SYNTHETIC APERTURE GEOACOUSTIC INVERSION IN THE PRESENCE OF RADIAL VELOCITY AND ACCELERATION DYNAMICS

Bien Aik Tan, Peter Gerstoft, Caglar Yardim and William Hodgkiss

- Mobile single source and receiver matched field inversion method for low SNR
- Long observation time of P LFM chirps
- Requires waveguide Doppler
- Constant radial velocity constraint
 - Extension to acceleration

BACKGROUND / MOTIVATION

Generic inversion process

Mobile single source/receiver method – operationally attractive

2

MOTIVATION

- Low SNR / source power
 - Most methods works on the basis of high SNR/source power
 - Concern for disturbance of marine mammals (Gervaise 2012)
 - Development of expendable/low powered acoustic sources for AUV based survey (Massa) (source level restrictions, rapid environment assessment by AUV)
- Existing single source/receiver methods
 - Modal dispersion curve analysis (Bonnel, Gervaise)
 - Matched impulse response method (Josso, Le Gac, Jesus, Hursky, Hermand)
 - Matched field processing method (Siderius, Tan)
 - Synthetic aperture modal inverse method (Frisk, Rajan)

			Illustration from Massa's presentation at 2012 ASA Kansas meeting	
	Expendable Transducer		HLA HLA	
			Seafloor	
Synthetic aperture geoaco	ustic inversion in	the presence	of radial velocity and acceleration dynamics	11/22/2013

PREVIOUS WORK

Tan et al, "Broadband synthetic aperture geoacoustic inversion", JASA, 2013.

- Mobile single source and receiver method for low SNR
- Lost of spatial diversity and array gain (w.r.t to VLA)
- Broadband frequency coherent method (100-900 Hz)
- Long observation time (64 s) of P LFM chirps (1 s)
- But method becomes Doppler/motion intolerant., requires waveguide Doppler model
- Assume constant horizontal source/receiver radial velocities

4

Synthetic aperture geoacoustic inversion in the presence of radial velocity and acceleration dynamics

WAVEGUIDE DOPPLER

- I994 Schmidt and Kuperman
 - Spectral/Modal Solution
 - Non-reciprocity
 - Frequency domain

Each mode has a different Doppler

Example: 500 Hz harmonic source (KRAKEN)

6

Synthetic Aperture geoacoustic inversion in the presence of radial velocity and acceleration dynamics

FOR THIS OCEANS PAPER...

Extend previous method to more practical scenarios such as near CPA or when radial velocity changes.

Allow pulse dependent changes in source/receiver radial velocities

COMPUTE $\psi(\mathbf{r}, z, \omega_r)$

Source	Propagation	Receiver
$\omega_s^{(k_{np})} = \\ \omega_r - k_{np}(v_{sp} - v_{rp})$	$\omega = \omega_r + k_{np} v_{rp}$	ω_r
ω_s	$\omega = \omega_s + k_{np} v_{sp}$	$\omega_r^{(k_{np})} = \\ \omega_s + k_{np}(v_{sp} - v_{rp})$

However, modeling acceleration is non-trivial

- Time varying modal wavenumbers and functions (Walker 2007)
- Circumvent by approximating acceleration
- Assume radial velocities are piece-wise constant for each pulse
- But radial velocities are linearly changing pulse to pulse

Compute normal modes (normalized) as per static case $\{\Psi_n(z_s), \Psi_n(z), k_{rn}, u_{rn}\} @ \omega_r$

For each pulse, assume $\{v_{s1}, v_{r1}, p, a_s, a_r\}$ known. Compute the propagation horizontal wave number k_{np}

Extract the source spectrum $S(\omega_r - k_{np}(v_{sp} - v_{rp}))$ and coherently combine all pulses to give $\psi(\mathbf{r}, z, \omega_r)$

COMPUTE $\psi(\mathbf{r_0}, z, \omega_r)$

Source	Propagation	Receiver
$\omega_s^{(k_{np})} = \\ \omega_r - k_{np}(v_{sp} - v_{rp})$	$\omega = \omega_r + k_{np} v_{rp}$	ω_r
ω_s	$\omega = \omega_s + k_{np} v_{sp}$	$\omega_r^{(k_{np})} = \\ \omega_s + k_{np}(v_{sp} - v_{rp})$

