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1. INTRODUCTION 
 

Multiuser detection (MUD) is the study of demodulating multiple user signals sharing a 

common multiple access channel.  Multiuser detection for asynchronous code division 

multiple access (CDMA) system is necessary for acceptable performance.  This is because, 

apart from the usual additive white Gaussian noise (AWGN) present in the channel, there is 

also cross user interference among the users better known as multiple access interference 

(MAI).  Better performance is achieved if information about the multiple users is used jointly 

and the multiuser detector exploits this dependence between the users. The maximum-

likelihood (ML) multiuser detector is well known to exhibit better bit-error-rate (BER) 

performance than many other multiuser detectors. Unfortunately, ML detection (MLD) is a 

nondeterministic polynomial-time hard (NP-hard) problem, for which there is no known 

algorithm that can find the optimal solution with polynomial-time complexity. That is, it’s 

computational complexity increases exponentially, (O(2K)), with the number of users, K.  A 

polynomial-complexity detection means the running time is bounded by a polynomial 

function in only K and is denoted, for example, O(K2) or O(K log K).  A comparison on the 

growth rates of several typical complexities is shown below. 

No of Users Complexity O() 

K K log K K2 K3 2k 

10 33 102 103 103 

100 664 104 106 1.27 x 1030

1000 9965 106 109 1.07 x 10301

Table 1 Growth Rates of Some Polynomial Function and an Exponential Function 

Hence, it is advantageous to look at polynomial-complexity algorithms for multiuser 

detection with some assumptions made on the system or the possibility of trading it off with 

bit error rate (BER) performance.  However, the trade-off in BER performance cannot be too 

great such that the BER performance falls nearer to that of a single user detector.  

Assumptions can be made to simplify the MLD problem such as constant cross correlations 

and perfect power control [1], this results in polynomial-complexity optimum multiuser 

detection with complexity O(K log K).  Another perspective of solving the MLD problem 
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with polynomial-complexity around O(K2) is found in [2] and [3].  It is based on transforming 

a {0,1} quadratic programming problem into an equivalent problem of solving a minimum 

cut in a graph or network (in the realms of graph theory and algorithms).  A minimum cut 

problem can be solved with polynomial-complexity if all the non-source and non-sink 

incident edge capacities are non-negative [4].  This result translates into designing a set of 

spreading sequences with the property that the cross correlation between users over each 

symbol period is non-positive.  It relaxes the assumption of constant cross correlation stated 

previously for polynomial complex algorithm to allowing different cross correlation values as 

long as it is non-positive.   

However, all the above imposed a limited set of codewords for the CDMA chip sequence. 

This is equivalent to a limited number of users in the MLD problem. It is known that the MLD, 

also known as a Boolean least square problem, is a non-convex quadratically constraint 

quadratic programming (QCQP) problem, [5]. Fortunately, a polynomial-time of near-

optimal approach using semi-definite programming (SDP), approximately O(K3.5), relaxation 

can be applied to the non-convex QCQP problem. This is elaborated in [5] and [6]. As a 

result, it further relaxes the cross correlation matrix constraint to only positive semi-

definiteness. In this project, a study on SDP relaxation approach to the MLD problem, with a 

special application to asynchronous and arbitrary correlated CDMA signals will be done. 

2. FORMULATING THE PROBLEM 

2.1 BASIC ASYNCHRONOUS CDMA  
Consider a simple model for an asynchronous CDMA system where only one packet is 

transmitted by each user at the time [7]. The basic asynchronous CDMA signal of K users 

comprises N bits that are antipodally modulated with spreading sequence waveforms and 

additive white Gaussian noise.  It is expressed mathematically in Equation (1).  It should be 

noted that this signal is continuous-time. 
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where 

- T is the bit interval 

- N is the total number of bits transmitted 

- k  is the kth user delay in an asynchronous setting 

- )(tsk  is the deterministic spreading sequence of length M chips assigned to the kth 

user  

                                     (2)                                                                           1)(|||| 
0

22  
T

kk dttss  

- kA  is the received amplitude of the kth user signal.  2
kA  is the energy of the kth user. 

- 1}{-1,  (i) kb  is the antipodal i th bit signal transmitted by the kth user. 

- n(t) is the white Gaussian noise with zero mean and uniform power spectral density 

of 
2

0N
. 

