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In order to carry out geoacoustic inversion in low signal-to-noise ratio (SNR) conditions, extended

duration observations coupled with source and/or receiver motion may be necessary. As a result,

change in the underlying model parameters due to time or space is anticipated. In this paper, an inver-

sion method is proposed for cases when the model parameters change abruptly or slowly. A model

parameter change-point detection method is developed to detect the change in the model parameters

using the importance samples and corresponding weights that are already available from the recursive

Bayesian inversion. If the model parameters change abruptly, a change-point will be detected and the

inversion will restart with the pulse measurement after the change-point. If the model parameters

change gradually, the inversion (based on constant model parameters) may proceed until the accumu-

lated model parameter mismatch is significant and triggers the detection of a change-point. These

change-point detections form the heuristics for controlling the coherent integration time in recursive

Bayesian inversion. The method is demonstrated in simulation with parameters corresponding to the

low SNR, 100–900 Hz linear frequency modulation pulses observed in the Shallow Water 2006

experiment [Tan, Gerstoft, Yardim, and Hodgkiss, J. Acoust. Soc. Am. 136, 1187–1198 (2014)].
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4916887]
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I. INTRODUCTION

In geoacoustic inversion, the underlying model parame-

ters typically are assumed constant over the observation

interval. Specifically, in the case of low signal-to-noise ratio

(SNR), long-time coherent integration and source and/or re-

ceiver motion may lead to change in the environment over

time or space. Therefore, a data-driven approach is needed

for determining the appropriate coherent integration interval

over which the underlying model parameters can be consid-

ered constant. One solution is to use change-point detection

to control the coherent observation interval. Change-point

detection can be used for a number of cases in ocean acous-

tics, for example:

(1) when tracking a ship with constant radial speed and

detecting the point where it changes speed;

(2) when accumulating snapshots for beamforming weak

targets, and the direction of arrival changes;

(3) when the underlying environmental parameters changes

in geoacoustic inversion (the focus in this paper).

At the change-point, we need to stop and restart the data

accumulation process.

A change-point is defined as the time when the underly-

ing model parameters of sequential data have changed.1–6

Here, abrupt and gradual change in the underlying model pa-

rameters is considered. When a change-point is detected, the

current inversion concludes and a new inversion is started

using post-change-point measurements. Methods for detect-

ing abrupt model parameter change are well established

using the Bayesian approach and consist of offline/retrospec-

tive1,2 and online change-point methods.3–6 Offline/retro-

spective change-point methods determine if a change-point

has occurred at time index, t < l, for l measurements,

whereas online change-point methods only determine if a

change-point has occurred at the lth time index.

Online change-point detection methods calculate the

posterior probability density of the change-point at each time

step incrementally as data arrives.3–6 Most of these online

change-point detection methods3,5,6 adopt the particle filter-

ing approach. The particles represent possible change-points

and they are not the same as the particles in sequential geoa-

coustic inversions.7 A majority of the change-point detection

approaches either treat the auxiliary model parameters (pa-

rameters not under test) as known or as nuisance parameters

that eventually will be integrated out analytically.2–5 To inte-

grate out nuisance parameters analytically, most approaches

usually assume Gaussian distributed linear models3–6 and

change-point prior densities. The advantage is that the poste-

rior density is Gaussian distribution, which can easily be inte-

grated analytically. However, Gaussian distributed linear

models are not appropriate in most geoacoustic inversion

problems due to the non-linear relationship between model

parameters and measurements.

Due to the low SNR nature of the observations and the

non-linear model of the geoacoustic inversion application,

offline/retrospective methods1,2 are selected here for detect-

ing change-points (see Sec. II C). The offline/retrospective

methods accumulate observations before making a decision

retrospectively that a change-point has occurred. Given a set

of observations, offline/retrospective methods calculate the

probabilities or likelihoods of all possible change-points.

