).  It could be noted that the shorter-range channels produces 

more Doppler spread when compared to those in Figure 2-18 and Figure 2-19. 

Therefore, it could be concluded that Doppler spread derived from sea surface effect 

(as describe in section 2.2.3.1) was more dominant at shorter ranges and these Doppler 

spread diminished as the range increased. From Figure 2-16 and Figure 2-18, it is 

noted that the Doppler effects on individual paths were different. In the MPDP 

analyses, it is also noted that the magnitude of multipath arrivals varies more for the 

shorter range channels than the longer range ones. These coincide, in principle, with 

the Doppler spread observations. The Doppler results for all the distances are tabulated 

in Table 2-4. These gave an overview of Doppler spreading trends versus distance. The 

Doppler shift depends on the relative velocity between the transmitting and receiving 

platform. In most cases, our anchored positions were stationary except for minor drifts 

due to tidal currents. Also, as the carrier frequency was in the kHz region, any relative 

ships motion of less than 1m/s could cause Doppler shifts of a few Hz. This is due to 

the low propagation speed of the acoustic sound in sea water as compared to 

electromagnetic waves.  

( )t

t

To=1/fd, Coherence Time 
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Figure 2-16. Delay Doppler measurements of BPSK m-sequence 80m   
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Figure 2-17 Doppler spectrum of BPSK m-sequence 80m    
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Figure 2-18. Delay Doppler measurements of BPSK m-sequence 2740m 
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Figure 2-19. Doppler spectrum of BPSK m-Sequence 2740m   

In general the maximum Doppler spread (null to null) was about 9Hz for the 

shortest range experiment (80m) and decreased to about 2-3 Hz for the longest range 

experiment (2740m). The Doppler shift was about +/-2 Hz for all the ranges. In a 

single carrier communication system where the bandwidth is high, the Doppler effects 

are very small and slow fading can be assumed. However in multi-carrier 

communication, if the sub-carrier bandwidth is small enough, fast fading on each sub-

carrier may occur. Doppler effects are expected to increase in the mobile case and will 

be a function of relative velocity.  

Table 2-4. Doppler and coherence time results for different ranges 

Range

 

(m) 
Doppler Spread 

2fd(Hz) 
Doppler 

Shift (Hz) 
Coherence 
Time (sec) 

80 9 -1,+2 1/9 
130 8 -1 1/8 
560 4 -2 ¼ 

1040 3 0 1/3 
1510 2 -1 ½ 
1740 2 +1 ½ 
2740 3 +2 1/3 

    

Our channel measurements and analysis results in Table 2-3 and Table 2-4 

have shown that delay and Doppler spreads decreased at longer distances. This means 
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that at longer distances (up to 2.7km), the channel was capable of supporting higher bit 

rates. At shorter distances, techniques to mitigate ISI and Doppler may be needed in 

order to achieve the same level of performance as at longer distances.  

2.2.4 Ambient Noise 

In [9], it was noted that low frequency ambient noise in shallow Singapore 

waters is dominated by shipping and reclamation noise while at higher frequencies; the 

pre-dominant noise is snapping shrimp noise. A characteristic of snapping shrimp 

noise is that it is highly impulsive, resulting in a heavy tailed distribution. This implied 

that the Gaussian distribution, which is commonly used to characterize noise in most 

environments in communications, is a poor fit for the ambient noise in Singapore 

waters. This was backed up by data collected in [6], which also proposed the use of 

alpha-stable distribution to characterize the impulsiveness of snapping shrimp noise. 

2.2.4.1 Stable and Gaussian Distributions 

We conducted ambient noise measurements in Singapore waters over various 

locations at the receiver ship. The probability density function (PDF) graphs of the 

measured ambient noise were then plotted. By comparing them with simulated PDF 

plots of Gaussian and alpha-stable distributions, the best fitting distribution could be 

determined. 

Stable distributions are a class of probability distributions that generalize the 

normal distribution. Alpha-stable distributions are described by four parameters. 

Namely the skewness parameter, the scale parameter, the location parameter and the 

characteristic exponent (alpha) parameter. As our noise distribution was zero-mean 

and symmetric, two of the parameters (skewness and location) can be set to be zero. 

Thus, only the remaining two parameters were estimated: the characteristic exponent 

(alpha) and the scale parameter, c, from our measurements to yield the best fit stable 
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distribution. These were obtained using the method described in [39]. To generate 

random stable variables, the methods described in [40] and [41] were used. Both the 

scale parameter and characteristic exponent are positive numbers, with alpha having an 

additional restriction: the maximum value it can take is 2. When alpha is 2, the stable 

distribution reduces to the familiar Gaussian distribution. 

2.2.4.2 Amplitude Distribution Results 

Gaussian random variables were generated using two methods: 1) by calculating 

the variance of the measured noise and generating Gaussian variables with similar 

variance, and 2) generating stable random variables as described previously, but 

equating alpha to 2 instead of estimating it using [41].  

Our findings for one location are illustrated in Figure 2-20 and others locations 

have shown similar results. It shows the probability density function (PDF) of the 

measured noise, the estimated stable PDF and the estimated Gaussian PDFs. (See 

Figure 2-20) 

 

Figure 2-20. Comparison of various histograms versus measured ambient noise 
histogram. 
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The best fit alpha stable PDF had an alpha of between 1.6 and 1.8 and yields a 

much better fit than the Gaussian PDFs. Gaussian PDFs tend to be poor fits. As the 

PDFs were drawn from histogram plots, the tail ends appeared as spikes in the 

diagrams. These could be ignored as they simply indicated the heaviness of the tails 

and were not found in the actual PDFs. If the PDF of the model exhibits similar spikes 

as the noise PDF, it indicates good fit in the tail regions. The stable noise generator 

was written in MATLAB® and had been used for communication channel simulation 

in this work. 

2.2.4.3 Noise Spectrum 

Unlike deep water ambient noise, which is well defined by empirical formulas, 

shallow water ambient noise is subjected to wide variations. The three main sources of 

noise in shallow waters are shipping and industrial noise (or man-made noise), wind 

noise and biological noise. A power spectral density obtained from an open coastal sea 

of Singapore is shown in Figure 2-21. Spectral analysis of the noise also shows strong 

ambient noise in the low frequency (<1 kHz) regions, mainly derived from man-made 

shipping noise as well as surface waves. The impulsive noise will have the effect of 

increasing the noise floor in the spectrum. An example of impulsive noise is extracted 

from measurement and plotted in Figure 2-22. 

For a typical noise measurement shown in Figure 2-21, the computed noise 

level [3] (up to 100 kHz) is 156 dB re 1 Pa

 

1m. And correspondingly, the spectrum 

noise level (up to 100 kHz): 106 dB re 1 Pa

 

1m. However, if only a sub-band is 

being used, like in a communication system, the noise level reduces to (In Band 10 

kHz-26 kHz) 118 dB re 1 Pa

 

1m and the spectrum noise level (in Band 10 kHz - 26 

kHz) is about 76 dB re 1 Pa  1m.  
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Figure 2-21. Ambient noise spectrum 

 

Figure 2-22. Amplitude waveform of ambient noise showing its impulsive nature 
(of snapping shrimp origin) 

However, this does not indicate that the higher frequency band (with lower noise 

encountered) will experience higher Signal to Noise Ratio (SNR). The following section 

will shows on the SNR relationship with frequency and distance, given the local ambient 

noise level measured. 

