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ABSTRACT OF THE DISSERTATION

A Bayesian Approach to Matched-Field Geoacoustic Inversion
with Analysis of ASIAEX Experimental Data

by

Chen-Fen Huang
Doctor of Philosophy in Oceanography
University of California, San Diego, 2005
Professor William S. Hodgkiss, Chair

This dissertation applies a Bayesian framework for making quantitative statistical infer-
ences about geoacoustic properties from ocean acoustic data using matched-field process-
ing techniques. Data acquired during the ASIAEX 2001 East China Sea experiment are
used to infer the geoacoustic properties.

In a Bayesian approach, information and uncertainty regarding model para-
meters obtained from the measurements are summarized in the posterior probability
distribution. This posterior distribution is proportional to the product of a prior dis-
tribution (which incorporates information on model parameters before the measure-
ments) and of a likelihood function (which quantifies how well a model fits the measure-
ments). From this posterior distribution of model parameters, we obtain all information
about the model parameters, such as maximum a posteriori estimate (best-fit model),
mean as well as standard deviation.

The quality of the best-fit model is checked using matched-field processing for
source localization. In the less than 1 kHz frequency band, the effect of environmental
mismatch on source tracking can be reduced by using inversion techniques to estimate
geoacoustic parameters, resulting in improved source localization performance. The
parameter uncertainty (in terms of mean and standard deviation) given by the Bayesian
approach is validated by comparing the variabilities of the estimated parameters inverted
from multiple independent data sets.

A Bayesian approach to inverse problems requires estimation of the uncertain-

ties in the data. An extension of the Bayesian parameter uncertainty analysis to include

xix



the uncertainty of data errors is carried out. Following a full Bayesian methodology, we
derive the analytic expressions for the posterior probability distribution of the model
parameters for both single and multi-frequency data.

The impact of uncertainty embedded in the geoacoustic inversion results on
the estimation of transmission loss is investigated. An approach for estimating the
statistical properties of transmission loss is developed using information on the model
parameters obtained from the inversion. The utility of this approach is that one can
compute the probability distributions of transmission loss at all frequencies, ranges and
depths. Examples demonstrate the use of transmission loss probability density functions

to extract characteristic features such as median and lower/upper percentiles.



Chapter 1

Introduction

1.1 Background and Objectives

Inferring geoacoustic properties indirectly from the measured sound fields in
an oceanic environment using various signal processing schemes, referred to as ocean
geoacoustic inversion, is an important application of underwater sound. This subject
has attracted the attention of several researchers in the past decade, resulting in both
theoretical [10,21,22,24,27-35,38,39,41] and experimental [13,25,29,40,42,57,75) work.
Many studies have shown that even though the inversion results may present some de-
gree of uncertainty, the techniques still prove to be a valuable and promising means of
estimating environmental parameters. In particular, geoacoustic inversion is most useful
for estimating those environmental variables that are difficult to approach directly on
site, such as the density and sound speed (compressional or shear) profiles of the sea
floor.

The primary objective of this dissertation is to carry out an analysis of geo-
acoustic inversion, based upon field data obtained in the Asian Seas International Acoustics
EXperiment (ASIAEX). ASTAEX was an international scientific endeavor involving ocean
acousticians from the United States and several countries surrounding the west Pacific
Rim, including the People’s Republic of China, the Republic of Korea, Japan, Taiwan,
Russia, and Singapore. The major field experiments of ASIAEX were conducted from
May to August of 2001 and consisted of two parts: the South China Sea (SCS) experi-

ment and the East China Sea (ECS) experiment. The SCS experiment placed emphases



on acoustic propagation over the continental shelf and acoustic interactions with a dy-
namic oceanographic environment (specifically, internal waves), while the ECS experi-
ment concentrated on boundary interactions, reverberation, and geoacoustic inversion.
The complete program and some results to-date have been published in the IEEE Journal
of Oceanic Engineering Special Issue on the Asian Marginal Seas (2004) [59].

As a part of the ASIAEX ECS program, data were collected to invert for
the geoacoustic properties in the ECS using acoustic measurements over the frequency
range of O(100 — 1000) Hz. The data obtained are analyzed in this thesis. These data
supplemented by the comprehensive oceanographic and geophysical measurements also
obtained during the experiment are used to assess quantitatively the reliability of the
inverted parameters and the employed seafloor model.

During the past decade, substantial effort has been devoted to the development
of computational algorithms for inversion [27-29, 32,33]. Among others, the SAGA
program for geoacoustic inversion [34] has been widely accepted and is used in this
research. The state-of-the-art has reached the point that many important issues such
as uncertainties due to measurement noise and modeling errors as well as robustness
for a posteriori estimation are now worthy of more consideration. These subjects also

constitute another part of the objectives of this dissertation.

1.2 Basic Concepts

Matched-Field Geoacoustic Inversion

In this thesis, matched-field (MF) geoacoustic inversion techniques are applied
to estimate seafloor properties. The concept of MF processing where a passive array of
receivers is used to locate in range and depth (and bearing) an acoustic source traveling in
a known oceanic environment was introduced to the underwater acoustics community by
Bucker [10]. Many studies [10,21, 30,39, 41] have shown that MF processing for source
localization is sensitive with respect to the variations of, or the “mismatch” of, the
environmental parameters, such as sound speed profiles, water depth, seabed properties,
etc. As a result, the concept of employing the procedure “inversely” by treating the

environment, and/or source position itself, as unknowns and obtaining them from the
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Figure 1.1: Bayesian approach to matched-field geoacoustic inversion.

sound fleld has been conceived and developed [25,31,40,42).

MF geoacoustic inversion uses measurements of the acoustic field made at an
array of hydrophones to extract information on the parameters that determine sound
propagation in the ocean. The procedure is shown schematically in Figure 1.1. Given
some measured data and some prior information on the values of a parameterized en-
vironmental model (e.g., the ocean and sediment sound speeds, attenuations and their
thicknesses), a theoretical relationship (the forward model) is constructed to relate the
predicted data to the environmental model parameters. Then, by minimizing an ap-
propriate objective function that measures the difference between the measured data
and the predictions from the forward model, a set of parameters that best describes the
environment is obtained.

Due to the fact that inversion problems make inferences about the environmen-
tal parameters using a finite set of noisy data, one always faces the problem of nonunique-
ness, i.e., more than one solution can represent the data at hand. The Bayesian approach
is adopted in this analysis. The solution of the inverse problem is not only to find a sin-

gle model parameter vector that fits the measurements best, referred to as the best-fit



model, but also to assess the uncertainty of the estimated model parameter.