This is repeated when a new observation becomes available.
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Coincidentally, detecting a change-point retrospectively can

be done efficiently using the importance samples and corre-

sponding weights that already are available naturally as a

consequence of implementing the Bayesian inversion

recursively.8

Methods for detecting gradual model parameter change

are less developed and often require strong parametric

assumption. For example, time-varying source-receiver sep-

aration can be reparameterized into initial source-receiver

separation, initial source and receiver velocities and constant

source and receiver accelerations.8,9 However, reparamete-

rizing all of the model parameters in the inversion will

adversely increase the dimension of the parameter search

space. A typical treatment of gradual model parameters

change is applying sequential geoacoustic inversion or parti-

cle filtering to track the parameter posterior density between

relatively short-interval measurements.7,10,11 In low SNR

conditions, the shorter-interval measurements will give

undesirably lower likelihoods and higher parameter uncer-

tainties. Alternatively, the change-point method for abrupt

change can be used for the gradual change case. If the model

parameters change gradually, the inversion (based on con-

stant model parameters) may proceed to estimate an

“average” value of the parameters until the accumulated

model parameter mismatch error is significant and triggers

the detection of a change-point. As shown later in Sec. III,

change-point detection will help maximize the measurement

interval to reduce parameter estimation uncertainty without

significantly introducing bias in the estimation that is due to

model mismatch.

These change-point detections form the heuristics for

controlling the coherent integration time in recursive

Bayesian inversion (see Sec. II). For simplicity in develop-

ing the change-point detection approach, a range-

independent source-receiver environment is assumed with

motion of both in the perpendicular dimension as shown in

Fig. 1. In this paper, detecting change in the underlying

model parameters is the main focus. Abrupt or gradual

change of the environment takes place in the direction of

source-receiver motion. Change-point detection will work

for a real three-dimensional (3D) environment. This is

because the environment used could be modeled as a two-

dimensional (2D) range-dependent or 3D model where the

actual direction of change is estimated. In Sec. III, the

method is demonstrated in simulation with parameters corre-

sponding to the low SNR, 100–900 Hz linear frequency

modulation (LFM) pulses observed in the Shallow Water

2006 experiment. The change-point approach also could be

applied to local matched-field geoacoustic inversions using

towed arrays,12–16 but this scenario is not considered here.

II. THEORY

Change-point models commonly are used to model dis-

continuity of model parameters or data over the length of the

data. Given a sequence of observations, these models intro-

duce a number of change-points that split the data into a set

of disjoint segments. It, then, is assumed that the data arise

from a single model within each segment, but with different

models across the segments. For the recursive Bayesian

inversion approach, the probability distributions (importance

samples and weights) that are generated for model parameter

estimates also can be used for inferences about the possible

change-points.

Sections II A and II B first described the data model and

recursive Bayesian inversion based on identical underlying

model parameters.8 Then, a single-change-point model is

introduced where retrospective change-point detection is

applied using Bayesian inference from the importance sam-

ples and weights from Sec. II B (see Sec. II C).

A. Data model and likelihood function based on
identical underlying model parameters

The source emits a sequence of identical pulses at a

known repetition interval. The broadband data model for

frequency-coherent matched field based geoacoustic inver-

sion can be expressed as L measurement vectors,8

yl ¼ blðmÞ þ gl; (1)

where yl ¼ ½ylðxr1Þ � � � ylðxrJÞ�T is the K-point fast Fourier

transform (FFT) of the observed time series capturing the lth
pulse for J discrete frequencies. Note, the lth pulse Fourier

transforms are synchronized to the first pulse transmission

time ðt ¼ 0Þ. m is the subset of forward model parameters

that are being estimated.

blðmÞ ¼ ½wlðxr1;mÞ � � �wlðxrJ;mÞ�T is the correspond-

ing modeled or replica field generated using model vector,

m. It is assumed the model parameters, m, do not change

between measurements and, thus, the joint likelihood func-

tion will sharpen as L increases.

The distribution of the error vector, gl ¼ ½glðxr1Þ
� � � glðxrJÞ�T defines the likelihood function. It is assumed

that gl, for l ¼ 1;…; L, are independent and identically dis-

tributed (i.i.d.) across L measurements. The frequency domain

error vector, gl, is defined as complex Gaussian with mean,

E½gl� ¼ 0, for xr 6¼ 0 and autocovariance, Cg.17

The joint likelihood function of the L measurements can

be expressed as (based on i.i.d. measurements)

FIG. 1. Top view of the source-receiver trajectory schematics for change-

point detection and recursive Bayesian inversion simulation. The source and

receiver are assumed to move in the same direction and speed such that their

relative velocity is zero.
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L mð Þ ¼ p y1:Ljm
� �

¼
YL

l¼1

p yljm
� �

¼
YL

l¼1

1

pJjCgj

� exp � yl � bl mð Þ
� �H

C�1
g yl � bl mð Þ
� �n o

; (2)

where supervector y1:L ¼ ½yT
1 ;…; yT

L �
T
.