Due to high 
shipping traffic 
and other 
industrial noise 

Harmonics 
from ship s 
power 
generator Sea surface agitation, impulsive 

noise (snapping shrimps), 
thermal noise 
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2.2.4.4 Range, Bandwidth and Signal to Noise Ratio (SNR) 

Making use of the measured noise spectrum in the previous section, and 

spreading and attenuation loss assumption in Section 2.1.2 and 2.1.3 respectively, we 

can calculate the link budget required for a communication system. The link budget 

equation is expressed as [2]: 

/( , ) ( ) ( ) ( ) ( )
1000S dB km

r
SNR f r SL f NL f L r f

   

(Eq. 2-30)            

is centre frequency in Hz           

is distance in metres           

is signal to noise ratio (dB)          

( ) is the source level in dB          

( ) is the spreading loss in S

where

f

r

SNR

SL f

L r

/

dB           

is the attenuation loss in dB/km          

( ) is the bandlimited noise level centred at 
dB km

NL f f

 

For example, a Differential BPSK transmission of 190 dB re 1 Pa

 

1m source 

level is assumed and minimum SNR of 6 dB is required for a raw BER of 10-2 [20]. We 

also assume that the symbol rate is 1000 symbols per second. With that, the noise is 

band-limited with a 1 kHz band pass filter centred at the centre frequency to compute the 

noise level. The SNR for different centre frequency and distance can be calculated in 

MATLAB. This is illustrated in Figure 2-23 below. For distances less than 1 km, all 

frequencies above 10 kHz gave consistent SNRs as the attenuation loss at higher 

frequencies were not significant and had been compensated by the lower ambient noise 

in the higher band. However, as the distance increases, attenuation loss will increase and 

become dominant at the higher band causing the SNR to drop. For this example, it can 

be concluded that 12 kHz to 25 kHz band is optimum to give maximum SNR for ranges 

up to 4 km (See Figure 2-24).   
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Figure 2-23. SNR performance over distance and centre frequency  

 

Figure 2-24. SNR performance over frequency at 4km  

6dB 
Threshold 
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2.2.5 Signal Envelope Fading Characteristics 

Two common stochastic channel models used to characterize a multipath 

fading environment are the Rayleigh and Rician models [15]. The Rician model is 

typically used when there is a strong line of sight (LOS) component present while the 

Rayleigh model assumes no such component exists.  

The Rayleigh distribution [15] has a probability density function (PDF) given 

by 

2

2 2
exp    0

2( )  

0                        0

r r
r

p r

r

   

(Eq. 2-31) 

where r is the signal envelope, 

 

or sigma is the RMS value of the received voltage 

signal before envelope detection, and 2

 

is the time-average power of the received 

signal before envelope detection. The probability that the envelope of the received 

signal does not exceed a specified value R is given by the corresponding cumulative 

distribution function (CDF) 

2

2
0

( ) 1 exp
2

R

r

R
P R P r R p r dr

  

(Eq. 2-32) 

where the mean value of the Rayleigh distribution is given by 

0

( )
2

E r rp r dr

    

(Eq. 2-33) 

and the variance of the Rayleigh distribution is defined as 2
r
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2 2 2 2 2
2r E r E r

    
(Eq. 2-34) 

and the median value of r is found by solving 

0

1

       

1.177
2

medianr

medianp r dr r .  (Eq. 2-35) 

Rayleigh random variables can be generated using 2 Gaussian random 

variables with zero means and common variance. Varying the common variance is 

sufficient to generate different Rayleigh PDF plots.   

The Ricean distribution is given by  

2 2

02 2 2
exp     0, 0

2

0                                          0

r Ar Ar
I A r

p r

r

  

(Eq. 2-36) 

where the parameter A denotes the peak amplitude of the dominant signal and I0(.) is 

the modified Bessel function of the first kind and zero order.  The Ricean factor, K, is 

also commonly used to describe the distribution and is defined as the ratio between the 

deterministic signal power and the variance of the multipath.  It is given by 

K=A2/(2 2 ) or in terms of dB (decibels) 

2

2
(dB) 10 dB

2

A
K Log

    

(Eq. 2-37) 

Rician random variables, on the other hand, can be generated using two 

Gaussian random variables with non-zero means and common variance.  
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The best fitting Rayleigh and Rician PDFs are then determined by varying the 

various parameters in steps of 0.01 and calculating the corresponding mean square 

error (MSE). The parameters yielding the lowest MSE correspond to the best fit 

probability density functions (PDF)s. These PDFs and cumulative distribution 

functions (CDF)s are plotted out and presented in Figure 2-25 to Figure 2-28 together 

with their corresponding parameters and MSEs.     

 

Figure 2-25. Comparative and measured PDFs for signal envelope received at 
80m. 

 

Figure 2-26. Comparative and measured CDFs for signal envelope received at 
80m.  
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Figure 2-27. Comparative and measured PDFs for signal envelope received at 
2740m 

 

Figure 2-28. Comparative and measured PDFs for signal envelope received at 
2740m  

Table 2-5. Overall results for signal envelope fading for different ranges 

Range

 

(m) 
MSE Fitted 

Rayleigh 
Sigma 

MSE Fitted 
Ricean K-
Factor(dB) 

MSE Fitted 
Ricean 
Sigma 

Approx 
Fit 

80 0.807 -1.487 0.600 Rayleigh

 

130 0.803 -4.167 0.674 Rayleigh

 

560 0.815 2.757 0.453 Ricean 
1040 0.802 -6.787 0.726 Rayleigh

 

1510 0.807 2.192 0.467 Ricean 
1740 0.802 6.253 0.327 Ricean 
2740 0.790 4.545 0.375 Ricean 
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These results are summarized in Table 2-5. From the table, the results indicate 

fading to be Rayleigh or weakly Rician at shorter distances with the exception of the 

600m data set, and Rician fading at the longer ranges. Hence, less faded multipath 

components were more likely to be observed at the longer distances. In summary, the 

delay and Doppler effects are less at longer distances.  Ambient noise is non-Gaussian 

with a heavy tailed distribution and a highly impulsive behavior.  Communication 

system designers should exploit the channel characteristics at longer distances 

(>1500m up to 2740m) to transmit at higher data rates.  On the other hand, it would be 

a serious challenge to design a modem for shorter distances that can achieve the same 

level of performance that was possible at longer distances. 
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CHAPTER 3 PRELIMINARY DPSK PERFORMANCE IN CHANNEL 
SIMULATOR AND SEA TRIAL 

3.1 Channel Simulator 

The time variant multipath channel model with alpha stable noise, described in 

chapter 1 and chapter 2, was implemented in MATLAB®. Figure 3-1 shows the actual 

multipath profile measured from a distance of 80m. Figure 3-2 shows a similar 

multipath profile plot for a simulated 80m distance. Hence, the channel model was 

able to replicate a similar multipath structure when compared to the actual channel. 

 

Figure 3-1. Multipath profile measurement from sea trial (80m)  

 

Figure 3-2. Multipath profile of channel simulator (80m)  

The channel model and a Binary DPSK [20] communication system was 

simulated in MATLAB®. Shown in Figure 3-3 is the DBPSK frame format and other 
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parameters are stated in Table 3-1. A synchronisation preamble is inserted before each 

data frame. The preamble is a differentially encoded 128 or 512 bits m-sequence while 

the data segment contained 901 bits of differentially encoded pseudo random data. 

 

Figure 3-3. DBPSK frame format  

Table 3-1. Simulation parameters 

Centre Frequency 18.5kHz 
Symbol Rate 9250sym/s 
Raised Cosine Filter Alpha 0.25 
Over sampling 16 
Arbitrary Start Bit 1

  

The sync data and pseudo random data is differentially encoded as shown 

below.     

( ) ( ) ( 1)d k a k d k

    

(Eq. 3-1) 

where d(k) are the differentially encoded bits and ( ) { 1}a k

 

are the original bits 

sequence. The arbitrary start bit is (0) 1d . 

The baseband antipodal DBPSK frame was raised cosine filtered, upsampled 

and upconverted to the band pass centre frequency at the transmitter. The signal was 

then fed into the channel simulator described in the previous sections. Geometrics and 

geophysics parameters of the channel such as transmitter s and receiver s depth, 

bottom depth, distance, Doppler spread,  sound velocity, sea-bottom density and 

velocity ratios were approximates of actual sea trials. These have been presented in 

Chapter 2. This was done for comparison and to indicate how well the channel 

simulator is able to replicate the effects of shallow water channels. 
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At the receiver, the carrier was then removed by multiplying the signal by the 

sine and cosine carriers and passing the signal through a raised cosine filter. Timing 

recovery and synchronization is then achieved by correlating the filtered signal with 

the preamble sequences to obtain the best sampling instance. The data sequence was 

then differentially decoded (Eq.3-2) and compared with the transmitted sequence to 

determine the total number of errors, bit error rates (BERs) and frame error rates 

(FERs). The FER is the ratio of erroneous frames received to the total number of 

frames received.  

