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BACKGROUND / MOTIVATION

» Generic inversion process
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MOTIVATION

» Low SNR / source power
» Most methods works on the basis of high SNR/source power
» Concern for disturbance of marine mammals (Gervaise 2012)

» Development of expendable/low powered acoustic sources for AUV based survey
(Massa) (source level restrictions, rapid environment assessment by AUV)

» Existing single source/receiver methods
» Modal dispersion curve analysis (Bonnel, Gervaise)
» Matched impulse response method (Josso, Le Gac, Jesus, Hursky, Hermand)
» Matched field processing method (Siderius, Tan)

» Synthetic aperture modal inverse method (Frisk, Rajan)
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PREVIOUS WORK

» Tan et al,‘“‘Broadband synthetic aperture geoacoustic
inversion’’, JASA, 2013.
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Mobile single source and receiver method for low SNR
Lost of spatial diversity and array gain (w.r.t to VLA)
Broadband frequency coherent method (100-900 Hz)
Long observation time (64 s) of P LFM chirps (I s)

But method becomes Doppler/motion intolerant., requires waveguide
Doppler model

Assume constant horizontal source/receiver radial velocities

. 1
density Psed slope s
attenuation a,,; €, = ¢y + Shgey sediment |, -~
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COHERENTLY EXPLOITING MULTIPLE LFMS

» P LFMs » Peak samplings and doubling P
» 100-900 Hz T=1 s Tr =| s » Signal peak increases 6 dB

Noise level increase 3 dB
6 — 3 = 3 dB gain

>
>
» Increasingly Doppler intolerant
T

» Periodic peaks at |/T. Hz
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WAVEGUIDE DOPPLER

Example: 500 Hz harmonic source (KRAKEN

» 1994 Schmidt and Kuperman

» Spectral/Modal Solution

r

» Non-reciprocity

» Frequency domain
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FOR THIS OCEANS PAPER...

Extend previous method to more practical scenarios such as near
CPA or when radial velocity changes.

Allow pulse dependent changes in source/receiver radial velocities

Top view

Source range
Source range

. static
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Source Propagation Receiver

) _ w = W + knpvpy W,

N

COMPUTE (T, 2, w,) R

ws + knp (vsp - vrp)

» However, modeling acceleration is non-trivial

» Time varying modal wavenumbers and functions (VWalker 2007)
» Circumvent by approximating acceleration

» Assume radial velocities are piece-wise constant for each pulse

» But radial velocities are linearly changing pulse to pulse

Compute normal modes (normalized) as per static
case {¥,,(z5), ¥, (2), k) U } @ W,

For each pulse, assume {v¢1,v,1,p,as, a;}
known. Compute the propagation horizontal

Extract the source spectrum
S (wr — Knp (vsp - vrp)) and coherently
!
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Source Propagation Receiver

ws("np) _ w = W + knpvpy W,

COMPUTE (1, 2, 0, ) R

ws + knp (vsp - Vrp)

g l/)(l' Z,wy) =
l_ eiknprop

\/_p Teris 2o expier( — DT) Y S(wr = knp(vsp — vrp)) Pn(Zs; 0 ) W (23 ;) e

K Ksn . :
» where ky), ¥ 7~y ® 7355~ is the mode and pulse dependent propagating
(im) (=22

wavenumber and for any arbitrary w, or wg

> Vsp = Vg1 T (p — DT,as and Urp = VUp1 + (p — DT,a,

Compute normal modes (normalized) as per static

For each pulse, assume {vgq, V1, P, as, -} known.
Compute the propagation horizontal wave number

Extract the source spectrum
S (a)r — knp (vsp — vrp)) and coherently combine
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SWO06 SIMULATION

LFM 100900 Hz T=1 s T.=1I s

density

Moving source & static receiver attenuation ¢, = i +5sh,, sediment| .~

Coherently exploit P=64
LFMs

Source initial radial vel. .9 m/s

{f,x}ML = arg max [ln L(f.x)]
| %

Source acceleration -0.006 m/s?
= arg min [10 log, @(E,x)]

Source depth 30 m Gh € .x

Receiver depth 45 m where the cost function

|y O b)?
yHCw'ybHCx'b

Source range at t = 0, r,=600 m
SNR =0 dB
Sampling interval Af=5 Hz

O, x)=1—
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MOVING SOURCE & STATIC
RECEIVER

Monte CaI’IO invel"Sion P - 64 I =ccel. assumed
[ no acpel. assumed
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SWO06 EXPERIMENT o i
» ]D238 2040 UTC

» Source:]-15,30 m,LFM 100900 Hz T=1 s T_=1 s,
» Receiver: Hydrophone 8 of VLA, 44.6 m

» Source — receiver range ~600m

» Initial radial velocity ~1.6 m/s with acceleration ~ -0.006 m/s? SNR ~ 0 dB
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SWO06 RECEIVED SPECTRUM

density Psed

/ \ D E O FS attenuation deq €3 = ¢y + Sheeq  sediment || -~

» Section of SWO06 received signal spectrum with LFM pulses P = [1, 2, 4, 64]

SHARK interpolated sound speed profile
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INVERSION RESULTS P=64 EENFcliass
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0 Extends broadband synthetic
aperture geoacoustic inversion to

cases where radial velocities change. CO N C LU S I O N S

2 Well-suited for horizontally o :
accelerated source/receiver. ISCUSsIonS...

2 Demonstrated in simulation/real Questions and answers...

data that modeling radial
acceleration is critical for correct
inversion
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