Bayesian Approach

Since the analysis of geoacoustic inversion always involves errors (noise) and
uncertainties in the observed data and model parameters, which may be characterized
by probability density functions, probability theory is thus invoked in this study.

There are, however, two different interpretations of probability (76, p. 16][60,
p. 25]. In the “frequentist” interpretation, probability is used to describe the likelihood
of a particular event occurring in a series of repeated experiments; the higher the value,
the more it is likely to occur. On the other hand, in the “Bayesian” interpretation [50],
probability is simply used to describe the degree of belief of a predicted value, based
upon a single experiment. Here, the Bayesian framework of probability is adopted.

The probabilistic approach in geophysics was pioneered by Tarantola and Valette
[78], and Tarantola [76]. The formulation presented in the Tarantola’s book is general
enough to cover a wide variety of problems in applications. Recently, the Bayesian
framework has been adopted in underwater acoustics by some researchers (22,32, 38].

The fundamental objective of Bayesian inference is to obtain the posterior prob-
ability distribution (PPD) of the model parameters. This posterior distribution consists
of the product of two probability density functions. The first, the likelihood function,
defines what it means for a model to fit the data. The likelihood function quantifies the
misfit between the measured data and the modeled data generated by a forward model.
Thus, this function takes into account the noise in the measured data as well as the error
in the forward modeling procedure. The second, the prior density function, incorporates
our ¢ priort understanding of model parameters before having access to the measured
data.

Using a Bayesian approach to inverse problems requires estimation of the un-
certainties in the data due to ambient noise as well as modeling errors. The variance
parameter of the Gaussian error model, referred to as error variance, is assumed to de-
scribe the data uncertainties. In practice, this parameter is often poorly known a priors,
and choosing a particular value is often problematic. Hence, to account for the uncer-

tainty in the error variance, several methods are introduced to implement both the full



and the empirical Bayesian approaches. A full Bayesian approach permitting uncertainty
of the error variance to propagate through the parameter estimation processes is a nat-
ural approach. However, the computational effort is substantial. Thus, several methods
using an empirical Bayesian approach were developed in which the posterior distributions

of model parameters are conditioned on a point estimate of the error variance.

Using the Inversion Results: A Posteriori Analysis

In Bayesian inference, all information on the model parameters is derived from
the PPD. Such information can be expressed in many ways, for instance, as error bars
on the parameter estimates, or marginal PPDs of the model parameters. All of these are
explored in this work.

The variability in the geophysical properties of the ocean bottom has a signifi-
cant impact on sonar performance in shallow water. A key element in the sonar equation
is transmission loss (TL) which requires the information on the geoacoustic properties
at site.

Recent work related to translating the environmental uncertainty to sonar per-
formance predictions has been undertaken by Abbot and Dyer [1]. In their approach,
a probabilistic description of TL was estimated at a given range where many acoustic
measurements were made. Then the TL probability density function is assumed to apply
universally for all ranges. It does not account for the spatial variations of TL due to
multi-path propagation.

Here, we use a Bayesian probabilistic approach to estimate the statistical prop-
erties of TL in the presence of geoacoustic inversion uncertainty. Since TL is estimated
from a full wave solution, the resulting probability density function of TL should be more

representative.

1.3 Scope of the Dissertation

The major contents of this dissertation consist of four chapters, Chapters 2

to 51. Chapter 2 is devoted to the analysis of ASIAEX ECS experimental data. The

'Each chapter has been written in a paper format. As of this date, they either have been accepted
for publications or published in a professional journal or conference proceeding.



experimental geometry, acoustic, oceanographic, and seismic measurements are first de-
scribed and analyzed. A parameterized environmental model is proposed to describe
the experimental region. Then the inversion procedure based on MF processing using
low-frequency data (195, 295, and 395 Hz) is applied to estimate the model parame-
ters. The quality of the inversion results are gauged by two different approaches. First,
the best-fit model is confirmed by continuous source localization over a period of time.
Second, a comparison of the uncertainties of the parameter estimation provided by the
Bayesian procedure with those obtained by separate inversions at many different ranges
(a frequentist approach) is made and analyzed [46].

In Chapter 3, the analysis is extended from low-frequency to include mid-
frequency data (805, 850, and 905 Hz) in the inversion procedure. First, a test run
of mid-frequency MF source localization is carried out using the best-fit model derived
from lower frequency data. Motivated by the increased ambiguity in the estimated source
position, a refined estimate of the environmental model is obtained by incorporating the
mid-frequency data in the inversion. The quality of the refined model is again confirmed
by continuous source localization over the same period of time as in the low frequency
data case [45].

Chapter 4 addresses the issue of uncertainty estimation using the Bayesian
statistical treatment. The uncertainty of each estimated parameter is quantified by the
variance associated with it, and analysis is then carried out by several methods based
upon both the full and the empirical Bayesian approaches [44].

In Chapter 5, a posteriori analysis is undertaken using the inverse solution as
an intermediate step to estimate TL. TL is estimated by first solving for an ensemble
of relevant environmental model parameters and then using this ensemble to map into
the TL domain. The probability distribution of TL is presented along with its statistical
properties such as median and lower/upper percentiles [37].

Finally, Chapter 6 addresses the conclusions of the thesis and suggestions for

future research.



Chapter 2

(Geoacoustic Inversion of

Low-Frequency Data

Geoacoustic inversion results based on data obtained during the Asian Seas
International Acoustics Experiment (ASIAEX) 2001 East China Sea experiment are
presented. The inversion process uses a genetic-algorithm-based matched-field-processing
approach to optimize the search procedure for the unknown parameters. Inversion results
include both geometric and geoacoustic variables. To gauge the quality of the inversion,
two different analyses are employed. First, the inversion results based upon discrete
source-receiver ranges are confirmed by continuous source localization over an interval
of time. Secondly, separate inversions at many different ranges are carried out and the
uncertainties of the parameter estimation are analyzed. The analysis shows that both

methods yield consistent results, ensuring the reliability of inversion in this study.}

2.1 Introduction

Probing geoacoustic properties indirectly from acoustic sound fields in an oceanic
environment is an important application of underwater sound and has attracted the at-
tention of several authors in recent years [35,40,42,75]. Many studies have shown that

even though the inversion results may present some degree of uncertainty, the techniques

#The contents of this chapter are adapted from the paper entitled “Matched field geoacoustic inversion
of low frequency source tow data from the ASIAEX East China Sca experiment” by Chen-Fen Huang
and William S. Hodgkiss, IEEE Journal of Oceanic Engineering, Vol. 29, 952-963, 2004.



still prove to be an efficient and promising way to estimate environmental variables, par-
ticularly for those that are difficult to measure directly on site.