( ) sgn(Re ( ) *( 1) )a k r k r k

   

(Eq. 3-2) 

where r(k) is the complex baseband received signal after down conversion and raised 

cosine filtering. The simulated results are shown in Table 3-2. This will be compared 

with the real data analysis in the next section. 

Table 3-2 Simulated BER results of binary DPSK in shallow water channels             

3.2 Sea Trial 

For each distance, the DBPSK frames were transmitted from ship A and 

received at Ship B for a duration of 60 seconds. Each DBPSK frame follows the 

format in Figure 3-3 and Table 3-1.  

The baseband antipodal DBPSK frame was raised cosine filtered, upsampled 

and upconverted to the pass band centre frequency at the transmitter. This signal was 

Range 
(m) 

SNR 
(dB) 

No. of 
frames  

Error 
bits 

BER FER 

80 26.8 264 49915 2.10e-1 1 
130 23.9 264 62861 2.65e-1 1 
560 25.1 264 61287 2.58e-1 1 

1040 20.4 198 59247 3.32e-1 1 
1510 17.1 198 47448 2.66e-1 1 
1740 17.5 198 3351 1.88e-2 1 
2740 12.7 198 1131 6.30e-3 7.93e-1 
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pre-prepared in MATLAB® prior to the trial. At shorter distances <1000 m, the sync 

preamble contained 128 bits. At longer distances, the sync preamble contained 512 

bits. The reason for the change is the large magnitude variations observed in sync 

pulses at shorter distances and anticipated higher propagation loss at further distances. 

The m-sequence length was increased in-situ at longer distances to give better 

processing gain. Channel one at each of the ranges was selected for analysis. The 

signal was demodulated in the method described in the previous sub-section. The 

baseband data was then sampled at Ts/2 intervals and stored in files. Ts is the symbol 

interval. These were done offline in MATLAB® and the SNRs, BER and FER were 

computed. Table 3-4 shows the results of the analysis. The trend of decreasing BER as 

the distance increases, or delay spread decrease, was also observed when compared 

with Table 3-3 . One could also note the higher SNR at shorter ranges but the 

corresponding poor BERs indicate that performance degradation was largely due to 

strong inter-symbol interference (ISI) and higher Doppler spread measured during the 

trial. 

Plotting the BERs of Table 3-2 and Table 3-4 into Figure 3-4, we compared the 

BERs of the trial and simulated data for each distance. Overall, if the BER points lie 

near the diagonal, it meant that the BERs of the simulated and trial data are correlated. 

Our simulation BERs were shown to be correlated to the BERs of the trial data.  This 

means the channel simulator can replicate the channel encountered in sea trials. This 

will be further verified in the next chapter with adaptive equalization of the simulated 

data as well real data.  If the adaptive equalizer produces the same results in terms of 

BERs and mean square errors, than the channel simulator is proven to be adequate 

close to real channel conditions. 
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Table 3-3. Delay spread and coherence bandwidth results for different ranges 

Range 
(m) 

Root Mean Square (RMS) 
Delay Spread (ms) 

Doppler Spread, Wd 

(Hz) 
Doppler Shift 

(Hz) 
80 1.2 9 -1,+2 

130 1.9 8 -1 
560 0.85 4 -2 

1040 0.85 3 0 
1510 0.38 2 -1 
1740 0.13 2 +1 
2740 0.10 3 +2 

 

Table 3-4. Trial BER results of DBPSK in shallow water channels  Channel one 

Range 
(m) 

SNR 
(dB) 

No. of 
frames 

Error 
bits 

BER FER 

80 28 264 57391 2.41e-1 1 
130 25.4 264 81626 3.44e-1 1 
560 26.4 264 52390 2.21e-1 1 

1040 20.2 198 59791 3.36e-1 1 
1510 17.4 198 51465 2.89e-1 1 
1740 17.4 198 2047 1.15e-2 9.90e-1 
2740 12.0 198 1681 9.43e-3 9.85e-1 

 

Comparing Bit Error Rates

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E-03 1.00E-02 1.00E-01 1.00E+00
Simulated BER

T
ri

al
 B

E
R

BER w/o EQ

 

Figure 3-4. Comparing BERs of trial and simulated data for the same distance. 
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CHAPTER 4 ADAPTIVE EQUALIZATION, MULTICHANNEL 
COMBINING AND CHANNEL CODING 

Shallow water channels are known for their multipaths, fading and ISI effects 

[8]. Without equalization or diversity techniques, achievable data rates remains very 

low. In order to have high data rates, adaptive equalization can be applied to 

compensate for the fading and ISI effects. The combinations of linear or non-linear 

equalization and coherent detection have been investigated extensively. However, 

there are comparatively fewer studies on combined equalization and non-coherent 

detection, although such receivers are less complex and more robust against carrier 

phase variation.   

4.1 Linear and Decision Feedback Equalizers 

Linear equalizer (LE) and Decision Feedback (DFE) [20, 42] type of equalizers 

have been employed in the analysis of simulated and trial data. (See Figure 4-1 and 

Figure 4-2). 

 

Figure 4-1. Linear equalizer 
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Figure 4-2. Decision feedback equalizer  

Figure 4-1 shows the Linear Equalizer (LE). y(k) is the output of the 

feedfoward filter.  The taps coefficients of the feedfoward filter, ff, changes at every 

time index, k.  The changes are governed by the error signal e(k) and the feed forward 

tap adaptation step size. If the step size is too large, it may lead to instability problem. 

On the other hand if the step size is too small, it may lead to slow convergence rate 

such that the equalizer adaptation is slower than the channel rate of change.  During 

training mode, the error signal is derived by taking the difference between the training 

sequence, b(k), and the filter output.  During tracking mode and assuming that the filter 

taps converges to minimize the sum squared error, the filter threshold output is 

assumed to be reliable enough to be used as a reference signal to compute the error 

signal.  Figure 4-2 shows a decision feedback equalizer (DFE) and is similar to the LE 

except that it has a feedback filter, fb.  A DFE can be thought of as equalizing a 

channel in two steps: first, a feedforward section (linear filter) shapes the overall 

response appropriately and attempts to make the inter symbol interference (ISI) causal, 

and then the feedback of sliced (quantized) outputs cancels post cursor ISI.  

  Note that fractionally spaced equalizers [43] were used in the analysis. The 

inputs to the equalizers were Ts/2 spaced because the signal bandwidth, after raised 
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cosine filtering, is about 11.5 kHz and the baud rate is 9250 symbols/seconds. In order 

to allow the equalizer to compensate for the distortion, sampling must be done above 

Nyquist rate. Thus, a Ts/2 sampling rate gives an effective sampling rate of 18500 

sample/seconds that is adequate for 11.5 kHz wide baseband signal. 

Most of the adaptive equalization for non coherent DPSK signals based their 

error signal between the differentially decoded soft-output and the decision output or  

( ) ( ) ( )e k a k z k

 

from Figure 4-1 and Figure 4-2 [44, 45]. It was noted that the error 

signal based on differentially decoded output may contain unnecessary higher levels of 

e(k) as a bit error in the y(k) will give twice the bit errors in differential decoding. This 

will in turn cause unnecessary filter taps adjustment even though the current detected 

bit in y(k) may be correct. On the contrary, the error signal used in this thesis was the 

difference between the differentially encoded training signal and the filter output, 

( ) ( ) ( )e k d k y k  during training, or ( ) sgn(Re ( ) ) ( )e k y k y k  during tracking.  