Equation (2) simply states that the spreading sequence waveform has unit energy over [0,T].  

Another parameter that is commonly used here is the cross-correlation of the spreading 

sequence waveforms (see Equation (3)).  It quantifies the similarity between two spreading 

sequence waveforms. 

The subscripts k and l denote which user the spreading sequence belongs to.  If there are K 

users, then k and l can vary from 1 to K.  When k and l are the same, the cross-correlation 

value is the energy of the sequence waveform which is equal to one.  The cross correlation 

values are bounded by the limits from –1 to 1.  It can be proven by using the property of the 

Cauchy Schwarz inequality shown in Equation (4) and the fact that all spreading sequence 

waveforms has unit energy.  To display the cross correlation values in a systematic form, it 

can be organized in the form of a matrix where the diagonal elements are equal to one and 

.inequality SchwarzCauchy  by the

(4)                                       1||)(||||)(||| ,|||                                                 
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is of K by K size.  The matrix will be symmetric along the diagonal as ρkl and ρlk are the same 

(see Equation (5)). 

 

 

2.2 DISCRETE TIME ASYNCHRONOUS MODEL 
 
In this section, we convert the continuous-time signal y(t) into the discrete form by 

correlating it with deterministic signals of spreading sequence waveforms and conventional 

sampling.  This is done by passing y(t) through a bank of matched filters (see Figure 1) each 

matched to the spreading sequence waveform of different users. 

 

 

 

 

 

 

 

 

 

 

Figure 1 Matched Filtering in Asynchronous CDMA 
 
The matched filter output for the kth user is 
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Equation (6) can be expressed as a form of linear Gaussian vector shown below. 

                           (7)                                                               nAbRy  N  
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and )(maR  is a K x K matrix with elements 

                       (9)                       1          ,)()()( NidtmTtstsmR lkkkkl  



  

Also,  )(in  is a zero mean Gaussian random vector with covariance matrix of 

   (10)                                               )(
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2.3 MAXIMUM LIKELIHOOD MULTIUSER DETECTION 
 
The maximum likelihood estimate for asynchronous CDMA can be expressed as  
 

                
  (11)              2max arg)|( max arg TT
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|
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Because the correlation matrix is now NK x NK in the asynchronous CDMA case, it has an 

maximum likelihood estimate order of complexity of O(2NK) instead of O(2K) in the 

synchronous CDMA case. Without loss of generality, we can assume N is equal to one to 

reduce the complexity of the simulation. The order of complexity is now similar to that of 

synchronous case. However, asynchronous CDMA’s correlation matrix can change randomly, 

due to random delays for each user, when compared to the fixed correlation matrix in 

synchronous case. Hence, the polynomial complexity discussed in  [1] through [4] cannot be 

used for random cross correlations in asynchronous CDMA. At this point, we have derived a 

non-convex QCQP problem, specifically known as the Boolean least square problem. In the 

next section, we will discuss several interpretations of this problem. 

3 RE-FORMULATING THE PROBLEM 

3.1 SDP RELAXATION OF THE BOOLEAN LS PROBLEM 
 

We can rewrite equation (11) as, 

 
       (12)                                   

~~~
2min arg TT

1}-1,{

bARAbbAyb
b

aML
K






 
where  

]....,,.........[
~

1 KAAdiagA  
 
By substituting xb t into equation (12) where t is a scalar, we can rewrite equation (12) as 
 

                                               

  1        t

K1,...,  i   1,   xs.t. 

(13)                                        
~~~

2  min*

2

2
i

TT

t,





 xARAxxAy
x

atp

 

 
where p* is the minimum value of the objective function and x* and t* is the optimal value 

for the minimum objective function value. Let 1}1{],[  KTT txw . Then equation (13) can 

be reformulated as a homogenous QCQP as follows: 

 

   11,...,  i   1,   s.t. 

(14)                                                                  min

2
i  Kw

T Qww
w
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Let TwwW  . This fundamentally implies that 0  W  and 1)( Wrank . Hence, we can 

linearize equation (14) and rewrite as 

 

           
TwwW

QW
y





       

1K1,...,  i   1,   Ws.t. 

(15)                                                       )Tr(  min

ii

 

 
However, we note that the implicit constraint 1)( Wrank  in equation (15) is non convex. 