The purpose of this chapter is to present the geoacoustic inversion results based
upon source tow data obtained during the Asian Seas International Acoustics Experiment
(ASIAEX) 2001 East China Sea experiment. The experimental site, as depicted in the
upper panel of Fig. 2.1, is in the East China Sea, and is located roughly at 500 km off
the coast of the Zhejiang Province in east China. The thick curve in the figure illustrates
the ship track of R/V Melville from Julian day (JD) 149 to 162 of 2001.

During the experiment, both acoustic and oceanographic data were collected.
These data are analyzed to invert for the geoacoustic properties of the waveguide. In
this analysis, matched-field (MF) inversion techniques are applied to estimate the envi-
ronmental parameters. The basic principle of the MF inversion technique is to estimate
the unknown parameters by minimizing an objective function that quantifies the mis-
match between measured acoustic fields and simulated replica fields derived from an
acoustic propagation model in a parameterized environment. The best estimates for the
unknown parameters then correspond to the lowest mismatch. Since the dimension of
the search space depends upon the number of unknown parameters which sometimes
may be large, an efficient algorithm is needed to optimize the global search procedure.
In this regard, a few methods geared to global optimization, such as simulated annealing
and genetic algorithms, have been developed [18,19,25,27,32]. Furthermore, in the past
decade, several authors, e.g., [34,73,80], have implemented inversion procedures in terms
of computational software. Among others, the genetic-algorithm-based software SAGA
developed by Gerstoft [34] has been widely applied and is used in this analysis along with
the normal-mode propagation model SNAP [52] for a range-independent environment.

To ensure the robustness of the inversion, two different analyses were employed
and both have yielded consistent results. The chapter is organized as follows: Sections
2.2 and 2.3 provide, respectively, the descriptions of the data acquisition and the data
processing. Section 2.4 outlines the MF inversion procedure, and Section 2.5 presents

the inversion results, followed by a conclusion in Section 2.6.
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Figure 2.1: Plan view of the ASIAEX 2001 East China Sea experiment. Upper panel:
the thick line illustrates the track of R/V Melville during the Julian days (JD) 149 - 162.
Lower panel: the line is the ship track where the source energy was transmitted, and
the plus signs mark 10-minute intervals starting from the acoustic measurement. The
triangle signs represent the locations where the CTD measurements were taken. The star
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Universal Time (UTC).
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Figure 2.2: Side view of the experimental geometry.

2.2 Data Acquisition

In the following subsections, a few details of the experiment as well as the
characteristics of the acquired data are described. These include experimental geometry,

oceanographic and seismic measurements.

2.2.1 Experimental Geometry

The map of the region where the acoustic and oceanographic measurements
were taken is shown in the lower panel of Fig. 2.1. On JD 158, acoustic energy was
transmitted from the J-15 source towed near 47 m depth by R/V Melville with a speed
of about 3 knots. The ship track is indicated by the line in the figure, on which the
distances between the source and the receiver range from 0.5 to 6 km. The experi-
mental geometry is illustrated schematically in Fig. 2.2. A 16-element, 75-m aperture,
autonomous recording vertical line array (VLA) was moored up from the seafloor at lo-
cation 29°38.927' N, 126°48.892' E where the measured water depth was approximately
105.5 m. The lowermost element (element #1) was approximately 6 m above the bottom;
Element #4 failed during deployment.

Continuous-wave (CW) tonals at 95, 195, 295, 395, 805, 850, and 905 Hz were
transmitted and the sound field was recorded from 0313 to 0443 Coordinated Universal
Time (UTC). In this study, only the low frequency data at 95, 195, 295, and 395 Hz are

employed for inversion analysis.
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2.2.2 Oceanographic Measurements

The current profile in the water column from 30 to 100 m was measured by a
ship-mounted ADCP system on board R/V Melville. The ADCP measurement from JD
158 to 158.25 is shown in Fig. 2.3. The upper and lower panels illustrate, respectively,
time-series plots of current speed and current vector stick at different depths. The
time window of the acoustic transmissions is indicated by the two white lines on the
upper panel and the shaded area on the bottom. It is noted that there existed a strong
eastward tidal current with magnitude greater than 0.5 m/s around the middle of the
water column. This results in a tilt of the VLA.

The sound-speed profile in the water column was measured by CTD. Three
measured sound-speed profiles on JD 158 are shown in Fig. 2.4, on which the times
when the measurements were taken are labeled. CTD0123 (solid line) was the profile
when the VLA was deployed; CTD0547 (dashed line) and CTDO0820 (dashed-dotted
line) were the profiles measured roughly 1 and 4 hours after the acoustic tonals were
transmitted, respectively.

The locations of CTD measurements are indicated in the lower panel of Fig.
2.1. These sound-speed profiles show that higher sound speed near the surface and, in
the thermocline layer, time-evolving sound speed fluctuations were observed, while below
75 m the sound speed remained the same. Note that for a sound source at about 47 m
as in the present case, the sound speed structure will result in a downward-refracting
propagation pattern, so that strong interactions of the sound fields with the seafloor

might be expected.

2.2.3 Seismic Measurements

Geoacoustic ground truth measurements of the region covered by 28° - 30°N
and 126°30’ - 128°E were made in 2000 and 2001 as part of the ASIAEX East China
Sea field program. The surveys include gravity and piston cores and water-gun and
chirp sonar generated subbottom profiles. The detailed discussion on geoacoustic mea-
surements are presented in Miller et al. [67]. In short, these data suggest that the
sedimentary bottom presents a layered structure. The thickness of the upper layer from

seafloor to Transgressive Systems Tract (TST) is about 0 to 2 m, and that of the lower
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layer from TST to Sequence Boundary (SB) is about 5 to 7 m at the site of towed source
propagation experiments. Moreover, the sediment coring analysis indicates this region
spanned a surficial sediment “front” consisting of mud-and-sand type of sediment to the
west and sand to the east. The acoustic experimental site was located to the west of the
front; a mean grain size (in phi scale) of 4.3 ¢ consistent with mud-and-sand-like sedi-
ment. The coring data also show a sound speed going from approximately 1575 m/s at

the water-sediment interface to 1600-1675 m/s at approximately 1 m into the sediment.