There are mainly two sets of adaptive algorithms: one is the least mean square 

(LMS) and its variants and the other is recursive least square (RLS) and its variants 

[20-22]. A strong advantage of RLS algorithm is it converges much faster than the 

LMS algorithm. On the other hand, RLS algorithm has a higher complexity than the 

LMS. The total computational complexity of LMS algorithm has 2N+1 multiplications 

and 2N additions/subtraction while the RLS algorithm has a total of 4N2 

multiplications and 3N2 additions/subtractions [21].  N is the total number of filter 

taps. Note that these requirements will double for a complex number, as in base band, 

implementation. Hence, we chose both LMS and RLS algorithm for our analysis in the 

next few sections and compared their performances. The summaries of the LMS 

algorithm [21] for LE and DFE were available in Table 4-1 and Table 4-2. 
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The number of filter taps was largely determined by the excessive delay spread. 

In Table 2-3, the longest excessive delay spread is 7 ms.  Based on Ts/2 spaced 

equalizer, it would at least take 129 taps (from 0.007*2/Ts) for the equalizer to be 

effective at 130 m range. In fact, the number of equalizer taps ought to be larger 

perhaps several times the length of the longest delay spread multiplied by 2/Ts [43].  

However, increasing the number of taps further would also increase the noise in the 

filter as well as decreasing the convergence rate.  As such, the number of feed forward 

taps was fixed at 129 for all distances.  For LMS algorithm, the adaptation step size is 

usually fixed by the eigen values spread of the correlation matrix on the filter input 

signal and the number of the filter taps.  However, the eigen values spread may change 

for different range-depth ratio channels.  For example, a frequency selective fading 

channel with small range-depth ratio will have many frequency nulling in the 

frequency power spectrum.  These nulling may have reduce the maximum values in 

the received signal power spectral density.  As the eigen values of the correlation 

matrix are bounded by the minimum and maximum values of the power spectral 

density [21], the eigen value spread may be small.  Instead of computing different 

optimum step size for different ranges and data sets, a fixed step size was chosen for 

all ranges for simplicity.  The feed forward step size was found optimum at 0.04 by 

trial and error. Similarly the step size for the feedback filter was set at 0.004.  The 

adaptation step size will be reduced four times after training as the reference signal for 

taps adaptation during the tracking phase is no longer reliable.  This method has seen 

improved tracking performance where the MSSE remains levelled and does not 

increase during tracking phase.  In the RLS algorithm, the forgetting factor was chosen 

to be 0.99 [23].  By trial and error, the RLS algorithm will only work in a short range 

of forgetting factor settings ~ typically 0.98 to 0.999 and it has to be less than one for 
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stability and convergence [21].  The setting of the kronecker delta in the RLS 

algorithm is not important as its effect diminishes exponentially the kth iteration 

increases. The delta value was arbitrary set to two.  Like the LMS algorithm, the RLS 

algorithm filter adaptation had been deliberately reduced to 30% during the tracking 

phase.  This value was found to increase the equalizer performance at all distances. 

Table 4-1. Summary of LE-LMS algorithm 

Input: ff(k) Feed forward filter tap coefficient vector of size N  
r(2k) Input vector of size N at 2/Ts sampling rate  
b(k) Training signal / tracking signal   

ff  Feed forward tap adaptation step size (0.04)  

N  No. of feed forward filter taps (129)  
kth iteration 

Output:  y(k) Filter output at Ts sampling rate  
ff(k+1) Feed forward tap coefficient vector update 

1. Filtering: 

1 2 2 1

2 2 2 2

(2 )

(2 ) (2 ) ... (2 )... (2 ) (2 ) N N N N

k

r k r k r k r k r k

r 
(Eq. 4-1)  

0 1 1
( ) ......

Nf f f fk f f ff  (Eq. 4-2)  

( ) ( ) (2 )fy k k kf r  (Eq. 4-3)  

2.Reference Signal: 
During training ( ) ( )b k d k

  

(Eq. 4-4)  

During tracking ( ) sgn(Re ( ) )b k y k

  

(Eq. 4-5)  

3.Error Estimation: 
( ) ( ) ( )e k b k y k

  

(Eq. 4-6)  

4.Tap Coefficient Adaptation:  
During training *( 1) ( ) ( ) ( )f f ffk k e k kf f r (Eq. 4-7)  

During tracking *( 1) ( ) ( ) ( )
4

ff
f fk k e k kf f r (Eq. 4-8)  
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Table 4-2. Summary of DFE-LMS algorithm 

Input:  ff(k) Feed forward filter tap coefficient vector of size Nf   

fb(k) Feed back filter tap coefficient vector of size Nb  

r(2k) Input vector of size Nf at 2/Ts sampling rate  
b(k) Feed back vector of size Nb at Ts sampling rate  
b(k) Training signal / Tracking signal   

ff  Feed forward tap adaptation step size (0.04)  

fb  Feed back tap adaptation step size (0.004)  

Nf  No of feed forward filter taps (65)  
Nb  No of feed back filter taps (64)  
kth iteration 

Output: y(k) Filter output at Ts sampling rate  
ff(k+1) Feed forward tap coefficient vector update  
fb(k+1) Feed back tap coefficient vector update 

1. Filtering: 
(2 ) (2 1) (2 2) ... (2 ) k r k N r k N r kr  (Eq. 4-9)  

0 1 1
( ) ......

N f
f f f fk f f ff  (Eq. 4-10)  

( ) ( 1) ( 2) ... ( ) bk b k b k b k Nb  (Eq. 4-11)  

0 1 1
( ) ......

Nb
b b b bk f f ff  (Eq. 4-12)  

( ) ( ) (2 ) ( ) ( )f by k k k k kf r f b  (Eq. 4-13)  

2.Reference Signal: 
During training ( ) ( )b k d k

   

(Eq. 4-14)

   

During tracking ( ) sgn(Re ( ) )b k y k

  

(Eq. 4-15)

  

3.Error Estimation: 
( ) ( ) ( )e k b k y k

  

(Eq. 4-16)

  

4.Tap Coefficient Adaptation:  
During training 

 

*( 1) ( ) ( ) ( )f f ffk k e k kf f r (Eq. 4-17)   
*( 1) ( ) ( ) ( )b b fbk k e k kf f b (Eq. 4-18) 

During tracking 

 

*( 1) ( ) ( ) ( )
4

ff
f fk k e k kf f r (Eq. 4-19)   

*( 1) ( ) ( ) ( )
2

fb
b bk k e k kf f b (Eq. 4-20)  
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Summaries of RLS algorithm [21] for LE and DFE are detailed in Table 4-3 

and Table 4-4. 

Table 4-3. Summary of LE-RLS algorithm 

Input: ff(k) Feed forward filter tap coefficient vector  of size N  
r(2k) Input vector of size N at 2/Ts sampling rate  
b(k) Training signal / tracking signal   

 

Value to initialize (0)1  (2)  
 Forgetting Factor (0.99)  

N  No. of feed forward filter taps (129)  
kth iteration  

(0)1  where I is the N by N size identity matrix 
Output:  y(k) Filter output at Ts sampling rate  

ff(k+1) Feed forward tap coefficient vector update 
1. Filtering: 

1 2 2 1

2 2 2 2

(2 )

(2 ) (2 ) ... (2 )... (2 ) (2 ) N N N N

k

r k r k r k r k r k

r 
(Eq. 4-21)  

0 1 1
( ) ......