The relaxation of equation (15) is obtained by dropping the non-convex 1)( Wrank  
constraint and rewrite it in the following SDP: 

           0          

1K1,...,  i   1,   Ws.t. 

(16)                                                       )Tr(  min

ii

W

QW
y


 

 
It is important to note the effect of relaxation. The relaxed SDP gives a lower bound on the 

optimal objective value, specifically, p*
sdp ≤ p*

qcqp. It will be evident in Section 3.3 that 

equation (16) gives the same lower bound as the Lagrangian dual of equation (14) because it 

can be shown that the SDP relaxation equation (16) is the bi-dual or dual-dual of 

homogenous QCQP equation (14). Therefore, from a non-convex QCQP problem, through 

relaxation, a convex SDP problem is formulated. Thus the SDP problem can be efficiently 

solved by interior point methods in polynomial time [8].  

3.2 OBTAINING AN APPROXIMATE RANK-1 SOLUTION VIA GAUSSIAN 
SAMPLING 

 

In [5, Section 4.2.2], it proposes a Gaussian sampling approach to extract the rank-1 

component from the W* from the SDP problem that will serve as a good approximate 

solution to the non-convex QCQP. A probabilistic interpretation of the relaxation equation 

(16) is to treat w* (i.e. ][* wEw  ) and W* (i.e. ][* TwwEW  ) as the first and second 

moments of a random vector w. It can be shown that  



8 

 

    11,...,  i   1,   s.t. 

(17)                                                              ][  min

2
i  Kw

T

E

QwwE
w  

is equivalent to the problem define in equation (14) where we minimize over all possible 

probability distributions of w. This interpretation suggests another heuristic method for 

computing suboptimal solutions of (13) based on the result of (16).  Let *W
 
be the optimum 

point for (16). We generate a set of random vectors randl Ml ,...,1 , ζ  from the Gaussian 

distribution ),( *W0N , and quantize them into the binary vector 

rand
K

ll Mlsign ,...,1 ,}1{)(ˆ 1  ζw .  A best approximate solution of (14) can be obtained 

as 

                 (18)                                                   ˆˆ  min argˆ
,...,1},ˆ{

ll
Ml randl

wQww T

w 
  

Let TT t ]ˆ,ˆ[ˆ xw  . Finally, the best associate approximate solution to (13) is given by xb ˆˆ* t . 

It is empirically found that Mrand >10 is sufficient to obtain near-optimum approximation 

performance. Although this random sampling is performed multiple times, it should be 

noted that it is still polynomial in time. 

 
Figure 2 BER simulation of SDP Detector and ML Detector versus SNR in Decibels for 

various Mrand 

2 3 4 5 6 7 8 9 10
10-5

10-4

10-3

10-2

10-1

E/N0

av
g 

pr
ob

 o
f e

rr

N = 1, number of user = 3, code length = 7

 

 
Mrand = 1
Mrand = 3
Mrand = 10
ML



9 

 

3.3 LAGRANGE DUAL and BI-DUAL ANALYSIS 
 
The dual problem of (14) can be obtained as: 

 

 
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The Lagrange dual function of (20) can be obtained as follow: 
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From (21), one can formulate the dual problem of (20) as 
 

0Γ

QΓ
y

        

1K1,...,  i   1,   s.t. 

(22)                                                                  )Tr(  min

ii 

 

Comparing equation (22) with equation (16), we see that equation (16) is actually the bi-

dual of equation (14), which, according to duality theorem, always forms a lower bound of 

the primal problem. Also, because a dual problem is always convex, we can say equation (22) 

is a convex relaxation of equation (14). Furthermore, if the optimum point Γ* has rank one, 

it is also the optimum point for the primal problem. 
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4 COMPARING WITH OTHER SUBOPTIMAL DETECTORS 
In this section, we consider the unconstrained relaxation (UR) of the original problem, 

where detectors derived from this are known to be suboptimal detectors. It will be 

illustrated, both analytically and through simulation that the unconstrained relaxation is a 

further relaxation of the SDP relaxation method. Therefore, it is expected that the SDP-

detector will perform better than these sub-optimal detectors. Consider the following 

unconstrained relaxation: 

   (23)                                    )(2min arg
~ 2TT

R

bHbbbAyb
b


 K

UR  

where ARAH  ,  
2

b is the penalty function with 0 . The reason for choosing such a 

penalty function is to implicitly constrain the magnitude of b while maintaining the least-

square nature of the relaxation problem. The major advantage of using UR is the availability 

of a closed-form solution. Assuming that IH   is invertible, the solution to (23) is given by  