2.3 Data Processing

The entire 90-minute time series data were processed using 262,144-point FFTs
with 50% overlap. With a sampling rate of 20470.8 samples/sec (the bin width is 0.0781
Hz), the time duration of each FFT (snapshot) is 12.805 sec and the interval between
consecutive snapshots is 6.40 sec. The long length of the snapshot is to ensure high
signal-to-noise ratio (SNR). Due to the narrow bin width and the Doppler shift resulting
from ship motion, the frequency bin selected for the inversion needs to be chosen with
care. For each snapshot and frequency, the bin chosen corresponds to the bin containing
the highest average power across the array. Since there are 15 functioning array elements,
there are 15 complex pressure values sampling the acoustic field across the water column
for each snapshot. Figure 2.5 shows the calibrated time-evolving signal power across the
array for 95, 195, 295, and 395 Hz, and the corresponding noise floor which is estimated
by averaging over the 15 adjacent bins separated from the signal bin by 5 bins. In
this figure, the vertical axis is the element number with element #1 being the deepest
transducer. Note that at 95 Hz the SNR is very low and this frequency is not used in
the inversion. In contrast, the SNR. is high for the frequencies 195, 295, and 395 Hz.

The estimated normalized cross-spectral density matrix (CSDM), R, fora signal

frequency is given by
(dd’)
Tr{(dd"))’

where d is the vector containing the measured complex pressures, and (-) and t denote,

R= (2.1)

respectively, the average over several snapshots and the complex transpose operation.

The covariance matrix is normalized by its trace. The maximum obtainable Bartlett
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three frequencies.

power from the MF inversion is defined as

-~

PBT, max — Max EIV[RL (22)

where EIV denotes the eigenvalues of the matrix. Due to noise contamination in the
data, the value of PRT, max must be less than one. In the following analysis, we shall use
this value as a measure of SNR.

Under the assumption of statistical stationarity, each value of CSDM was esti-
mated from 4 snapshots which span a time interval of 32 sec and cover about 48 m in
source range. Figure 2.6 shows Prr, max 8s a function of time on a linear scale for each
single frequency 195, 295, and 395 Hz (thin lines), as well as for all three frequencies
(thick line) for which the power is defined as the average of Ppr, max Over the three
frequencies. During the first 10 minutes of the acoustic transmissions, the ship was sta-
tionary and high values of PR, max are seen in the figure. As the ship began to move

away from the VLA, the SNR decreased resulting in the values of PpT, max being lower.
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2.4 Matched-Field Geoacoustic Inversion

In this section, the procedure and the required components for the MF geo-
acoustic inversion are addressed. To prepare for the inversion, an acoustic propagation
model and a parameterized environmental model must be chosen. An appropriate ob-
jective function and an optimization algorithm must also be defined or selected. The
sensitivity of the objective function with respect to environmental variability needs to

be tested and the quality of the inversion should be measured.

2.4.1 Acoustic Propagation Model

For ranges greater than several water depths, the acoustic pressure field may
be expressed as a finite sum of normal modes. A general bathymetric and geological
survey has indicated that in the neighborhood of the experimental site the environment
is nearly range-independent. Therefore, the acoustic pressure at a depth z and range
r produced by a time-harmonic e~** point source at depth z, in an environment with

arbitrary sound speed distribution may be expressed as [53]

B ie-—z’rr/4 N \I/ \I; glkrar 03
p(r,z) = ——-p(zs)\/%; n(2s) n(Z)V‘k—: (2.3)

where ¥, is the n-th normal mode corresponding to the horizontal wavenumber, k.,. The
calculations of the modeled acoustic pressure fields were performed by the SACLANT-
CEN Normal-mode Acoustic Propagation program (SNAP) [52].

2.4.2 Environmental and Array Parameterizations

As mentioned previously, the experimental area is characterized by a fairly flat
bottom. The environment is modeled as a waveguide with a constant water depth over
a two-layered seafloor as shown schematically in Fig. 2.7. The water depth is known to
be approximately 105.5 m. The seafloor is modeled as a uniform sediment layer with
sound speed cged, density psed, attenuation ageq, and thickness d, overlying a semi-infinite

subbottom. The sound speeds in these two layers are related by

Csub = Cseq + AC (2.4)
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China Sea experiment. Thick lines indicate schematically the sound speed distribution

in the water and in the bottom. For the nomenclature, see Table 2.2.

where Ac is the sound speed difference between the two layers and is a positive value.
The above-mentioned unknown parameters are estimated in the inversion along with
the water depth (although it is known from direct measurement). As for the density
and attenuation of the subbottom, separate simulations suggest that the inversion result
is relatively insensitive to these parameter values. Therefore, rather than inverting for
them, they were set at nominal values of density 2.4 g/cm? and attenuation 0.01 dB/).

For optimal array-processing, it is necessary to determine the relative positions
of the sensors. To achieve a loss of less than 1 dB in conventional array-processing gain
requires that the element positions be prior known within a distance of A/10, where X is
the wavelength at the frequency of interest [43]. Due to the effects of a nonuniformly-
distributed tidal current over the water column as indicated in Section 2.2.2, the VLA
might be tilted and curved. To account for the array curvature, a parabolic VLA shape
is assumed and the geometry of the VLA is specified in terms of the bow b at the mid-
point, of the array as shown in Fig. 2.7 and the length of the undisturbed straight array
Ls. Note that the value of Lg is known and equals 75 m. According to this geometry,
the location of each array element (assuming 8 = 0) becomes

(Tp, 2p) = (%% (Ls — 2) 2z, (1 - %%) zs> (2.5)
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Figure 2.8: Empirical Orthogonal Function (EOF) analysis for the 2001 ASTAEX CTD
casts. (a) sound-speed profiles measured from R/V Meluville and the average sound-speed
profile (thick black line); (b) Residual sound-speed profiles; (¢) Percent of total fit energy
with limited sets of EOF’s; (d) First 6 EOF’s.

where the subscripts s and p denote the straight and the parabolic arrays, respectively.
Then, the tilt of the array is determined by the angle 8. A negative value of 8 indicates
the array is tilting away from the source. (A 1° tilt corresponds to a approximately
1.3-m horizontal displacement at the topmost array element.)

Because the sound speed difference in the thermocline layer was significant
between CTD0123 and CTD0547, an Empirical Orthogonal Function (EOF) analysis of
the sound speed measurements [58] was carried out. Figure 2.8 summarizes the EOF
analysis for the sound-speed profile measurements. Figure 2.8(a) shows the ensemble
of CTD casts from JD 149 to 162 and the average sound-speed profile (thick line); Fig.
2.8(b) shows the variations of residual sound-speed profiles; Fig. 2.8(c) shows the percent
of total fit energy, i.e., eigenvalues, within the first 15 EOF’s; the shape of the first 6
empirical orthogonal functions is shown in Fig. 2.8(d). It shows that the first 4 EOF’s

contain about 95 % of the energy.
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Table 2.1: The EOF Coefficients for the Measured Sound-Speed Profiles Listed on Fig.
2.4.