B. Recursive Bayesian estimation

Recursive Bayesian estimation is based on recursive

Bayesian online learning18 and on the importance sampling

concept used in particle filter theory.19–22 With initial prior

knowledge of the parameters, pðmÞ, constant underlying

model parameters, m, and Bayes’ rule, the joint posterior

probability density function (posterior probability density,

PPD) of the model parameters for l pulse measurements is18

p mjy1:l

� �
¼

p y1:ljm
� �

p mð Þ
p y1:lð Þ

(3)

¼
pðyljmÞpðmjy1:ðl�1ÞÞð

p yljm
� �

p mjy1: l�1ð Þ
� �

dm

: (4)

Equation (4) shows that the joint posterior density condi-

tioned on l measurements can be updated recursively from

the lth likelihood and the joint posterior density of the l� 1

measurements. Thus Bayesian updating of pðmjy1:lÞ can be

done all at once [Eq. (3)] or recursively over time [Eq. (4)].

In addition, assuming constant geoacoustic model parame-

ters for all l, no model mismatch error, and no bias error

between the replica and measured fields, the variance of the

maximum a posteriori (MAP) parameter estimate,

var½m̂ðLÞMAP� < var½m̂ðL�1Þ
MAP � < � � � < var½m̂ð1ÞMAP�; (5)

where

m̂
ðLÞ
MAP ¼ arg max

m

pðmjy1:LÞ ¼ arg max
m

pðmÞ
YL

l¼1

pðyljmÞ:

(6)

Ideally, the posterior density converges to a Dirac delta func-

tion centered at the true parameter value as L approaches in-

finity.18 Practically, it is difficult to attain the true parameter

value as there will be some model mismatch error or bias in

the estimator. In addition, only a limited number of measure-

ments can be processed before time-dependent variations in

the model parameters and model mismatch errors become

significant.

For this paper, the posterior density, pðmjy1:lÞ, is uti-

lized to infer the possible change-points (see Sec. II C). The

posterior density, pðmjy1:lÞ, can be represented by impor-

tance samples, fmq; q ¼ 1;…;Qg, that are drawn from the

Gaussian mixture, xðm; lÞ, in an adaptive importance sam-

pling procedure described in detail in Ref. 8. From these im-

portance samples, mq, the corresponding uncorrected and

unnormalized weights, ŵq
l , were computed recursively using

ŵq
l ¼ pðy1:ljmqÞpðmqÞ ¼ pðyljmqÞŵq

l�1: (7)

Because the importance samples are drawn from the

Gaussian mixture, xðm; lÞ, instead of the posterior density,

pðmjy1:lÞ, the weights have to be corrected and normalized

to represent the posterior density, pðmjy1:lÞ, correctly. The

correction is

~wq
l ¼ ŵq

l =xðmq; lÞ: (8)

Let normalized weights be wq
l ¼ ~wq

l =
Pj¼Q

j¼1 ~wj
l. The PPD can

be approximated by19,20

pðmjy1:lÞ �
XQ

q¼1

dðm�mqÞwq
l ; (9)

and it approaches the true PPD as Q!1.

C. Change-point detection

We now consider the following class of single change-

point models,1 where the change-point may consist of change

in one or several parameters. Let the sequence of non-

overlapping measurement vectors be y1:L ¼ ½yT
1 ;…; yT

L �
T
,

where the data observation model and likelihood function are

summarized in Sec. II A. Each measurement vector is i.i.d.

with likelihood pðyjmÞ. This sequence of measurements is

assumed to have a change-point at r ð1 � r � lÞ, where

yl � pðyljm1Þ, 8 l ¼ 1;…; r and yl � pðyljm2Þ, 8l ¼ r
þ1;…; L

yl ¼
blðm1Þ þ gl; if l ¼ 1;…; r:

blðm2Þ þ gl; if l ¼ r þ 1;…; L:

�
(10)

m and gl are the model parameters and noise, respectively,

and blðmÞ is the transformation of the model parameters into

the signal observed in the data, yl.