                                                                   (24)                                               ) (
~ -1AyIHb UR  

And it can be shown that  

                                        (25)                      )) ((   )) ((ˆ -12-1 yARAyIHb   signsignUR  

To see how the penalized UR method is related to some of the existing suboptimal detectors, 

we consider the outputs of three well-known linear detectors: the matched filter (MF) 

detector, the decorrelator (DC), and the LMMSE detector, which are given, respectively, by 

             
(28)                                    ))

2
((ˆ

(27)                                                           )(ˆ

(26)                                                                 )(ˆ

120
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yARb

yRb
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sign

sign
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Comparing equation (25) with equation (26) through (28), the equivalence between the UR 

detectors can be clearly seen. For 0 , DCUR bb ˆˆ  . If   is chosen to be
2

0N
, then

LMMSEUR bb ˆˆ  . Finally, if we choose kEmax , the approximate solution URb̂  approaches
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MFsignsign byyA ˆ)())(( 12  .  Next, consider the tighter problem with bound constrain 

than equation (23): 

               )
~
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where d  ≥ 1. 

By following the same procedure in above section, (29) can be rewritten as 
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We relax equation (30) as 

1              

              

  ..        
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Now we will prove (30) and (31) are equivalent problem. First, because (31) is the relaxation 
of (30),  

    (32)                                                            ** hl   

Let 




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
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1z

zZ
X  ,  (31) can be reformulated as
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Since 0zzZ T  and 0IH   , we have 

            
)34(       ) ()) ((             0)) )((( zIHzIHZIHzzZ   TT TrTr  

for any feasible Z  and z . 

And from KidZand ii
T ,...,1,    2  0zzZ  , we have )35(       ,...,1, 2 Kidzi  . 

Let **   zZ and be the optimum points for (33). From (34) and (35), we have 
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From (32) and (36), we conclude                           ** hl   

Therefore, from the first two lines of (36), it can seen that 
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Therefore, we conclude (30) and (31) are equivalent problem. Comparing (31) with the SDP 

relaxation problem (16), due to problem (14) is non-sensitive to the diagonal element of H , 

we can reformulate (16) as 

TyyY

YQ
y





        

1K1,...,  i   1,Y   s.t. 

(38)                                                                 )
~

Tr(  min

ii  

where Q~  is defined in (30). Compare (38) with (31), we can conclude the SDP relaxation 

problem is tighter than problem (30). Therefore, it is expected the performance of SDP 
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relaxation detector is better than the other suboptimal detectors listed in (26)-(28). The 

simulation result is shown in Figure 3. It shows that even though DC, LMMSE and MF are 

polynomial in complexity, O(K3), it sacrifices or traded it off from the BER performance. 

Figure 3  also shows that the SDP performed better than these sub-optimal detectors. For 

example at 10-3 BER, the SDP/ML is 1dB better than the LMMSE/DC detectors. The MF 

detector performs the worst as it is a single user detector in a multiuser setting. That is, the 

MAI is not cancelled off in the MF detector. 

 

Figure 3 Comparison of SDP, ML and UR detectors 
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5 DISCUSSION/CONCLUSION 
In this project, we have considered various polynomial-complexity algorithms for the 

asynchronous CDMA multiuser detection problem where the optimum detector is the ML 

detector. However, the MLD is known for its exponential complexity as it is a NP hard 

problem.  Interestingly, prior to the application of convex optimization to the MLD problem, 

some of the polynomial algorithms proposed could achieve optimum performance but 

places strict constraints on the correlation matrix. These are done through clever linear 

algebra manipulations and transforming the quadratic problem to a minimum cut problem 

in graph theory.  Other polynomial complexity detectors such as the MF, DC and LMMSE 

detectors traded it off from the BER performance, hence they are known to be sub-optimal 

detectors. However, it is noted that the asynchronous CDMA problem is a non-convex QCQP 

problem, specifically known as the Boolean LS problem.  Through rank-1 relaxation, the non-

convex QCQP problem can be converted into a convex SDP problem. The optimum solution 

of the SDP problem can then be used to approximate the rank-1 solution of the original 

QCQP problem.  Some simulation has been performed to assess the efficacy of the SDP 

relaxation approach and it is found that the SDP relaxation method is highly effective, 

reliable and efficient, yielding excellent near-optimal results. We approximate the rank-1 

solution of the original problem through Gaussian sampling and found that only 10 

randomizations or more are required to produce near-optimum results. Lastly, we showed 

that unconstrained relaxation (UR) is a further relaxation of the SDP relaxation method. 