 $\blacktriangleright \psi(\mathbf{r}, z, \omega_r) \approx$ $\frac{ie^{-i\frac{\pi}{4}}}{\sqrt{8\pi\rho(z_s)}}\sum_p \exp(i\omega_r(p-1)T_r)\sum_n S(\omega_r-k_{np}(v_{sp}-v_{rp}))\Psi_n(z_s;\omega_r)\Psi_n(z;\omega_r)\frac{e^{ik_{np}r_{op}}}{\sqrt{k_{np}r_{op}}}$ ► where $k_{np} \approx \frac{k_{rn}}{\left(1 - \frac{v_{rp}}{u_{rm}}\right)} \approx \frac{k_{sn}}{\left(1 - \frac{v_{sp}}{u_{rm}}\right)}$ is the mode and pulse dependent propagating wavenumber and for any arbitrary ω_r or ω_s $v_{sp} = v_{s1} + (p-1)T_r a_s$ and $v_{rp} = v_{r1} + (p-1)T_r a_r$ Compute normal modes (normalized) as per static case { $\Psi_n(z_s), \Psi_n(z), k_{rn}, u_{rn}$ } @ ω_r For each pulse, assume $\{v_{s1}, v_{r1}, p, a_s, a_r\}$ known. Compute the propagation horizontal wave number *k*_{np} Extract the source spectrum $S(\omega_r - k_{np}(v_{sp} - v_{rp}))$ and coherently combine all pulses to give $\psi(\mathbf{r}, z, \omega_r)$

SW06 SIMULATION

LFM 100–900 Hz $T=1 \text{ s } T_r = 1 \text{ s}$

- Moving source & static receiver
 - Coherently exploit P=64 LFMs
- Source initial radial vel. 1.9 m/s
 Source acceleration -0.006 m/s²
- Source depth 30 m
- Receiver depth 45 m
- Source range at t = 0, r₀=600 m
 SNR = 0 dB
- Sampling interval $\Delta f=5 Hz$

$$\{\xi, \mathbf{x}\}_{ML} = \underset{\xi, \mathbf{x}}{\operatorname{arg\,max}} \left[\ln L(\xi, \mathbf{x}) \right]$$
$$= \underset{\xi, \mathbf{x}}{\operatorname{arg\,min}} \left[10 \ \log_{10} \Phi(\xi, \mathbf{x}) \right]$$

where the cost function

$$\Phi(\xi, \mathbf{x}) = 1 - \frac{|\mathbf{y}^{\mathrm{H}} \tilde{\mathbf{C}}_{\mathbf{w}}^{-1} \mathbf{b}|^{2}}{\mathbf{y}^{\mathrm{H}} \tilde{\mathbf{C}}_{\mathbf{w}}^{-1} \mathbf{y} \mathbf{b}^{\mathrm{H}} \tilde{\mathbf{C}}_{\mathbf{w}}^{-1} \mathbf{b}}$$

GA

MOVING SOURCE & STATIC RECEIVER

Monte Carlo inversion P = 64

- 200 noise realizations
- \Box SNR = 0 dB
- Executed twice
 - Forward model include acceleration (Blue)
 - Forward model assumes no acceleration (Green)

- 11

SW06 EXPERIMENT ► JD238 2040 UTC

- Source: J-15, 30 m, LFM 100–900 Hz T=1 s T_r =1 s,
- Receiver: Hydrophone 8 of VLA, 44.6 m
 - Source receiver range ~600m

Initial radial velocity ~1.6 m/s with acceleration ~ -0.006 m/s² SNR ~ 0 dB

SW06 RECEIVED SPECTRUM AND EOFS

13

Section of SW06 received signal spectrum with LFM pulses P = [1, 2, 4, 64]

SHARK interpolated sound speed profile

INVERSION RESULTS P=64

- Sediment velocity profile estimate adversely affected
- Relatively lower sensitivities = higher estimation uncertainties

Synthetic aperture geoacoustic inversion in the presence of radial velocity and acceleration dynamics

- Extends broadband synthetic aperture geoacoustic inversion to cases where radial velocities change.
- Well-suited for horizontally accelerated source/receiver.
- Demonstrated in simulation/real data that modeling radial acceleration is critical for correct inversion

CONCLUSIONS

Discussions...

Questions and answers...

ONR Grant No. N00014-11-0320. DSO National Laboratories of Singapore

Synthetic aperture geoacoustic inversion in the presence of radial velocity and acceleration dynamics