Measured SSP EOF 1 EOF 2 EOF 3 EOF 4 EOF 5 EOF 6

CTD0123 9.39 -0.63 -0.80 197 2.20 -0.27
CTD0547 6.77 =250 052 2.79 0.03 -0.28
CTD0820 11.95 —-4.04 ~-2.73 145 0.21 0.68

EOF 7 denotes the i-th EOF coefficient.

Table 2.1 shows the EOF coefficients for three CTD’s taken on JD 158. The
search bounds in the estimate of the ocean sound-speed profile are based on this table.
The ocean sound-speed profile is modeled by the first three EOF’s with CTD0547 as the
baseline model.

The forward model parameters can be divided into three subsets: geometrical,
geoacoustic and ocean sound speed parameters. Table 2.2 lists each inversion parameter
along with their search bounds. These values were selected based upon a priori knowledge

about the environment.

2.4.3 Objective Function

The objective function measures the discrepancy between the measured acoustic
field and replica fields calculated for likely values of the unknown parameters. The data
misfit objective function chosen here is based on the incoherent multi-frequency Bartlett
processor [63]. Under the assumption of no spatial coherence across frequencies, the

misfit objective function can be expressed as

¢(m) =

b=
M=

[1 —df (m)ﬁldl(m)] (2.6)

L
Z BT, (m (2.7)

where d(m) is the replica fleld generated for the vector of unknown parameters m,

l

I

1

mH

normalized to have unit length, R is an estimated CSDM as given in Eq. (2.1), and

L is the number of source frequencies. The misfit objective function can be re-written



Table 2.2: Inversion Parameters with Search Bounds

Model parameter Search bounds
Description Symbol | Lower Upper
Geometrical

Source range (m) SR 1650 1800
Source depth (m) 8D 46 51
Water depth (m) WD 104 108
Bow of parabola (m) b 0.5 2
Array tilt (deg) 6 -7 -5
Geoacoustic
Sediment
Comp. speed (m/s) Csed 1550 1650
Attenuation (dB/A) Otsed 001 05
Density (g/cm®) Psed 1.3 2.2
Subbottom
Increase comp. speed (m/s) Ac 10 200
Depth of subbottom (m) d 1 20
Ocean sound speed
EOF 1 5 10
EOY 2 ] 0
EOF 3 -3 3

The search interval for each parameter was discretized into 128 points.

The array tilt refers to the angle with respect to the vertical axis.
(negative in the direction away from the source).
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as a function of the Bartlett power as shown in Eq. (2.7), in which the second term is
the arithmetic mean of Bartlett powers over the selected frequencies. By minimizing the
misfit objective function, the most likely values of the environmental parameters can be

found.

2.4.4 Sensitivity Analysis

To investigate the relative importance of the parameters, a sensitivity study was
carried out. Figure 2.9 summarizes the sound-field sensitivity for the selected frequencies
195, 295, and 395 Hz for the model parameters given in Table 2.2. The sensitivity of
the Bartlett power for the given frequency and the given parameter was computed by
correlating the data vector generated by the “true” parameter value with replica vectors
computed by varying the parameter value. In each case, the parameters that are not
varied are held at their nominal values (the values taken from the best-fit model at
T = 29 min) and the search bounds of each parameter were as shown in Table 2.2. A
sensitivity index (SI) for a particular parameter m; is obtained by incorporating the
minimum point in the sensitivity curve, Pgr(m;)/Psr(m;), in the following expression:

SI (m;) =1-— ligrzlnigui Pgr(m})/Par(m;) (2.8)
where m/ denotes the values taken from the search interval between the lower bound /;
and the upper bound u;. Ppr(m;) is always one due to no noise in the simulation. For
highly sensitive parameters, SI is almost one which means that the correlation degrades
rapidly as the parameter value departs from the “true” value. For less sensitive or the
so-called non-identifiable parameters, the correlation remains about the same even with
some changes in such parameters. Note that the value of SI for each parameter is also
dependent on the corresponding search bounds. However, this measure of sensitivity is

useful for inter-frequency comparison.

2.4.5 Genetic Algorithms

Genetic algorithms (GA’s) are robust search mechanisms based on underlying
genetic biological principles. The complete description is well documented in [34]. The

values of the GA parameters used in this analysis are as follows: the population size was
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set to 64, reproduction size was 0.5, crossover probability was 0.8, mutation probability
was 0.05, and number of forward model computations for each population was 2500.
However, to collect statistical information in order to estimate the parameter uncertainty,
the number of parallel populations was set to 45. Approximately 112,500 forward models

were run.

2.4.6 Uncertainty Estimates

Because of the ambiguity imposed by data incompleteness, measurement noise,
and theoretical simplifications of the environment, a range of model parameters may
explain the data equally well. The global optimization method in SAGA is used to
obtain the samples of the search space. To estimate the parameter uncertainty, the
obtained samples are then used to calculate the posterior probability density (PPD) as
follows [76]:

£(m)
P(m) = ——t
o0ebs £(mi)

where N, is the total number of observations (forward model runs). Under the assump-

(2.9)

tion of Gaussian errors, the likelihood function £(m) is related to the objective function
¢(m) through an exponential £(m) « exp(—¢(m)). From the PPD, the mean model
parameter (m) and the model covariance matrix Cov(m) can be estimated, respectively,

as follows:

(m) Z mP(m) (2.10)
Cov(im) = meTP(m) — (m)(m)T (2.11)

where T denotes the transpose operation, and the sum is taken over the total observa-
tions. A measure of the accuracy of the inversion is defined as standard deviations of

the model parameters computed by the square roots of the diagonal terms of Cov(m).

2.5 Results and Discussion

Matched-field geoacoustic inversion using the selected frequencies 195, 295, and
395 Hz was carried out at T = 29 min over a parameter space of 13 parameters including

the geometrical, geoacoustic, and ocean sound speed EOF coefficients. Based upon
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the GPS measurement on R/V Melville, the source was approximately 1.7 km away
from the VLA. Figure 2.10 shows the marginal dot diagrams for the model parameters.
The vertical axis is the achieved misfit (i.e., Eq. (2.7)) with respect to the parameter
sampled during the SAGA optimization. The thick line superimposed on each scatter
plot was obtained by using the best-fit model corresponding to the optimal value of
the objective function as a baseline and computing the sensitivity for the optimized
parameter. We see that the sampled values for the array bow and tilt parameters (b
and ) are spread mainly inside the sensitivity curve and align mostly with the best-fit
values. A similar behavior is observed for the ocean sound speed EOF coefficients but
with a wider span. The consistency between the local (line) and global (dots) searches
shows that this set of parameters is weakly correlated with the other parameters. For
the geoacoustic parameters, most sampled values wander outside the curve. This reveals
the more complicated structure in the multi-dimensional search space. Note that the
sampled values for the source range (SR) and the water depth (WD) are spread uniformly
throughout the range of the parameter interval. This is due to the strong coupling
between these two parameters.