Hence, the SDP-detector is expected to perform better than these UR based sub-optimal 

detectors.  
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7 MATLAB CODES 
 
Section 3 Matlab Codes 
 
clc;clear;close all 
  
No_user=3;  %no of users 
N=7;        %no of chips or spreading factor 
dlen=10000;     %data length 
c = zeros(No_user,N); % code 
Eb=1;                   %Energy per bit 
SNRdb=2:2:10;          %string of SNR in dB 
No_SNRs=length(SNRdb);  %Find out the length of SNRdb string 
err=zeros(1,No_user);   %no of errors bits 
uber = zeros(No_SNRs,No_user); % ber for each user vs given SNR 
dlen_cnt=0;                 %no of dlen sent 
Mrand = 100;  % number of random variable generated 
% assign spreading sequence for each user  
c(1,:) = [-1 -1 -1 1 1 -1 1]; 
c(2,:) = [1 1 -1 -1 -1 1 -1]; 
c(3,:) = [-1 1 1 -1 -1 -1 1]; 
%diagonal matrix A for the matrix of received amplitude--------------------
----------------------- 
A=zeros(1,No_user); 
A(:)=1; 
A=diag(A); 
  
% simulation 
for snr_cnt=1:No_SNRs 
    dlen_cnt=0;                 %counter for no of time the while loop 
below till error bit>100 
    err(:)=0;                   %error bit counter for K users 
    while ((sum(err)/No_user < 100) | (dlen_cnt<10000)) 
        SNR=(10^(SNRdb(snr_cnt)/10)); %Signal to noise ratio 
        sd=sqrt((Eb/SNR)/2);          % standard deviation 
        b = 2*randint(No_user,1)-1;       % information bits 
        P = partCorgen(c);              % partial cross-correlation matrix 
        n = sd*mvnrnd(zeros(1,No_user),P);%(R_half)*(sd*randn(No_user,1)); % 
noise with correlation matrix N0/2 * R 
        y = P*A*b + n';                  % test stat 
        % Multiuser Detection using conventional SDP 
        %temp = A*P*R_inv; 
        Q = [A*P*A , -A*y ; -(A*y)' , 0]; 
        cvx_begin sdp quiet 
            cvx_solver sdpt3 
            variable Y(No_user+1,No_user+1) symmetric 
            minimize ( trace(Q*Y) ) 
            diag(Y) == 1; 
            Y >= 0; 
        cvx_end 
        if min(eig(Y) < 0) % make sure Y is positive semidefinite 
            continue; 
        end 
  
        for i = 1:Mrand 
            y_hat = (sign(mvnrnd(zeros(1,No_user+1),Y)))'; 
            yQy = y_hat'*Q*y_hat; 
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            if i==1 
                yQy_min = yQy; 
                y_star = y_hat; 
            else    if yQy < yQy_min 
                    yQy_min = yQy; 
                    y_star = y_hat; 
                    end 
            end 
        end % for i = 1:Mrand 
        x_star = y_star(end)*y_star(1:end-1); % x_star is the estimate of b 
        err=err + (b~=x_star)'; % count for number of error 
        dlen_cnt=dlen_cnt+1; 
    end % while 
    uber(snr_cnt,:) = err/dlen_cnt; % ber for each user 
    sber_SDP = sum(uber,2)/No_user; % avg ber 
end %for snr_cnt=1:No_SNRs 
semilogy(SNRdb,sber_SDP,'b-p'); 
xlabel('E/N_0');ylabel('avg prob of err'); 
 