Nf f f fk f f ff (Eq. 4-22)  

( ) ( ) (2 )fy k k kf r (Eq. 4-23)  

2.Reference Signal: 
During training ( ) ( )b k d k

 

(Eq. 4-24)  

During tracking ( ) sgn(Re ( ) )b k y k

 

(Eq. 4-25)  

3.Error Estimation: 
( ) ( ) ( )e k b k y k

 

(Eq. 4-26)  

4.Tap Coefficient Adaptation:  
1( ) ( 1) (2 )k k ku r

 

(Eq. 4-27)  

( )
( )

(2 ) ( )

k
k

k k

u
g

r u 
(Eq. 4-28)  

1 1 11
( ) ( 1) ( ) (2 ) ( 1)k k k k kg r

 

(Eq. 4-29)  

During training ( 1) ( ) ( ) ( )f fk k e k kf f g

 

(Eq. 4-30)  

During tracking ( 1) ( ) 0.3 ( ) ( )f fk k e k kf f g

 

(Eq. 4-31)  
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Table 4-4. Summary of DFE-RLS algorithm 

Input:  ff(k) Feed forward filter tap coefficient vector of size Nf   

fb(k) Feed back filter tap coefficient vector of size Nb  

r(2k) Input vector of size Nf at 2/Ts sampling rate  
b(k) Feed back vector of size Nb at Ts sampling rate  
b(k) Training signal / Tracking signal   

 Value to initialize (0)1  (2)  
 Forgetting Factor (0.99)  

Nf  No of feed forward filter taps (65)  
Nb  No of feed back filter taps (64)  
kth iteration 

Output: y(k) Filter output at Ts sampling rate  
ff(k+1) Feed forward tap coefficient vector update  
fb(k+1) Feed back tap coefficient vector update 

1. Filtering: 
(2 ) (2 1) (2 2) ... (2 ) k r k N r k N r kr  (Eq. 4-32)  

0 1 1
( ) ......

N f
f f f fk f f ff  (Eq. 4-33)  

( ) ( 1) ( 2) ... ( ) bk b k b k b k Nb  (Eq. 4-34)  

0 1 1
( ) ......

Nb
b b b bk f f ff  (Eq. 4-35)  

(2 )
( )

( )

k
k

k

r
a

b 
(Eq. 4-36)  

( )
( )

( )
f

b

k
k

k

f
f

f 
(Eq. 4-37)  

( ) ( ) ( )y k k kf a  (Eq. 4-38)  

2.Reference Signal: 
During training ( ) ( )b k d k

   

(Eq. 4-39)

  

During tracking ( ) sgn(Re ( ) )b k y k

  

(Eq. 4-40)

  

3.Error Estimation: 
( ) ( ) ( )e k b k y k

  

(Eq. 4-41)

  

4.Tap Coefficient Adaptation:  
1( ) ( 1) ( )k k ku a

  

(Eq. 4-42)  
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( )
( )

(2 ) ( )

k
k

k k

u
g

r u 
(Eq. 4-43)  

1 1 11
( ) ( 1) ( ) (2 ) ( 1)k k k k kg r

 
(Eq. 4-44)  

During training 

 
*( 1) ( ) ( ) ( )k k e k kf f a (Eq. 4-45)    

During tracking 

 

*( 1) ( ) 0.3 ( ) ( )k k e k kf f a (Eq. 4-46)  

  

4.2 LE-LMS Performance in Simulation 

The simulated data set that was analysed in Table 3-2 was used to assess the 

LE-LMS performance. The results were tabulated in Table 4-5. All the BERs have 

been reduced due to equalization when compared to Table 3-2. 

Table 4-5. Simulated BER results of DBPSK in shallow water channels after LE-
LMS 

Range (m)

 

SNR 
(dB) 

No. of 
frames  

Error 
bits 

BER FER 

80 26.8 264 19688 8.29e-2 1 
130 23.9 264 29361 1.24e-1 1 
560 25.1 264 15262 6.42e-2 1 

1040 20.4 198 5305 2.98e-2 9.90e-1 
1510 17.1 198 5488 3.08e-2 9.19e-1 
1740 17.5 198 468 2.63e-3 5.96e-1 
2740 12.7 198 1326 7.44e-3 7.88e-1 

 

The ensemble average mean square error (MSE) of e(k) over all the frames at 

1040 m are calculated and shown  in Figure 4-3(a). It shows the equalizer has 

converged to its minimum mean squared error (MMSE). Figure 4-3(b) shows the tap 

weight adaptation results showing the estimated impulse response of the inversed 

channel for one of the frames. Figure 4-3(c) shows the differential decoding results if 

no processing was done on the input signal r(k). Red crosses indicate the known data 

bit of 0 and green circles indicate known data bit of 1 . Improvements are seen in 

the in-phase quadrature (IQ) plot (Figure 4-3(d)) after linear equalization. 
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(a) (b) 

 

(c) (d) 

Figure 4-3. Simulated LE-LMS equalization-distance: 1040m (a) Mean square 
error (b) Filter tap coefficients (c)Input I-Q plot of differential decoded r(k) (d) 

Output I-Q plot of ( )a k

  

4.3 LE-LMS Performance in Sea Trial 

Similarly, the LE-LMS was applied onto the trial data to compare it with the 

simulated ones. And the results are shown below. Both their BERs in Table 4-5 and 

Table 4-6 are plotted in Figure 4-4. The pink data set are which adaptive equalization 

were used to compensate for the ISI and to improve the BER performance 
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Table 4-6. Trial BER results of DBPSK in shallow water channels after LE LMS, 
Channel one  

Range 
(m) 

SNR 
(dB) 

No. of 
frames 

Error 
bits 

BER FER 

80 28 264 37647 1.58e-1 1 
130 25.4 264 43316 1.82e-1 1 
560 26.4 264 14457 6.04e-2 1 

1040 20.2 198 6024 3.38e-2 1 
1510 17.4 198 17561 9.85e-2 1 
1740 17.4 198 542 3.04e-3 6.46e-1 
2740 12.0 198 955 5.36e-3 8.39e-1 

 

Figure 4-4 shows that their equalizer output BER results for the simulated and 

real case were approximately correlated. From Table 4-5 and Table 4-6, both witness 

the same trends of decreasing BER with increasing distance. All these also agree with 

the delay spread results in the channel measurements of [17].  

Comparing Bit Error Rates

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E-03 1.00E-02 1.00E-01 1.00E+00
Simulated BER

T
ri

al
 B

E
R

BER w/o EQ

BER after EQ

 

Figure 4-4 Comparing BERs of trial and simulated data for the same distance 
after equalization   
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The mean squared error, tap weights and IQ plots for the trial 1040m data set 

are plotted in Figure 4-5. Note the similarities in the plots when compared to Figure 

4-3.  Figure 4-5(a) does converge the same way as Figure 4-3(a).  In addition, both 

their lower bounds which indicate its MMSE were also approximately the same. It can 

be noted too that the MMSE reduces as distance increases. The difference in plots of 

Figure 4-3(b) and Figure 4-5(b) is normal as the estimates for each frame will be 

different due fading. 

  

(a) (b) 

  

(c) (d) 

Figure 4-5. LE-LMS equalization on trial data-distance: 1040m (a) Mean square 
error (b) Filter tap coefficients (c) Input I-Q plot of differential decoded r(k) (d) 

Output I-Q plot of ( )a k

 

Figure 4-3 to Figure 4-5 had shown that the channel simulator is a good 

approximation of the actual trial channel. The focus of this thesis at this juncture will 

shift its attention to improving the performance of real data. It will begin with 
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analysing the trial performance of DFE-LMS and compare them with the LE-LMS 

ones to determine which is better.  

4.4 DFE-LMS Performance in Sea Trial 

Similarly, DFE-LMS was applied onto the trial data, and the results were 

shown below in Table 4-7. 

Table 4-7. Trial BER results of DBPSK in shallow water channels after DFE
LMS, Channel one 

Range 
(m) 

SNR 
(dB) 

No. of 
frames 

Error 
bits 

BER FER 

80 28 264 54051 2.27e-1 1 
130 25.4 264 67754 2.85e-1 1 
560 26.4 264 37531 1.58e-1 1 

1040 20.2 198 12929 7.26e-2 1 
1510 17.4 198 18250 1.02e-1 1 
1740 17.4 198 188 1.06e-3 4.24e-1 
2740 12.0 198 881 4.94e-3 8.79e-1 

 

In general the BERs for distances less than 1500m of the DFE-LMS performed 

poorer than the LE-LMS (see Figure 4-14). These were due to the poor input BERs for 

distances less than 1500m that resulted in more detected bits errors to propagate down 

the feedback filter, giving rise to higher mismatch in channel inversion. On the other 

hand, if the BER improves as in 1700-2700m, the bit errors in the feedback filter 

decreases resulting in better estimate to counter post ISI effects. Then the advantage of 

DFE kicks into effect by reducing noise feedback and feedback more accurate bit 

energy. This noise feedback is inherent in LE as post samples (bit energy and noise) 

remained in the causal part of the filter to equalize the present sample. Evidently, this 

could be seen in Table 4-6 and Table 4-7 or Figure 4-8 where the DFE BER 

performance was better than that of LE at longer distances. However, an equalizer that 

could perform reasonably well at all distances was preferred and the LE-LMS was 

chosen over the DFE-LMS to further enhance the BER performance. In the next 
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segment, multichannel combining with LE-LMS was introduced to further reduce the 

BERs.  

