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Motivation 

• Powerful / bulky source 
and large aperture arrays 

 

• Low power / compact 
source, single receiver 

 

• But methods [1,2] assume 
constant underlying 
model parameters. 
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no. 1, pp. 312–322, Jul. 2013. 

[2]  B. A. Tan, et. al., “Recursive Bayesian synthetic aperture geoacoustic inversion in the presence of 
motion dynamics,” J. Acoust. Soc. Am., J. Acoust. Soc. Am., vol. 136, no. 3, pp. 1187-1198, 2014. 
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Recursive Bayesian approach [2] 

• Data model of 𝑙th pulse measurement 

• 𝐲𝑙 = 𝐛𝑙 𝐦 + 𝐰𝑙  where 

• 𝐲𝑙 = measured field 

• 𝐛𝑙  = modeled/replica field 

• 𝐦 = model parameters 

• 𝐰𝑙 = Gaussian noise 
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Recursive Bayesian approach 
• Data model of 𝑙th pulse measurement 

• 𝐲𝑙 = 𝐛𝑙 𝐦 + 𝐰𝑙  where 

• 𝐲𝑙 = measured field 

• 𝐛𝑙  = modeled/replica field 

• 𝐦 = model parameters 

• 𝐰𝑙 = Gaussian noise 
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Recursive Bayesian approach 
• Data model of 𝑙th pulse measurement 

• 𝐲𝑙 = 𝐛𝑙 𝐦 + 𝐰𝑙  where 

• 𝐲𝑙 = measured field 
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Change-point detection for recursive 
Bayesian geoacoustic inversion [3]  

• A key assumption for methods [1,2] 

• constant underlying model parameters 

• Long-time coherent integration and source-receiver motion 

• space-time environment changes likely 

• Modeling the change parametrically is the best approach but also 
adversely increase the inversion search dimension. E.g. 𝑣𝑠, 𝑎𝑠 

• A model parameter change-point detection method that detects 
abrupt or gradual change in model parameters is utilized.  

• Change-point detection is well established see Ref. 1-6 in [3] 

• The probability distributions (importance samples and weights) from 
recursive Bayesian inversion that are generated for model parameters 
estimations can also be used for inferences about the possible 
change-points. 
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[3]  B. A. Tan, et. al., “Change-point detection for recursive Bayesian geoacoustic 
inversion,” J. Acoust. Soc. Am., vol. 137, no. 4, pp. 1962-1970, 2015. 



Change-point detection 

• Applications 

• when tracking a ship with constant radial 
speed and detecting the point where it 
changes speed; 

• when accumulating snapshots for 
beamforming weak targets, and the direction 
of arrival changes; 

• when the underlying environmental 
parameters changes in geoacoustic inversion 
(the focus in this paper). 
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Change-point detection 

• Consider a sequence of measurements 𝐲𝑙  

• Where there is a change-point 𝑟  

• Pre-change-point measurements follow model 𝐦𝟏 

• Post-change-point measurements follow model 𝐦𝟐 
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ML estimate 



Change-point detection example 

• For 8 measurements with true change-point 𝑟𝑡𝑟𝑢𝑒  =  4 
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Change-point detection example 

• For 8 measurements with true change-point 𝑟𝑡𝑟𝑢𝑒  =  4 
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Change-point detection example 

• For 8 measurements with true change-point 𝑟𝑡𝑟𝑢𝑒  =  4 
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Change-point detection example 

• For 8 measurements with true change-point 𝑟𝑡𝑟𝑢𝑒  =  4 
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Change-point detection example 

• For 8 measurements with true change-point 𝑟𝑡𝑟𝑢𝑒  =  4 
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Change-point detection example 

• For 8 measurements with true change-point 𝑟𝑡𝑟𝑢𝑒  =  4 
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Change-point detection example 

• For 8 measurements with true change-point 𝑟𝑡𝑟𝑢𝑒  =  4 

 

17 

𝐦𝟏 𝐦𝟏 𝐦𝟏 𝐦𝟏 𝐦𝟐 𝐦𝟐 𝐦𝟐 𝐦𝟐 

𝑟 
4 C

h
an

ge
-p

o
in

t 
lik

el
ih

o
o

d
 

𝑟 = 7 



Simulation: Abrupt change 
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Simulation: Abrupt change 
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Reconstructed PPD 

Change-point detected  
𝑟 = 64 𝐿 = 71 

When a change-point is detected, the current inversion 
concludes and a new inversion is started using post 
change-point measurements.   
Pre-change-point importance samples retained 
Post-change-point importance samples discarded 

Only 95% HPD plotted 



Simulation: Gradual change 
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Simulation: Gradual change 
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Reconstructed PPD 

Pre-change-point importance samples retained 
Post-change-point importance samples discarded 

Change-point triggered  
𝑟 = 41 𝐿 = 71 

No significant bias due to constant model approximation 
Gradual change segmented into three constant models 



Conclusions 
 

 Combining change-point detection and recursive Bayesian 
inversion has enabled  a data-driven verification of the 
constant model parameter assumption.  

 Controlling the coherent integration time in recursive 
Bayesian inversion. 
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