Parameter coupling is another factor that determines the degree of uncertainty
in the model parameter estimates. Figure 2.11 shows the two-dimensional cross-sections
of Bartlett power for the selected parameters. The colorbar next to each plot indicates
the dynamic range in terms of dB. The two-dimensional dependence of Bartlett power
on SR and Wb (Fig. 2.11(a)) exhibits a long narrow ridge indicating a strong correlation
between these two parameters. Similar correlations between cyq and WD, and cgeq and d
are illustrated in Figs. 2.11(c) and (d), respectively. In each case, similar Bartlett power
would be achieved with increases in both parameters. As a result, high values of one
parameter tend to occur consistently with high values of the other parameter during the
SAGA optimization. Physically, the positive correlation between the water depth (WD)
and the source range (SR) can be explained by the waveguide invariant [26].

The SAGA-determined best-fit parameters and the mean estimated from the
PPD along with their standard deviations are tabulated in Table 2.3. Note that SAGApes:
and SAGAmean estimated model parameters are not necessarily equal. This is due to

the nonlinear relation between the data and the model parameters, a data set with a
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Figure 2.10: Marginal dot diagrams of the SAGA search for the model parameters.
The vertical axis represents the attained misfit on a linear scale. The thick line is the
sensitivity curve of the multi-frequency misfit function using the best-fit model as a

baseline.



Table 2.3: Parameter Estimates at Sk = 1.7 km

Parameter SAGApest SAGAean £ 0

SR (m) 1714 1714 £ 16
sD (m)  48.3 48.4+£0.2
WD (m) 105.4 105.4 £ 0.6
b (m) 1.3 1.3+0.1
9 (deg) —6.02 —6.02+0.08
Coed (m/s) 1585 1588 & 7
Ac (m/s) 74 43+ 24
d (m) 10 10+3
ased (dB/A)  0.28 0.2+0.1
psed (g/em®) 1.8 1.8£0.2
EOF 1 6.3 6.1£0.6
EOF 2 -2.2 -2.0x£06
EOF 3 -1.6 -1.7£07

o indicates the standard deviation.
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Figure 2.11: Two-dimensional cross-sections of Bartlett power for the selected model
parameter estimated at SR = 1.7 km. The plus signs indicate the true parameter values

taken from the SAGA best-fit model. (synthetic cases)
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Element #
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Figure 2.12: Comparison of the observed and modeled fields on the vertical array for
each of the frequencies used in the inversion. The solid and dashed lines indicate the
maguitude of the observed and modeled fields, respectively. Note that element #4 has

been deleted.

Gaussian error law in general is mapped onto a estimator of the model having a non-
symmetric density function.

It shows that the geometrical parameters (SR, SD, WD, b, 8), sediment sound
speed (ceed), and the sediment thickness (d) all are well-determined. However, the pa-
rameter Ac isn’t well-determined (the SAGA best-fit value is outside the mean plus one
standard deviation). Although the sediment attenuation and density have low sensi-
tivity, the standard deviation also is relatively small due to the narrow search bounds
selected for these two parameters.

Figure 2.12 shows the comparison of the observed and modeled fields on the
vertical array for each of the frequencies used in the inversion. The solid line represents
the magnitude of the observed field normalized by the total power registered at VLA and
the dashed line represents the magnitude of the modeled field computed by the best-fit
model and similarly normalized. The comparison shows good agreement between the

observed and modeled data for the frequencies 195, 295, and 395 Hz.
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2.5.1 Source Localizations

The inversion quality also is checked by using MF processing for source local-
ization. The replica pressure field computed by the best-fit model from the inversion
carried out at SR = 1.7 km was used in this subsection. To avoid search grid mismatch
in the frequency band of interest [56], the grid spacings Ar and Az were set to be 10
m and 1 m, respectively. Figure 2.13 shows the source range-depth ambiguity surfaces
for each source frequency and the multi-frequency average at SR = 1.7 km. The multi-
frequency ambiguity surface is defined as the arithmetic mean of MF correlations over
the selected frequencies. We see the distinguishing mainlobe/sidelobe structure and the
high MF correlations for both single and multiple frequencies.

An environmental model that localizes the source at one range may not localize
the source at another range. In order to confirm the applicability of the environmental
model estimated at SR = 1.7 km, this model was also applied to the data from a greater
range. Figure 2.14 shows the ambiguity surface at T = 42 min using the environmental
parameters listed in Table 2.3. The grid spacing (Ar, Az) was the same as before. The
results in Fig. 2.14 show that the peak on each ambiguity surface still remains at a high
correlation level and the peak locations for the different frequencies are located at the
same range/depth and agree with the experimental configuration.

Encouraged by the consistency of the geoacoustic model at two different ranges,
we then applied this model on the acoustic data over the time interval from 20 to 50
minutes. First, an exhaustive search was conducted over three of the geometrical pa-
rameters (SR, SD and 6) at 295 Hz. Figure 2.15 shows the MF correlations over time
for different array tilts. As mentioned in Section 2.4.2, the accuracy to which sensor
positions should be known has to be better than A\/10. A priori information showed that
the array was not purely vertical and it had some tilt on the order of —5 or —7 degrees
from vertical. Due to the current force on the VLA, the source and the VLA are not in
the same vertical plane in which the r-axis is defined by the source and the deepest array
element. Therefore, from the perspective of the source, the apparent tilt of the array
changes over time. In Fig. 2.15, the bow of the array was taken to be the estimated value
from the inversion and 8 varies from —5 to —7 degrees in 0.5 degree increments. The tilt

is such that the uppermost part of the array is farther away from the source than the
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Figure 2.13: Range-depth ambiguity surfaces at SR = 1.7 km. The replica pressure field

is computed using the environmental parameters listed in Table 2.3.
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Figure 2.15: MF correlations over time for different array tilts at 295 Hz. The replica

pressure field is computed using the environmental parameters listed in Table 2.3.

lower part of the array. As expected, the highest MF correlation appears at the range
where the inversion was carried out.

