Characterization of Multipath

 Acoustic Channels in Very Shallow Waters for CommunicationsPresented by: Bien Aik Tan Swee Sen Quek Nan Zou
DSO National Laboratories

CONTENTS

- Introduction
- Objectives
- Hardware Overview
- Channel Measurements

Multipath Profiles
Delay-Doppler Measurements
Signal Envelope Fading Results
Ambient Noise Characteristics

- A note on Link Budgeting
- Conclusion

INTRODUCTION

Typical COTS modems performed at 200300bps @ BER ~ 10^{-7} to 10^{-6} for distances up to 2400 m (Actual shallow water performance evaluated by DSO)
July 2004 - assembled a team of acoustics and communication engineers

OBJECTIVES

- Study of local shallow waters through channel measurements and analysis
- Developed a versatile and reconfigurable underwater acoustic communications test bed
- Investigate and evaluate communications processing techniques
OFDM, DPSK
OTurbo Product Codes

HARDWARE OVERVIEW

SEA TRIAL SETUP

HARDWARE OVERVIEW

Projector

Sea trial analysis results to aid waveform and modem design / simulation / implementation

Front-end Receiver

HARDWARE OVERVIEW

CHANNEL MEASUREMENTS

4000metres

MULTIPATH DELAY

Range (m)	$\underset{\text { Excessive }}{\mathbf{T}_{\mathbf{m}}(\mathrm{ms})}$ Time Delay	$\sigma_{\tau(\mathbf{m s})}$ RMS Time Delay	Approx Coherence Bandwidth (Hz)
80	5.5	1.2	167
130	7	1.9	105
600	3	0.85	235
1030	3.5	0.85	235
1510	2.5	0.38	526
1740	1.3	0.13	1538
2740	0.5	0.10	2000
4000	0.5	0.10	2000

CHANNEL MEASUREMENTS

CHANNEL MEASUREMENTS

CHANNEL MEASUREMENTS

SIGNAL
FADING
ENVELOPE
Range (m) MSE Fitted Rayleigh Sigma MSE Fitted Ricean K-Factor (dB) Approx Fit $\mathbf{8 0}$ $\mathbf{0 . 8 0 7}$ $\mathbf{- 1 . 4 8 7}$ Rayleigh $\mathbf{1 3 0}$ $\mathbf{0 . 8 0 3}$ $\mathbf{- 4 . 1 6 7}$ Rayleigh $\mathbf{6 0 0}$ $\mathbf{0 . 8 1 5}$ $\mathbf{2 . 7 5 7}$ Ricean $\mathbf{1 0 3 0}$ $\mathbf{0 . 8 0 2}$ $\mathbf{- 6 . 7 8 7}$ Rayleigh $\mathbf{1 5 1 0}$ $\mathbf{0 . 8 0 7}$ $\mathbf{2 . 1 9 2}$ Ricean $\mathbf{1 7 4 0}$ $\mathbf{0 . 8 0 2}$ $\mathbf{6 . 2 5 3}$ Ricean $\mathbf{2 7 4 0}$ $\mathbf{0 . 7 9 0}$ $\mathbf{4 . 5 4 5}$ Ricean $\mathbf{4 0 0 0}$ $\mathbf{0 . 8 8 5}$ $\mathbf{- 3 2 . 5 7 1}$ Rayleigh

CHANNEL MEASUREMENTS

AMBIENT NOISE

Noise Level (up to 100 kHz): 156 dB re $1 \mu \mathrm{~Pa} 1 \mathrm{~m}$ Spectrum Noise Level(up to 100 kHz): 106 dB re $1 \mu \mathrm{~Pa} 1 \mathrm{~m}$

Noise Level (In Band 10-26kHz): 118dB re $1 \mu \mathrm{~Pa} 1 \mathrm{~m}$ Spectrum Noise Level (in Band 10-26kHz): 76dB re 1 $\mu \mathrm{Pa} 1 \mathrm{~m}$

LINK BUDGET

Estimated Input Signal to Noise Ratio for a Max 190dB Source Level in approx 156dB Shallow Water Ambient Noise

Oceans Asia Pacific 2006, Singapore

Conclusion

- Developed a versatile and reconfigurable underwater acoustic communication test bed
- Accumulated at-sea data for communication channel characterizations and communication signals
- Presented delay, Doppler, fading and ambient noise analysis of the channel.
- Observations:
odelay and Doppler effects are less at longer distances
- LOS component is more likely at the longer distances
- Ambient noise is non-Gaussian with a heavy tailed distribution and a highly impulsive behavior
- Communication system designers should take note of the channel characteristics at longer distances ($>1500 \mathrm{~m}$ up to 4000 m) to transmit at higher data rates. On the other hand, it would be a serious challenge to design a modem for shorter distances that can achieve the same level of performance that was possible at longer distances
- Change of mindset from "increasing ranges, decreasing bitrate" to "increasing ranges, increasing bitrate". (range $<3 \mathrm{~km}$)

THAT'S ALL FOLKS!

Questions and Answers?

- Have a pleasant day ahead!