The joint likelihood of the y1:L conditioned on m1 and

m2 is1

pðy1:Ljr; m1;m2Þ ¼ pðy1:rjm1Þpðyrþ1:Ljm2Þ

¼
Yr

l¼1

pðyljm1Þ
YL

l¼rþ1

pðyljm2Þ: (11)

The change-point is assumed to have prior density, pðrÞ,
such that

PL
r¼1 pðrÞ ¼ 1. Using Bayes rule, the PPD of the

possible change-points, conditioned on all the measure-

ments, is1

pðrjy1:LÞ / pðy1:LjrÞpðrÞ; (12)

where

pðy1:LjrÞ ¼
ð

pðy1:Ljr;m1;m2Þpðm1;m2Þdm1dm2

¼
ð

pðy1:rjr;m1Þpðm1Þdm1

�
ð

pðyrþ1:Ljr;m2Þpðm2Þdm2: (13)
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It also is assumed that the model parameters before and after

the change-point are independent.3,4 Equations (12) and (13)

can be evaluated via Monte Carlo integration using the im-

portance samples from the recursive Bayesian inversion.

Here, we further assume a uniform prior for the change-

point. The maximum likelihood estimate of the change-point

is

r̂ ¼ arg max
r

pðy1:rjm̂1;rÞpðyrþ1:Ljm̂2;rÞ; (14)

where

m̂1;r ¼ arg max
m

pðmjy1:rÞ; (15)

and

m̂2;r ¼ arg max
m

pðmjyrþ1:LÞ (16)

are the MAP estimates of the model parameters, m1 and m2,

conditioned on the measurements prior to and after the

hypothesize change-point, r, respectively. Equation (14)

yields a significant peak only if a change-point is present in

the measurements. If there is no underlying change-point in

the measurements collected, then Eq. (14) will be equally

likely for all hypothesized r. To determine the presence of a

change-point, a normalized log-likelihood,

L rð Þ ¼ 10 log10

p y1:rjm̂1;r

� �
p yrþ1:Ljm̂2;r

� �
max

r
p y1:rjm̂1;r

� �
p yrþ1:Ljm̂2;r

� � ; (17)

is used and if max maxLðrÞ �minLðrÞ 	 b, then a change-

point is detected. b is a threshold determined by trial and

error. Here, a change-point is detected if the maximum like-

lihood is ten times higher than the minimum likelihood,

which means b is set to 10 dB.

In Sec. II B, the importance samples and their associated

uncorrected and unnormalized weights, fmq; ŵq
l g, where

ŵq
l ¼ pðy1:lj ~m

qÞpð ~mqÞ were computed recursively using

ŵq
l ¼ pðylj ~m

qÞŵq
l�1. Note that mq are drawn from a

Gaussian mixture. Using these weights, the posterior density

is obtained from

p mjy1:r

� �
�
XQ

q¼1

d m�mqð Þ ŵq
r

x mq; Lð Þ ; (18)

and

p mjyrþ1:L

� �
�
XQ

q¼1

d m�mqð Þ ŵq
Lp mqð Þ

ŵq
r x mq; Lð Þ ; (19)

where the weights, ŵq
l , correspond to the Q importance

samples.

The likelihoods also are inferred using the weights in

the recursive Bayesian inversion from

p y1:rjr;mq
� �

¼ ŵq
r

p mqð Þ (20)

and

p yrþ1:Ljr;mq
� �

¼ ŵq
L

ŵq
r

: (21)

Therefore, change-point detection, computationally, is

convenient when used with the recursive Bayesian inversion.

By re-using the weights from the recursive Bayesian inver-

sion, there is no need to recompute likelihoods and posterior

densities explicitly.

III. SIMULATION

This section will demonstrate change-point detection in

abrupt and gradual model parameter change. Upon detection,

the current recursive Bayesian inversion will conclude and a

new inversion will begin. The ocean model is illustrated in

Fig. 2 and model parameters are tabulated in Table I. Based

on the theory presented in Sec. II, this simulation models a

source and receiver moving in the same direction as the

horizontal x-axis and at the same speed of 2 m/s for L
¼ ½1;…; 128� pulses (see Fig. 3). The source and receiver

are assumed to be separated in distance by r0 in the y direc-

tion as depicted in Fig. 3. Hence, the relative source-receiver

velocity is equal to zero.