MF-derived source-receiver range and source depth using 195, 295, and 395
Hz over the time interval from 20 to 50 minutes are displayed in Figs. 2.16 and 2.17,
respectively. The peak tilt correlations shown in Fig. 2.15 were used as a guide for
which tilts to use in this time period. Based upon the GPS measurements, the data in
this time interval cover the range from 1 to 3.5 km. The source depths measured by
the depth sensor are indicated by the plus signs in Fig. 2.17. Compared with the GPS
and the depth sensor measurements, MF-derived source position is consistent with the
experimental configuration. Source localization based on the best-fit model tracks the

actual source positions well.

2.5.2 Inversion Results over Time

As a final example, separate inversions were carried out using the acoustic data

at each range over the time interval from 20 to 40 minutes. The GA parameters and the
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Figure 2.17: MF-derived source depth over the same time interval shown in Fig. 2.16.

The plus signs indicate the true measured values.
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search bounds were taken to be the same as the inversion conducted at T = 29 min except
for sR. Approximately 107 forward models were computed for a total of 98 inversions.

The purpose of inverting the data at many ranges is to consider a large enough
number of separate measurements to provide an indication of the consistency of the
inversion results for the various model parameters. Figure 2.18 shows the lowest misfit
objective function and the corresponding model parameters (best-fit model) determined
in all inversions plotted as a function of time.

The best-fit model at each range was obtained by minimizing the misfit ob-
jective function ¢ between measured and modeled fields. The lowest misfits obtained
by the SAGA inversions (the cross signs connected by a solid line) are shown in Fig.
2.18(a). The solid line represents the best possible value of misfit for the available SNR
(i.e., 1 — PBT, max, see Eq. (2.2)). We see that low misfit values were obtained for all
ranges. The best-fit results for sr and sD (Figs. 2.18(b) and (c), respectively) closely
track the source position. The estimated water depth (Fig. 2.18(d)) exhibits the mild
variation from inversion to inversion. The estimated array bow (Fig. 2.18(e)) shows a
small amount of variation. The reason is that the current essentially was constant in
direction and magnitude over this 20-minute time interval. The inversion results for
the array tilt shown in Fig. 2.18(f) are in good agreement with the tilts determined by
searching over only three geometrical parameters: SR, SD, and ¢ using 295 Hz (Fig. 2.15).
Figures 2.18(g)-(k) show the inversion results for the geoacoustic parameters: sediment
sound speeds cseq, Ac, and sediment thickness d, attenuation ogeq, and density psed.
Consistent values were obtained for geometrical parameters and sediment sound speed,
attenuation, and thickness. Figures 2.18(1)-(n) show the inversion results for the first
three ocean sound speed EOF coefficients

The parameter uncertainty was estimated using the best-fit models determined
at each range over the time interval from 20 to 40 minutes. The mean and standard de-
viation for each of the parameters is indicated by the solid and dashed lines, respectively.
Compared with the SAGA parameter estimate at SR = 1.7 km, the mean and standard
deviation for each of the parameters is in excellent agreement. Table 2.4 summarizes the
results of the comparison.

Since separate inversions were carried out for the acoustic data at each range
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Table 2.4: Comparison of the Parameter Uncertainty Estimates

Multiple Range Inversions  Single Range Inversion

Parameter
Mean + STb SAGAnean T 0 SAGApest
Csed (111/8) 158249 1588 + 7 1585
Ac (m/s) 55 + 32 43424 T4
d (m) 11+£3 10+3 10
Osed (AB/X) 0.2+0.1 02+01 028
Psed (g/cm®) 1.9+0.2 18+02 18
EOF 1 6.4+1.1 6.1+ 0.6 6.3
EOF 2 —-2.2+08 —20+£06 ~2.2
EOF 3 —0.7+0.9 -1.7£07 =16

Multiple Range Inversions: the means and standard deviations (STD) of the inversion
results of Fig. 2,18,

Single Range Inversion: the best-fit model, and the PPD mean and standard deviation
estimated at 3SR = 1.7 km.
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over the 20-minute duration, a comparison of the measured and modeled acoustic fields
at selected array elements was made. Figure 2.19 demonstrates the agreement between
the observed and modeled fields. The measured fleld (solid line) was normalized by the
total power registered at VLA at each range and the modeled field (dashed line) was
computed using the best-fit model at each range and similarly normalized. It shows that
the model fields reproduce the major features of the measured field reasonably well.
The variation from inversion to inversion in each parameter is used to examine
parameter coupling. The coupling between model parameters can be quantified using

the correlation coefficient matrix p, defined by

= 2.12
P = O (2.12)

where the covariance matrix Cy is calculated by
CMm = <(mbest - <mbest>)(mbest - <mbest>>T> (213)

with mye is the best-fit model found at each inversion. Values of p;; are bounded
between —1 and +1, with —1(+1) indicating a perfect negative (positive) correlation
between parameters ¢ and j, and 0 indicating uncorrelated parameters. For the purpose
of demonstrating parameter coupling, only the absolute value of the correlation coefficient
is considered. Figure 2.20 presents the magnitude of the linear correlation coefficient
computed using the inversion results shown in Fig. 2.18. A strong coupling was observed
for the following parameter pairs (WD, d), (WD, Csed), and (d, Cseq), Which is consistent

with the observations in Fig. 2.11.

2.6 Conclusions

This chapter reports the geoacoustic inversion results based upon source tow
data obtained during the ASIAEX 2001 East China Sea experiment. The source tow
data recorded on a VLA were used to estimate the geoacoustic properties of the seafloor.
The waveguide was assumed to be range-independent, and the seafloor was modeled as
a homogeneous sediment layer overlying a semi-infinite subbottom.

Matched-field geoacoustic inversions using frequencies 195, 295, and 395 Hz

were carried out by a genetic-algorithm-based optimization approach. The environmental
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Figure 2.19: Normalized received levels for the measured (solid line) and normalized
modeled (dashed line) fields as a function of time for the array elements 1, 6, 11, and 16
and for the frequencies 195, 295, and 395 Hz. The modeled fields were computed using

the best-fit model found at each range.

EOF 1]
EOF 2

EOF 3

WD S, Ac  d Y% Peq EQF1EOF2EQF3

Figure 2.20: Correlation coefficient matrix for the environmental parameters computed

using the inversion results shown in Fig. 2.18.
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parameters were estimated by two different analyses to ensure the robustness of the

inversion. These two analyses are summarized as follows:

1.

The inversion was first performed with the set of data obtained at range
of sR = 1.7 km. The accuracy of the inverted parameters was measured
by the mean and the standard deviation of the posterior probability dis-
tribution. The results indicated a good agreement between the measured
and the modeled sound fields. Furthermore, the inverted model quality was
checked by using MF processing for source localization over the entire 30-
min time interval. The predicted source positions track the measurements

well.