clc;clear;close all 
  
No_user=3;  %no of users 
N=7;        %no of chips or spreading factor 
dlen=10000;     %data length 
c = zeros(No_user,N); % code 
Eb=1;                   %Energy per bit 
SNRdb=2:2:6;           %string of SNR in dB 
No_SNRs=length(SNRdb);  %Find out the length of SNRdb string 
err_SDP=zeros(1,No_user);   %no of errors bits 
err_ML=zeros(1,No_user);    %no of errors bits 
uber_SDP = zeros(No_SNRs,No_user); % ber for each user vs given SNR 
uber_ML = zeros(No_SNRs,No_user); % ber for each user vs given SNR 
dlen_cnt=0;                 %no of dlen sent 
Mrand = 100;  % number of random variable generated 
% assign spreading sequence for each user  
c(1,:) = [-1 -1 -1 1 1 -1 1]; 
c(2,:) = [1 1 -1 -1 -1 1 -1]; 
c(3,:) = [-1 1 1 -1 -1 -1 1]; 
%diagonal matrix A for the matrix of received amplitude--------------------
----------------------- 
A=zeros(1,No_user); 
A(:)=1; 
A=diag(A); 
%pb is a permutation of data bits for k no of users = 2^k ; k by 2^k matrix 
pb=zeros(No_user,2^No_user); 
toggle=-1; 
for count=1:No_user 
   lenpb=2^(No_user-count); 
   counter=0; 
   for count2=1:2^No_user    
      pb(count,count2)=toggle; 
        counter=counter+1; 
      if counter==lenpb 
         toggle=-toggle; 
         counter=0; 
      end 
   end 
end 
% simulation 
for snr_cnt=1:No_SNRs 
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    dlen_cnt=0;                 %counter for no of time the while loop 
below till error bit>100 
    err_SDP(:)=0;                   %error bit counter for K users 
    err_ML(:)=0; 
    while ((sum(err_ML)/No_user < 2) | (dlen_cnt<10000)) 
        SNR=(10^(SNRdb(snr_cnt)/10)); %Signal to noise ratio 
        sd=sqrt((Eb/SNR)/2);          % standard deviation 
        b = 2*randint(No_user,1)-1;       % information bits 
        P = partCorgen(c);              % partial cross-correlation matrix 
        n = sd*mvnrnd(zeros(1,No_user),P);%(R_half)*(sd*randn(No_user,1)); % 
noise with correlation matrix N0/2 * R 
        y = P*A*b + n';                  % test stat 
        % Multiuser Detection using SDP 
        Q = [A*P*A , -A*y ; -(A*y)' , 0]; 
        cvx_begin sdp quiet 
            cvx_solver sdpt3 
            variable Y(No_user+1,No_user+1) symmetric 
            minimize ( trace(Q*Y) ) 
            diag(Y) == 1; 
            Y >= 0; 
        cvx_end 
        if min(eig(Y) < 0) % make sure Y is positive semidefinite 
            continue; 
        end 
        yQy_min = inf; 
        for i = 1:Mrand 
            y_hat = (sign(mvnrnd(zeros(1,No_user+1),Y)))'; 
            yQy = y_hat'*Q*y_hat; 
            if yQy < yQy_min 
                yQy_min = yQy; 
                y_star = y_hat;     
            end 
        end % for i = 1:Mrand 
        x_star = y_star(end)*y_star(1:end-1); % x_star is the estimate of b 
        err_SDP=err_SDP + (b~=x_star)'; % count for number of error 
        % Multiuser Detection using ML 
        for pb_ptr=1:(2^No_user) 
            Bml=2*(A*y)'*pb(:,pb_ptr)-pb(:,pb_ptr)'*A*P*A*pb(:,pb_ptr); 
            if pb_ptr==1 
               Bml_max=Bml; 
                pb_max=pb_ptr; 
            else    if Bml>Bml_max 
                    Bml_max=Bml; 
                    pb_max=pb_ptr; 
                  end 
            end 
         end    
        br=pb(:,pb_max); % br is the estimate of b 
        err_ML=err_ML + (b~=br)';% count for number of error 
        dlen_cnt=dlen_cnt+1; 
    end % while 
    uber_ML(snr_cnt,:) = err_ML/dlen_cnt; % ber for each user 
    uber_SDP(snr_cnt,:) = err_SDP/dlen_cnt; % ber for each user 
  
end %for snr_cnt=1:No_SNRs 
sber_ML = sum(uber_ML,2)/No_user; % avg ber 
sber_SDP = sum(uber_SDP,2)/No_user; % avg ber 
semilogy(SNRdb,sber_SDP,'b-p',SNRdb,sber_ML,'g-o'); 
legend('SDP,ML'); 
xlabel('E/N_0');ylabel('avg prob of err'); 
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function [P]=partCorgen(c) 
% c is the No_user by N matrix containing spreading sequence for each user 
% P is the partial correlation matrix  
[no_user,N] = size(c); 
tau = randint(1,no_user-1,N); 
tau = [0,sort(tau)]; 
P = ones(no_user); 
for i = 1:no_user 
    for j = i+1:no_user 
        P(i,j) = 1/N*(c(i,tau(j)-tau(i)+1:end)*c(j,1:N - (tau(j)-tau(i)))'); 
    end 
end 
P = P + P' -1; 
return 
 
