Characterization of Multipath **Acoustic Channels in Very Shallow Waters for** Communications Presented by: Bien Aik Tan Swee Sen Quek

Nan Zou

DSO National Laboratories

CONTENTS

- Introduction
- Objectives
- Hardware Overview
- Channel Measurements
 - OMultipath Profiles
 - O Delay-Doppler Measurements
 - O Signal Envelope Fading Results
 - O Ambient Noise Characteristics
- A note on Link Budgeting

Conclusion

INTRODUCTION

- Typical COTS modems performed at 200-300bps @ BER ~ 10⁻⁷ to 10⁻⁶ for distances up to 2400m (Actual shallow water performance evaluated by DSO)
- July 2004 assembled a team of acoustics and communication engineers

OBJECTIVES

- Study of local shallow waters through channel measurements and analysis
- Developed a versatile and reconfigurable underwater acoustic communications test bed
- Investigate and evaluate communications processing techniques
 OFDM, DPSK
 Turbo Product Codes

HARDWARE OVERVIEW

SEA TRIAL SETUP

HARDWARE OVERVIEW

HARDWARE OVERVIEW

PC with PCI NI DAQ, PCI Nallatech FPGA Board (Transmitter/Receiver)

National Instruments Multi-function DAQ Card

Nallatech FPGA Board

Communication Algorithms Test Bed

Oceans Asia Pacific 2006, Singapore

80metres

Range (m)	T _m (ms) Excessive Time Delay	$\begin{bmatrix} \sigma_{t(ms)} \\ RMS \\ Time \\ Delay \end{bmatrix}$	Approx Coherence Bandwidtl (Hz)
80	5.5	1.2	167
130	7	1.9	105
600	3	0.85	235
1030	3.5	0.85	235
1510	2.5	0.38	526
1740	1.3	0.13	1538
2740	0.5	0.10	2000
4000	0.5	0.10	2000

4000metres

DSO NATIONAL LABORATORIES

2

3

Time Delay (Seconds)

-16

-18

-20

Π

x 10⁻³

5

Range (80m) Ship A Ship B Receiver Depth 5m Bottom Depth (16m) **Receiver Array** Depth (10m) Projector

Beamformed Multipath Intensity Profiles 18.5kHz 84m 22 Nov 05

Oceans Asia Pacific 2006, Singapore

DSO NATIONAL LABORATORIES

Doppler(Hz)

/ SHIFT					
Range (m)	Doppler Spread 2f _d (Hz)	Doppler Shift (Hz)	Coherence Time (sec)		
80	9	-1,+2	1/9		
130	8	-1	1/8		
600	4	-2	1⁄4		
1030	3	0	1/3		
1510	2	-1	1/2		
1740	2	+1	1/2		
2740	3	+2	1/3		
4000*	4	0,+3	1⁄4		

DOPPLER SPREAD

DSO NATIONAL LABORATORIES

Signal Envelope PDF for 80m range

MSE fitted Ricean K-Factor=-1.4872 sigma=0.6

0

5

10

-5

Signal level (dB about the median)

-20

-15

-10

SIGNAL ENVELOPE FADING						
Range (m)	MSE Fitted Rayleigh Sigma	MSE Fitted Ricean K-Factor (dB)	Approx Fit			
80	0.807	-1.487	Rayleigh			
130	0.803	-4.167	Rayleigh			
600	0.815	2.757	Ricean			
1030	0.802	-6.787	Rayleigh			
1510	0.807	2.192	Ricean			
1740	0.802	6.253	Ricean			
2740	0.790	4.545	Ricean			
4000*	0.885	-32.571	Rayleigh			

Oceans Asia Pacific 2006, Singapore

DSO

AMBIENT NOISE

Noise Level (up to 100kHz):156dB re 1µPa 1m Spectrum Noise Level(up to 100kHz): 106dB re 1µPa 1m

Noise Level (In Band 10-26kHz): 118dB re 1µPa 1m Spectrum Noise Level (in Band 10-26kHz): 76dB re 1µPa 1m

LINK BUDGET

DSO NATIONAL LABORATORIES

Conclusion

- Developed a versatile and reconfigurable underwater acoustic communication test bed
- Accumulated at-sea data for communication channel characterizations and communication signals
- Presented delay, Doppler, fading and ambient noise analysis of the channel.
- Observations:
 - delay and Doppler effects are less at longer distances
 - CLOS component is more likely at the longer distances
 - Ambient noise is non-Gaussian with a heavy tailed distribution and a highly impulsive behavior
- Communication system designers should take note of the channel characteristics at longer distances (>1500m up to 4000m) to transmit at higher data rates. On the other hand, it would be a serious challenge to design a modem for shorter distances that can achieve the same level of performance that was possible at longer distances
- Change of mindset from "increasing ranges, decreasing bitrate" to "increasing ranges, increasing bitrate". (range<3km)

THAT'S ALL FOLKS!

- Questions and Answers?
- Have a pleasant day ahead!