4.5 A Note on Sparse DFE-LMS Performance in Sea Trial 

A short introduction on sparse equalization had been given in chapter one.  This 

section would explore sparse equalization to reduce noise in the estimate of the 

inversed channel, so as to improve the performance of the adaptive equalizer. When 

the adaptive channel equalizer converged, the z-transform of filter taps, f(k), is 

proportional to 1/H(z) where H(z) is the z-transform of the channel [21]. However, the 

most simple and robust implementation adaptive filters were usually finite impulse 

response (FIR) based.  As the channel was significantly sparse, it was probable to 

deactivate the insignificant taps in H(z) of the equalizer to reduce noise especially in 

the case where the length of the filter was long.  However, instead of obtaining the 

denominator H(z) from the FIR filter taps, an infinite impulse response (IIR) adaptive 

equalizer with a feedforward (anti-causal part) and feedback (causal part) filter was 

used [22, p.666-671].  With this implementation, the H(z) taps were directly obtainable 

from the feedback filter. It is also realized that the IIR filter presented in [21, p.323-

329] was similar to DFE-LMS equalizer and the differences lies mainly in the 

feedback.  The DFE feedback hard decided values while the IIR adaptive filter 

feedback soft values.  The DFE-LMS is also fractionally spaced and involves complex 

numbers while the IIR in [21, 22] is T-spaced and involves real numbers. Since the 

DFE was similar to IIR equalizer, insignificant taps of the feedback taps, where its 

value was less than 10% of the maximum feedback tap value, were deactivated in the 

modified DFE-LMS equalizer.  This was done to find out if this will reduce the BER 

further.  
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Table 4-8 Trial BER results of DBPSK in shallow water channels after Sparse 
DFE LMS, Channel one 

Range 
(m) 

SNR 
(dB) 

No. of 
frames 

Error 
bits 

BER FER 

80 28 264 47360 1.99e-1 1 
130 25.4 264 58123 2.47e-1 1 
560 26.4 264 32399 1.36e-1 1 

1040 20.2 198 18544 1.04e-1 1 
1510 17.4 198 22612 1.26e-1 1 
1740 17.4 198 226 1.27e-3 4.44e-1 
2740 12.0 198 1035 5.80-3 9.39e-1 

  

Equalizer Output BER Performance
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Figure 4-6 Comparing DFE-LMS and sparse DFE-LMS performance  

Result for the sparse DFE-LMS was slightly better than DFE-LMS for the 

shorter three distances and slightly worse than the DFE-LMS alone for other distances.  

The slight improvement might be due to the presence of sparse arrivals in the channel 

response (see Figure 2-11) while there was less sparse arrival in the longer distances.  

It could also mean that transducer bandwidth has limited the sparse channel effect in 

the receiver and closely packed arrivals are smeared. As the improvement was not 

significant, other methods of improvement would be assessed. 
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4.6 LE-RLS Performance in Sea Trial 

In addition to the LMS algorithm, the RLS algorithm would be used on the trial 

data.  The purpose was to find out if the performance improvement obtain from RLS 

was necessary for reliable communication.  As such, the thesis will pick the best 

performing equalizer from the LMS and RLS algorithms. Multichannel combining and 

channel coding will then be applied to both equalizers to check its final performance. 

If the LMS algorithm suffice reliable communication (>90% packets retrieved from all 

distances), then it will be desired to implement this as the complexity is much lower. 

On the other hand, the RLS algorithm is expected to work better than the LMS as it is 

faster in convergence but higher in complexity. The LE-RLS combination was applied 

to the sea trial data, and the results were shown below in Table 4-9. 

Table 4-9. Trial BER results of DBPSK in shallow water channels after LE RLS, 
Channel one 

Range 
(m) 

SNR 
(dB) 

No. of 
frames 

Error 
bits 

BER FER 

80 28 264 17863 7.52e-2 1 
130 25.4 264 22056 9.28e-2 1 
560 26.4 264 1828 7.69e-3 9.32e-1 

1040 20.2 198 2920 1.64e-2 9.90e-1 
1510 17.4 198 12506 7.02e-2 1 
1740 17.4 198 252 1.41e-3 4.54e-1 
2740 12.0 198 889 4.99e-3 8.99e-1 

 

Again, the LE-RLS s MSE and constellation plots of 1040m were selected in 

Figure 4-7 for comparison with LE-LMS plots found in Figure 4-5.  From the MSE 

plots, it could be noticed that the RLS is much faster in convergence and the noise in 

the MSE plot in the RLS case was also noticeably lower.  This would reflect in the 

number of bit errors of the LE-RLS 1040m and it was 4.5 times lower than the LE-

LMS 1040m case.   
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(a) (b) 

  

(c) (d) 
Figure 4-7. LE-RLS equalization on trial data-distance: 1040m (a) Mean square 
error (b) Filter tap coefficients (c) Input I-Q plot of differential decoded r(k) (d) 

Output I-Q plot of ( )a k

   

4.7 DFE-RLS Performance in Sea Trial 

Similarly, DFE-LMS was applied onto the trial data, and the results are shown 

below in Table 4-10.  As expected the DFE-RLS perform poorer than the LE-RLS case 

except in the case where the input BER is low enough (1740 m, 2740 m), the DFE 

performed slightly better than the LE in both LMS and RLS cases. 
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Table 4-10. Trial BER results of DBPSK in shallow water channels after DFE
RLS, Channel one 

Range 
(m) 

SNR 
(dB) 

No. of 
frames 

Error 
bits 

BER FER 

80 28 264 39946 1.68e-1 1 
130 25.4 264 33076 1.39e-1 9.96e-1 
560 26.4 264 4240 1.78e-2 8.67e-1 

1040 20.2 198 5582 3.13e-2 8.94e-1 
1510 17.4 198 17994 1.01e-1 1 
1740 17.4 198 109 6.12e-4 2.73e-1 
2740 12.0 198 771 4.33e-3 8.79e-1 

  

4.8 Performance Comparison for DFE, LE, LMS and RLS 

In this section, a comparison of the equalizers BER performance was done 

(see Figure 4-8). In practice, if the percentage of bits in error is less than one percent, 

they can be successfully removed by error coding. However, based on the plot in 

Figure 4-8, none of the candidates are suitable for error coding evaluation.  On another 

note, both DFEs work better than the LEs for the two furthest distances. The best 

performing equalizer is the LE-RLS equalizer with the lowest BER for most of the 

distances. The LE-RLS equalizer will be chosen for further processing, namely 

multichannel combining and error decoding.  However, the RLS s computational 

complexity is rather high when compared to that of LMS, and it is desired to select a 

LMS equalizer for further processing.  This is to make a comparison later if the 

multichannel combining and error decoding can improve the BER performance of a 

LMS based equalizer to a reliable level.  Hence, the LE-LMS equalizer will also be 

chosen for this purpose. 
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Figure 4-8 BER performance of Equalizers: LE-LMS, DFE-LMS, LE-RLS and 
DFE-RLS  

4.9 Multichannel Combining 

From the previous sections, adaptive equalization has shown their effectiveness 

in compensating for the distortions introduced by the multipath channel. However, 

these techniques gave poorer results when there are fading effects due to channel 

variations.  A way to reduce the effect of fading is spatial diversity [25]. It is also 

noted that the SNR performance usually reach nominal value after the number of 

combined channels reaches five or more [24]. As such, all five channels (r1(2k) to 

r5(2k)) sampled at Ts/2 in the nested array were individually synchronized, LE by LMS 

or RLS, then combined by summation, averaged and differentially decoded as shown 

in Figure 4-9 and their BER results are tabulated in Table 4-11 and Table 4-12. It 

shows BER reductions at all distances (see Figure 4-11). 
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Figure 4-9. Multichannel combining method with LE or DFE  

Figure 4-10 shows the effect of multichannel combining in decreasing the 

BER. This was also evident by comparing the IQ plots Figure 4-10(d) and Figure 

4-10(e). At all distances, the bit errors, BERs and FERs had been reduced (see Figure 

4-11 and Figure 4-12). The BER performance gain from multichannel combining 

seemed to be higher at the shorter distances than in the longer distances.  At the shorter 

ranges, the received signal had high SNR but there was a lot of multipath.  