FIG. 2. Horizontally stratified ocean with a horizontally moving source and

receiver. The source is moving at velocity, vs, and bearing, us, while the re-

ceiver is moving at velocity, vr , and bearing, ur . The range origin is the

source position at time zero when the source begins transmitting.

TABLE I. Baseline model parameters.

Simulation model parameters Value

Source-receiver separation at t ¼ 0, r0 ðmÞ 600

Source depth, zs ðmÞ 30

Receiver depth, zr ðmÞ 45

Source radial velocity, vs ðm=sÞ 0

Receiver radial velocity, vr ðm=sÞ 0

Water depth, zw ðmÞ 78

Sediment depth, hsed ðmÞ 22

Sediment density, qsed ðg=cm3Þ 1.8

Sediment attenuation, ased ðdB=kÞ 0.2

Sediment top velocity, c1 ðm=sÞ 1640

Sediment velocity slope, s ð1=sÞ 0

Bottom density, qbot ðg=cm3Þ 2.2

Bottom attenuation, abot ðdB=kÞ 0.2

Bottom velocity, cb ðm=sÞ 1740
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The environment is assumed range independent between

the source and receiver while range dependent along the

source or receiver track. The range-independent geoacoustic

parameters were based on previous SW06 inversion

results.8,9,23–26 The source emits 100–900 Hz LFM pulses

with 1 s pulse width and 5 s pulse repetition interval. Hence,

for l ¼ 128, the source and receiver would have traversed

5� 128� 2 ¼ 1280 m. The frequency sampling is 5 Hz

starting from 100 Hz to 700 Hz. KRAKEN is used to com-

pute the modes and wavenumbers.27

The suggested change-point detection scheme is appli-

cable to change in one or several parameters. In Fig. 4, the

objective is to simulate and detect an abrupt change in the

sediment thickness along the track in recursive Bayesian

inversion. The true sediment thickness, hsed, is fixed at 22 m

for l ¼ 1 to l ¼ 64 and then fixed at 17 m for l¼ 65 to

l¼ 128 to simulate an abrupt change in sediment thickness,

hsed. The sediment parameters (hsed, c1, s, and ased) are esti-

mated using the recursive Bayesian estimation procedure,

while the rest of the model parameters are assumed known.

In addition, the weights from the inversion are being used

for change-point detection detailed in Sec. II. In Fig. 4, only

FIG. 3. x and y are the horizontal axes where the origin is the source position

at time zero when the source begins transmitting. Source and receiver are

moving in the same x direction and at the same speed. The source-receiver

separation is constant and the geoacoustic properties are assumed range-

independent in the y direction. Shown above are the source and receiver

positions just prior and after the abrupt change in sediment thickness. (a)

Top view. (b) Side view.

FIG. 4. (Color online) Evolution of 1-D marginal PPD with SNR fixed at 0 dB, and number of LFM pulses L ¼ 1�128 with change-point detected at r ¼ 64.

Only the 95% highest posterior density (HPD) portion (non-white) PPD is plotted. When a change-point is detected, the inversion restarts and the post-change-

point PPD and MAP estimates are based on L� r pulses measurement, where r is the most recent change-point.
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the 95% highest posterior density (HPD) regions28,29 of the

one-dimensional (1D) marginal PPD and MAP parameter

estimates for each model parameter are reconstructed based

on L� r pulse measurements, where r is the most recent

change-point. The change-point is detected correctly at

r ¼ 64 and the current inversion concludes based on l ¼ 1 :
r pulse measurements. A new inversion is started using post-

change-point rþ 1th pulse measurement onward and, hence,

the sudden increase in uncertainties at L ¼ 64.

Not shown in Fig. 4 is the number of post-change-point

measurements needed for a change-point to be detected ret-

rospectively. In Fig. 5, the time-evolving change-point log-

likelihood, LðrÞ, is plotted for L ¼ 1�71. It is noted the

change-point log-likelihood is equally likely when a change-

point is absent ðL < 64Þ. However, when a change-point is

present, a peak at r ¼ 64 emerges as more post-change-point

measurements are collected. Finally, a change-point is

detected at r ¼ 64 when L ¼ 71 (threshold b ¼ 10 dB). At

this stage, only the pre-change-point importance samples are

retained, while the post-change-point importance samples

are discarded. It is expected that a multiple parameter

change-point will have a relatively larger mismatch error

than a single parameter change-point. As such, less post-

change-point measurements are required for triggering the

change-point detection.

