Multichannel Communication based on Adaptive Equalization in Very Shallow Water Acoustic Channels

Presented by: Bien Aik Tan⁽¹⁾ Mandar A Chitre ⁽²⁾ Mehul Motani⁽¹⁾ Swee Sen Quek⁽³⁾ ⁽¹⁾National University of Singapore ⁽²⁾Acoustic Research Laboratory, National University of Singapore ⁽³⁾DSO National Laboratories

CONTENTS

- Introduction
- Channel Model
- Simulation
- Experimental Description
- Channel Measurements
- Adaptive Equalization
- Multichannel Combining
- Channel Coding
- Conclusion

INTRODUCTION

Beamformed Multipath Intensity Profiles 18.5kHz 84m 22 Nov 05 80 60 -5 40 Beam Angle (Degrees) 0 0 5 --10 -15 -40 -20 -60 -80 2 3 5 6 Time Delay (Secs) x 10⁻³ Average Multipath Intensity Profile (20dB margin) -2 -4 -6 -8 -10 -12 -14 -16 -18

2 3 Time Delay (Seconds)

5

6 x 10⁻³

Ó

CHANNEL MODEL

- Ray Model
- Rayleigh Fading on individual arrivals
- Fading is time correlated, Doppler spread[™]

Alpha-Stable noise

Average Multipath Intensity Profile (20dB margin) of Channel Simulator for 80m Range

BBi

SB1

BS

22.

ACOUSTICS 2006, Chirstchurch, New Zealand

Surface

Ψ (

h

*)Rx

SIMULATION

Single Carrier Differential Phase Shift Keying

Centre Frequency	18.5kHz	
Symbol Rate	9250sym/s	
Raised Cosine Filter Alpha	0.25	
Over sampling	16	
Arbitrary Start Bit	'1'	

SIMULATION

Comparing BERs for same channel parameters (80m to 2740m)

EXPERIMENTAL DESCRIPTION

SEA TRIAL SETUP

EXPERIMENTAL DESCRIPTION

EXPERIMENTAL DESCRIPTION

PC with PCI NI DAQ (Transmitter/Receiver)

National Instruments Multi-function DAQ Card

ACOUSTICS 2006, Chirstchurch, New Zealand

CHANNEL MEASUREMENTS

Range (m)	Root Mean Square (RMS) Delay Spread (ms)	Doppler Spread, <i>W_d</i> (Hz)	Doppler Shift (Hz)
80	1.2	9	-1,+2
130	1.9	8	-1
600	0.85	4	-2
1030	0.85	3	0
1510	0.38	2	-1
1740	0.13	2	+1
2740	0.10	3	+2

LINEAR EQUALIZER

DECISION FEEDBACK EQUALIZER

- Comparing LE in simulation and trial
- Least Mean Square (LMS) Adaptation

Comparing LE-LMS and DFE-LMS from trial data

MULTICHANNEL COMBINING

Multichannel Combining

Short Range: Main improvement from automatic beamforming.

O Long Range: Main improvement from increased SNR.

MULTICHANNEL COMBINING

2740m Trial Data

Differentially Decoded Input Symbols Constellation Plots

ACOUSTICS 2006, Chirstchurch, New Zealand

MULTICHANNEL COMBINING

Performance from trial data

CHANNEL CODING

Turbo Product Codes Code Rate ~ 0.75

CHANNEL CODING

Turbo Product Codes performance from trial data

CHANNEL CODING

Turbo Product Codes performance from trial data

CONCLUSION

- Channel model results are adequately close to real data
- DPSK-LE-LMS is generally better than DPSK-DFE-LMS for shorter distances
- Multichannel combining and TPC improves BER performance
- Overall the packets recovered are over 80% except at 130m and 1510m. The channel is probably varying too fast for the LMS adaptation
- Faster adaptation algorithms will work better but at expense of increased computational complexity.

THAT'S ALL FOLKS!

- Questions and Answers
- Have a pleasant day ahead!

BACK UP SLIDES