Multichannel combining effectively does beamforming as each channel is 

synchronized to the strongest arrival [23]. At shorter distances, as the distinct 

multipath arrivals angles were largely different, they were separable by beamforming.  

Hence, by suppressing the unwanted interfering multipaths, the BER performance 

would improve. In the case of the longer distances, the differences in the angle of 

multipath arrivals were going to be smaller than the array beamwidth, so it was 

inseparable by the five element array.  The only form of gain from multichannel 

combining will be the gain in SNR.  As it is noted that the input SNRs at the longer 

distances are rather low (see Table 4-10), the increased in SNR after multichannel 

combining had helped to reduce the BERs. The next segment will show the channel 

coding performance of trial data.   
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 4-10. Multichannel combining with LE-LMS equalization-distance: 2740m 
(a) Mean square error (b) Filter tap coefficients (c)Input I-Q plot of differential 

decoded r(k) (d) single channel output I-Q plot of ( )a k  (e) Multiple channel 
combined IQ Plot 
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Multichannel Combining Output BER Performance
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Figure 4-11 BER performances of multichannel combining 
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Figure 4-12 Percentage of error free frames after multichannel combining  
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Table 4-11. Trial BER Results of DBPSK in Shallow Water Channels after LE-
LMS and MC     

Without Equalization With LE-LMS Range (m) 
Input 

Error Bits 
Input 
BER 

Input 
FER 

Output  
Error Bits 

Output 
BER 

Output 
FER 

57391 2.41e-1 1 37647 1.58e-1 1 
55443 2.33e-1 1 36462 1.53e-1 1 
57065 2.40e-1 1 44528 1.87e-1 1 
56429 2.37e-1 1 39569 1.67e-1 1 
58715 2.47e-1 1 38894 1.64e-1 1 

80 

After multichannel combine -> 6237 2.62e-2 9.77e-1 
81626 3.44e-1 1 43316 1.82e-1 1 
78404 3.30e-1 1 48291 2.03e-1 1 
83224 3.50e-1 1 53828 2.27e-1 1 
80005 3.37e-1 1 49470 2.08e-1 1 
71644 3.02e-1 1 42912 1.81e-1 1 

130 

After multichannel combine -> 19441 8.18e-2 1 
52450 2.21e-1 1 14457 6.08e-2 1 
53116 2.24e-1 1 17744 7.47e-2 1 
53914 2.27e-1 1 19598 8.25e-1 1 
59470 2.5e-1 1 24331 1.02e-1 1 
50913 2.14e-1 1 17574 7.40e-2 1 

560 

After multichannel  combine -> 4241 1.78e-2 9.85e-1 
59791 3.36e-1 1 6024 3.38e-2 1 
60625 3.40e-1 1 5966 3.35e-2 1 
64224 3.60e-1 1 6982 3.92e-2 1 
65930 3.70e-1 1 8632 4.84e-2 1 
62179 3.49 1 7293 4.09e-2 1 

1040 

After multichannel combine -> 543 3.05e-3 7.63e-1 
51465 2.89e-1 1 17561 9.85e-2 1 
49897 2.80e-1 1 17794 9.99e-2 1 
44840 2.52e-1 1 18775 1.05e-1 1 
54025 3.03e-1 1 19689 1.10e-1 1 
49952 2.80e-1 1 20436 1.15e-1 1 

1510 

After multichannel combine -> 7304 4.10e-2 1 
2047 1.15e-2 9.90e-1 542 3.04e-3 6.26e-1 
2391 1.34e-2 9.80e-1 1396 7.83e-3 9.14e-1 
4312 2.42e-2 1 993 5.57e-3 8.23e-1 
3726 2.09e-2 1 2214 1.24e-2 9.80e-1 
6736 3.78e-3 1 1606 9.01e-3 9.34e-1 

1740 

After multichannel combine -> 210 1.18e-3 4.49e-1 
1681 9.43e-3 9.85e-1 955 5.36e-3 8.93e-1 
1394 7.82e-3 9.75e-1 916 5.14e-3 8.64e-1 
1246 6.99e-3 9.60e-1 758 4.25e-3 8.84e-1 
1677 9.41e-3 9.85e-1 759 4.26e-3 8.59e-1 
2562 1.44e-3 9.95e-1 1138 6.39e-3 9.39e-1 

2740 

After multichannel combine -> 161 9.03e-4 4.24e-1 
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Table 4-12. Trial BER Results of DBPSK in Shallow Water Channels after LE-
RLS and MC       

Without Equalization With LE-LMS Range (m) 
Input 

Error Bits 
Input 
BER 

Input 
FER 

Output  
Error Bits 

Output 
BER 

Output 
FER 

57391 2.41e-1 1 17863 7.52e-2 1 
55443 2.33e-1 1 16270 6.85e-2 1 
57065 2.40e-1 1 19391 8.16e-2 1 
56429 2.37e-1 1 18284 7.70e-2 1 
58715 2.47e-1 1 19859 8.36e-2 1 

80 

After multichannel combine -> 900 3.78e-3 4.55e-1 
81626 3.44e-1 1 22056 9.28e-2 1 
78404 3.30e-1 1 25154 1.02e-1 1 
83224 3.50e-1 1 23896 1.00e-1 1 
80005 3.37e-1 1 25366 1.07e-1 1 
71644 3.02e-1 1 21843 9.19e-2 1 

130 

After multichannel combine -> 2794 1.18e-2 9.55e-1 
52450 2.21e-1 1 1828 7.69e-3 9.32e-1 
53116 2.24e-1 1 1832 7.71e-3 9.32e-1 
53914 2.27e-1 1 2286 9.62e-3 9.66e-2 
59470 2.5e-1 1 3590 1.51e-2 9.70e-2 
50913 2.14e-1 1 4407 1.85e-2 9.92e-2 

560 

After multichannel  combine -> 37 1.56e-4 9.85e-2 
59791 3.36e-1 1 2920 1.64e-2 9.90e-1 
60625 3.40e-1 1 2660 1.49e-2 9.85e-1 
64224 3.60e-1 1 3513 1.97e-2 1 
65930 3.70e-1 1 4142 2.32e-2 1 
62179 3.49 1 3756 2.10e-1 1 

1040 

After multichannel combine -> 126 7.07e-4 3.94e-1 
51465 2.89e-1 1 12506 7.02e-2 1 
49897 2.80e-1 1 11485 6.43e-2 1 
44840 2.52e-1 1 13151 7.38e-2 1 
54025 3.03e-1 1 12830 7.20e-2 1 
49952 2.80e-1 1 15934 8.94e-2 1 

1510 

After multichannel combine -> 3416 1.92e-2 9.94e-1 
2047 1.15e-2 9.90e-1 252 1.41e-3 4.55e-1 
2391 1.34e-2 9.80e-1 328 1.84e-3 6.06e-1 
4312 2.42e-2 1 260 1.46e-3 4.90e-1 
3726 2.09e-2 1 442 2.48e-3 6.41e-1 
6736 3.78e-3 1 434 2.44e-3 6.57e-1 