Section 4 Matlab Codes 
clc;clear;close all 
  
No_user=3;  %no of users 
N=7;        %no of chips or spreading factor 
c = zeros(No_user,N); % code 
Eb=1;                   %Energy per bit 
SNRdb=2:2:10;          %string of SNR in dB 
No_SNRs=length(SNRdb);  %Find out the length of SNRdb string 
err_MF=zeros(1,No_user);    %no of errors bits 
err_DC=zeros(1,No_user);    %no of errors bits 
err_LMMSE=zeros(1,No_user); %no of errors bits 
uber_DC = zeros(No_SNRs,No_user); % ber for each user vs given SNR 
uber_MF = zeros(No_SNRs,No_user); % ber for each user vs given SNR 
uber_LMMSE = zeros(No_SNRs,No_user); % ber for each user vs given SNR 
dlen_cnt=0;                 %no of dlen sent 
  
% assign spreading sequence for each user  
c(1,:) = [-1 -1 -1 1 1 -1 1]; 
c(2,:) = [1 1 -1 -1 -1 1 -1]; 
c(3,:) = [-1 1 1 -1 -1 -1 1]; 
%diagonal matrix A for the matrix of received amplitude--------------------
----------------------- 
A=zeros(1,No_user); 
A(:)=1; 
A=diag(A); 
  
% simulation 
for snr_cnt=1:No_SNRs 
    dlen_cnt=0;                 %counter for no of time the while loop 
below till error bit>100 
    err_MF(:)=0;                    %error bit counter for K users 
    err_DC(:)=0; 
    err_LMMSE(:)=0; 
    while ((sum(err_LMMSE)/No_user < 10) | (dlen_cnt<10000)) 
         
        SNR=(10^(SNRdb(snr_cnt)/10)); %Signal to noise ratio 
        sd=sqrt((Eb/SNR)/2);          % standard deviation 
        b = 2*randint(No_user,1)-1;       % information bits 
        P = partCorgen(c);              % partial cross-correlation matrix 
        n = sd*mvnrnd(zeros(1,No_user),P);%(R_half)*(sd*randn(No_user,1)); % 
noise with correlation matrix N0/2 * R 
        y = P*A*b + n';                  % test stat 
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        % Multiuser Detection using MF 
        y_MF = sign(y); %  y_MF is the estimate of b 
        err_MF = err_MF + (y_MF~=b)'; 
        % Multiuser Detection using DC 
        y_DC = sign(inv(P*A)*y); 
        err_DC = err_DC + (y_DC~=b)'; 
        % Multiuser Detection using LMMSE 
        y_LMMSE = sign(inv(P+sd*eye(size(P)))*y); 
        err_LMMSE = err_LMMSE + (y_LMMSE~=b)'; 
        dlen_cnt=dlen_cnt+1; 
    end % while 
    uber_MF(snr_cnt,:) = err_MF/dlen_cnt; % ber for each user 
    uber_DC(snr_cnt,:) = err_DC/dlen_cnt; % ber for each user 
    uber_LMMSE(snr_cnt,:) = err_LMMSE/dlen_cnt; % ber for each user 
end %for snr_cnt=1:No_SNRs 
sber_MF = sum(uber_MF,2)/No_user; % avg ber 
sber_DC = sum(uber_DC,2)/No_user; % avg ber 
sber_LMMSE = sum(uber_LMMSE,2)/No_user; % avg ber 
semilogy(SNRdb,sber_MF,'b-p',SNRdb,sber_DC ,'g-o',SNRdb,sber_LMMSE ,'r-s'); 
legend('MF','DC','LMMSE'); 
xlabel('E/N_0');ylabel('avg prob of err'); 
 
 
 