FIG. 5. (Color online) Evolution of change-point likelihood, L, with SNR

fixed at 0 dB, and number of LFM pulses L ¼ 1�71 with change-point

detected (b ¼ 10 dB) at r ¼ 64 and L ¼ 71.

FIG. 6. (Color online) Evolution of 1-D marginal PPD with SNR fixed at 0 dB, and number of LFM pulses L ¼ 1�128 without change-point detection. The

inversion (based on constant model parameters) is allowed to proceed despite an abrupt change at L ¼ 64 in the sediment thickness. Only the 95% HPD por-

tion (non-white) PPD is plotted.
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The simulation is repeated with no change-point detec-

tion. Hence, the inversion (based on constant model parame-

ters) is allowed to proceed despite an abrupt change in the

sediment thickness at L ¼ 64 (see Fig. 6). Due to the model

mismatch error, the inversion results for L > 64 are biased

(see hsed and ased).

Next, a gradual change (from 22 m to 17 m) in the sedi-

ment thickness is simulated (see Figs. 7 and 8). When the

accumulated model mismatched error is significant, a change-

point detection is triggered. Here, two change-points have

been triggered at L ¼ 41 and L ¼ 71. Despite the model mis-

match in fitting a constant parameter model to a gradual

change parameter model, there is no significant bias in the

MAP estimates. The MAP estimates for the sediment thick-

ness converge to an “average” value between the minimum

and maximum values for each segment. Here, the gradually

changing parameter model is segmented via the change-point

detection method into three models, each with a different set

of constant parameters.

Figure 9 shows the time-evolving change-point log-

likelihood, LðrÞ, for L ¼ 1�63. There are two differences

when comparing Figs. 6 and 9. First, the change-point likeli-

hood is less peaky across r in the gradual change case. This

FIG. 7. x and y are the horizontal axes where the origin is the source position

at time zero when the source begins transmitting. Source and receiver are

moving in the same x direction and at the same speed. The source-receiver

separation is constant and the geoacoustic properties are assumed range in-

dependent in the y direction. Shown above are the source and receiver posi-

tions in the midst of gradual change in sediment thickness.

FIG. 8. (Color online) Evolution of 1-D marginal PPD with SNR fixed at 0 dB, and number of LFM pulses L ¼ 1�128 with change-point detection. True sedi-

ment thickness changes gradually from 22 m to 17 m. Only the 95% HPD portion (non-white) PPD is plotted.
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is expected as the method is designed for abrupt/non-gradual

parameter change. Second, the number of post-change-point

measurements is comparable to the number of pre-change-

point measurements. This, also, is expected. Given a set of

measurements derived from a model with a gradually chang-

ing parameter, bisecting the measurements is probably the

best way to approximate the gradual parameter change with

two constant models, m1, m2.

IV. CONCLUSIONS

A key assumption for recursive Bayesian matched field

geoacoustic inversions is constant underlying model param-

eters. When there is long-time coherent integration and

source-receiver motion, change in the underlying model pa-

rameters due to time or space is anticipated. Modeling the

change parametrically would be desirable, but also

adversely increases the dimension of the inversion search

space. Instead, a model parameter change-point detection

method that detects abrupt or gradual change in model pa-

rameters can be utilized. Combining change-point detection

and recursive Bayesian inversion has enabled a data-driven

verification of the constant model parameter assumption.

When a change-point is detected, the current inversion con-

cludes and a new inversion is started using post-change-

point measurements. This method was demonstrated in sim-

ulation with parameters corresponding to the Shallow

Water 2006 experiment.

Note that a change-point detection will not indicate

which model parameters have changed. In order to determine

which specific model parameters have changed, the post-

change-point detection inversion has to integrate over a suf-

ficiently long interval to estimate the parameters well and

compare them with the pre-change-point inversion. A poten-

tial extension of this method would be to determine which

parameters have changed upon detection of a change-point

and, then, use the posterior information from the pre-change-

point inversion to assign an appropriate prior density to the

post-change-point inversion.
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