1740 

After multichannel combine -> 43 2.41e-4 1.52e-1 
1681 9.43e-3 9.85e-1 889 4.99e-3 8.99e-1 
1394 7.82e-3 9.75e-1 815 4.57e-3 8.54e-1 
1246 6.99e-3 9.60e-1 707 3.97e-3 8.54e-1 
1677 9.41e-3 9.85e-1 721 4.04e-3 8.38e-1 
2562 1.44e-3 9.95e-1 1013 5.68e-3 9.29e-1 

2740 

After multichannel combine -> 155 8.70e-4 4.09e-1 
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4.10 Channel Coding 

Turbo codes and the associated iterative decoding techniques have generated 

much interest within the research fraternity in recent years for their ability to achieve 

an exceptionally low BER with a signal to noise ratio per information bit close to 

Shannon s theoretical limit on a Gaussian channel [46]. Turbo Product Code (TPC) 

was selected as the FEC due to its powerful error-correction capability based on soft-

input-soft-output (SISO) iterative decoding algorithm and its excellent BER 

performance at high code rate (> 0.65) [47]. Implementation-wise, TPCs are less 

complex than Berrou s turbo convolutional codes, with the Chase Algorithm 

simplifying the decoding effort required for TPCs [48].  

The TPC encoder structure is illustrated in Figure 4-13. For TPC encoding, a 

total of 676 information bits are placed into a ku×ku array. Then a single-parity-check 

code is applied to every row of the array to result in a ku×nd matrix and subsequently 

the same code is applied to every column of the resultant matrix to yield an nd×nd 

matrix that contains 900 bits (a so-called product code). The code rate is ku
2/nd

2  0.75. 

For DQPSK modulation, each OFDM frame contains two TPC code blocks; and for 

DBPSK modulation, each OFDM frame contains just one TPC code block. 

 

Figure 4-13. Turbo product code (TPC) encoder structure 
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The TPC decoding is based on soft-input soft-output iterative algorithms and 

the details can be found in [47]. 

Although the data in the DBPSK frame format is uncoded, the channel effect 

encountered in the received trial data can be extracted from the combined y(k) in 

Figure 4-9 and ported over to a TPC codeword. This was done by the following 

method on the data segment of y(k): 

1. Channel effect extraction     

( )
( )

( )e

y k
c k

d k

     

(Eq. 4-47) 

2. Porting channel effect to differentially encoded TPC codeword dc(k) 

( ) ( ) ( )c c ey k d k c k

    

(Eq. 4-48) 

where ( ) ( ) ( 1)c c cd k a k d k  and ac(k) is the TPC codeword. 

This is done assuming that:     

( ) ( ) ( )j
yy k d k e n k

   

(Eq. 4-49) 

where dy(k) is the scaled version of d(k), 

 

is the single value constant phase offset 

and n(k) is the noise. This is done for all the distances data set and their BERs and 

FERs have been computed and found to be the same as the original data in table 8, as 

expected. The coding performance are computed and tabulated in Table 4-13 and 

Table 4-14.   

Figure 4-14 and Figure 4-15, gives an overview on the performance 

enhancements over the different schemes applied. Finally, with LE-LMS, MC, and 

TPC, more than 75% of the frames received were error free at most distances. At 

distances of 1040m, 1740m and 2740m, all coded frames received were 99%-100% 

recovered with no errors.  The performance of 140m and 1510m were considered poor. 

These may be caused by fading effects that the LMS equalizers were not fast enough 
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compensate.  However, with the LE-RLS, MC, and TPC, it could adapt to the channel 

more quickly. More than 97% of the frames received were error free at all distances. 

At distances of 560m, 1040m and 1740m, all coded frames received were 100% 

recovered with no errors.  The BER of LE-RLS, MC and TPC was also much better 

than the LMS case, especially in the shorter ranges. 

Table 4-13. Trial BER Results of DBPSK in Shallow Water Channels after LE-
LMS, MC and TPC 

Range (m)

 

No. of 
frames 

Error 
bits 

BER FER 

80 264 2006 1.12e-2 1.74e-1 
130 264 14356 8.04e-2 7.12e-1 
560 264 476 2.67e-3 6.06e-2 

1040 198 0 <7.47e-6 <5.05e-3 
1510 198 1831 1.37e-2 2.58e-1 
1740 198 0 <7.47e-6 <5.05e-3 
2740 198 5 3.75e-5 5.05e-3 

 

Table 4-14. Trial BER Results of DBPSK in Shallow Water Channels after LE-
RLS, MC and TPC 

Range (m)

 

No. of 
frames 

Error 
bits 

BER FER 

80 264 89 4.99e-4 2.27e-2 
130 264 138 7.73e-4 1.51e-2 
560 264 0 <5.60e-6 <3.79e-3 

1040 198 0 <7.47e-6 <5.05e-3 
1510 198 129 9.64e-4 3.03e-2 
1740 198 0 <7.47e-6 <5.05e-3 
2740 198 4 2.99e-5 5.05e-3 
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Figure 4-14 BER performances of different schemes 
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Figure 4-15. Error-free frame performances of different schemes  
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CHAPTER 5 CONCLUSION 

This thesis studied the local shallow water characteristics and presented a 

communication channel model simulation for the above measured channel 

environment.  Rayleigh fading was observed at shorter distances and Ricean fading 

occurred in the longer distances. The delay and Doppler effects were also less at longer 

distances.  Ambient noise measured was non-Gaussian with a heavy tailed distribution.  

The communication channel simulator in this thesis was verified to be a good 

approximation to the real shallow water channel. Communication engineers should 

exploit the channel characteristics at longer distances to transmit at higher data rates.  

On the other hand, it would be a serious challenge to design a modem for shorter 

distances. This was due to increased fading, delay and Doppler spreads at shorter 

distances. To combat these effects, a combination of adaptive equalization, 

multichannel combining (MC) and forward error correction (FEC) were used. In 

addition, sparse equalization was used and it did not improve the BER performance 

significantly. It was noted that the BER performance of adaptive linear equalizer (LE) 

was generally better than decision feedback equalizer (DFE) for shorter distances.  The 

RLS algorithm also performed better than the LMS algorithm with faster convergence 

rate and less noise. FEC scheme such as turbo product codes (TPC) are employed to 

improve performance by removing correctable errors and increasing the number of 

error free frames. Because of LMS simplicity and ease of implementation, both LE-

LMS and LE-RLS had been processed with MC and FEC. However, with the 

combined use of linear equalization, multichannel combination and turbo decoding, 

only the RLS case could produce reliable data reception with of BERs (~10-4) and 

97%-100% error free frames.  After removing the training and coding overheads, the 

data rate achievable is approximately 6kbps ~BER 10-4 for distances of 80m to 2740m.  
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CHAPTER 6 FUTURE WORK 

This thesis had not analysed the performance of coherent PSK. Although this 

would add complexity to the receiver, it might give a 3-6 dB improvement in the SNR 

and lower the BER further. As the computational complexity required for reliable 

communication was found to be high, other lower complexity but fast convergence 

adaptation algorithms should be explored.  Other channel coding schemes might be 

explored, especially those that allowed feedback to the equalizer. It was noted that the 

DFE poor performance could be due to unreliable tracking when there was too much 

bit errors received. Thus by feeding back a more reliable data source such as channel 

decoded sequence, the DFE performance might improve.  Apart from reducing the 

complexity and improving the BERs, there were at least two more hurdles for a 

complete underwater acoustic communication solution.  Firstly, considering the fact 

the mobility introduced faster fading and larger Doppler spread, the mobile 

communication channel would be an even more challenging one than a static channel.  

As such, channel measurements and modelling for the mobile channel could help the 

communication engineer to combat these effects.  Secondly, higher order of 

modulation should be explored so that the bandwidth efficiency for the communication 

link can be increased for a severely band-limited acoustic channel. Some analysis of 

spatial coherence of the channel should also be done to assess the feasibility of MIMO 

as MIMO can increase the data rate through space-time diversity. 
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