. A total of 98 separate inversions were carried out for the acoustic data

at each range over the time interval from 20 to 40 minutes. The best-fit
model at each range is the inversion result at that range. The data in this
time interval covers a 1.5-km range. With the assumption that the seabed
properties are range-independent, the resulting variations from inversion to
inversion were used to analyze the parameter uncertainty. Low misfit values
were obtained for all ranges, and consistent values were obtained for geo-
metrical parameters and sediment sound speed, attenuation, and thickness.
Also, a comparison of the measured and modeled fields was made and shows

good agreement.

The parameter uncertainty (the mean and standard deviation) estimated from several in-

versions are in excellent agreement with the results at SR = 1.7 km. Parameter coupling

was examined using the correlation coefficient matrix derived from the multi-range in-

version results. The observed parameter correlations were consistent with our sensitivity

results at SR = 1.7 km.
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This chapter in part is a reprint of the material as it appears in Chen-Fen
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source tow data from the ASIAEX East China Sea experiment,” IEEE J. Oceanic Eng.,
Vol. 29, 952-963, 2004. The dissertation author was the primary researcher/author and
the co-author listed in this publication directed and supervised the research which forms

the basis for this chapter.



Chapter 3

Mid-Frequency Data Analysis

An environmental model in this study area initially was derived by matched-
field (MF) geoacoustic inversion using low-frequency data (195, 295, and 395 Hz). The
purpose of this chapter is to incorporate mid-frequency tonals (805, 850, and 905 Hz)
into the geoacoustic inversion. First, the best-fit model found using the low frequency
band, referred to as the low-frequency-derived best-fit model, is extended to the mid-
frequency data in the application of MF processing source localization despite higher
sidelobe levels. Second, in order to reduce the environmental uncertainties in the mid-
frequency band, the data are incorporated into the MF inversion procedure. The quality
of the refined model again is confirmed by time-continuous, source localization using

mid-frequency data over the same time interval.

3.1 Sensitivity Analysis

To investigate the relative importance of the model parameters, a sensitivity
study is carried out (see Sec. 2.4.4). By plotting the objective function (Eq. (2.6))
over the parameter interval, the relative importance of one parameter is evident. Figure
3.1 shows the parameter sensitivities for the low-frequency data (195, 295, and 395
Hz; dashed curves), mid-frequency data (805, 850, and 905 Hz; solid curves) and all 6
frequencies (dash-dotted curves). The nominal values of the estimated parameters are
taken from the low-frequency-derived best-fit model (listed in Table 2.3), indicated by

the dotted vertical lines.
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Figure 3.1: Sensitivity study of the model parameters for mid-frequency data analysis.
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It shows that the geometrical parameters strongly influence the objective func-
tion value. In general, the geoacoustic parameters (csed, Ac and d) show rough (non-
smooth) sensitivity curves. The non-smoothness of the curves is due to the number of
propagating modes changing when varying the values of the parameter. The sensitiv-
ity of the basement sound speed increase (Ac) and the sediment thickness (d) mainly
depends on how deep the signal can penetrate into the sediment. Therefore, to fathom
the deep sediment properties, it is necessary to include lower frequency signals in the
inversion. As for the density and attenuation of sediment, the results show that acoustic
propagation is relatively insensitive to these parameters. The sensitivity of EOF coef-
ficients has the same order as that of the geoacoustic parameters and their sensitivities
increase with frequency.

Here is a summary of the observations: as frequency increases, (1) the acoustic
field is more sensitive to geometric parameters, (2) is less sensitive to geoacoustic para-

meters, and (3) the ocean sound-speed profile becomes more important.

3.2 Model Parameter Estimation

Based upon the environmental parameter estimates obtained from the low fre-
quency tonal data, the environmental models are re-optimized by incorporating the
higher frequency data into the inversion.

Even though most of energy is in the first 3 sound speed structure EOF shape
functions, the EOF reconstruction for the measured sound speed CTD0123 and CTD0547
indicates that EOFs 4 and 5 have significant energy as given in Table 2.1. (The time
interval of the acoustic transmissions are bracketed by these two CTDs as shown in Fig.
3.2.) Therefore, we include these 2 additional EOF coefficients in the higher frequency
inversion.

The total number of model parameters included in the geoacoustic inversion is
now 15. The values of the GA parameters used here are as follows: the population size
was set to 64, reproduction size was 0.5, crossover probability was 0.8, mutation proba-
bility was 0.05, number of iterations was 2500, and the number of parallel populations

was set to 45. Approximately 112,500 forward models were run.
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3.3 Results and Discussion

Matched-field geoacoustic inversion using all 6 frequencies was carried out at
the same source-receiver range (1.7 km) over the search space of 15 parameters. Table
3.1 tabulates the estimated parameter values. Compared with the inversion results ob-
tained from the low frequency data (Table 2.3), it can be seen that the estimates of the
geoacoustic parameters do not change much. However, it is likely that the estimated
water depth is deeper than the true depth. (the measured water depth is 105 m with
a margin of error of plus or minus 1 m). The biased estimation of water depth might
result from accommodating possible deviations of other environmental parameters (for
yielding the best matched-field response). The inverted ocean sound-speed profile from
all 6 frequency data (the crosses connected by a solid line) is plotted in Fig. 3.2 along
with the profile estimated from the low frequency data (the circles connected by a solid
line).

Range-depth ambiguity surfaces are computed for each source frequency using ‘
the low-frequency-derived best-fit model and these are shown in Fig. 3.3(a). The bottom

panels show the results of incoherently averaging Bartlett ambiguity surfaces using only



Table 3.1: Parameter Estimates at SR = 1.7 ki using the frequencies of 195, 295, 395,

805, 850, and 905 Hz.

Parameter SAGApest
SR (m) 1760
SD (m) 49
WD (m) 106.6
b (m) 14
8 (deg) ~6.06
Csed (m/s) 1581
Ac (m/s) 73
d (m) 10
aged (AB/A) 0 0.37
ped  (g/em®) LT
EOF 1 6.3
EOQF 2 ~1.0
EOF 3 -0.3
EOF 4 0.1
EQF 5 1.1
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the low- (left) and only the mid- (right) frequency tonals. The ambiguity surfaces are
normalized so that the peak level at each range is 0 dB. We see that incoherently aver-
aging Bartlett ambiguity surfaces for the low frequency data suppresses the ambiguous
sidelobes efficiently. For the mid-frequency data, no significant improvement is observed
due to the relatively close frequency spacing of the signals (i.e., the structure of the
sidelobes is similar across these frequencies). However, there is no ambiguity about the
true source location. The results indicate that we can extend the best-fit model found
using the lower frequency band to one-octave higher in the application of MFP source
localization despite higher sidelobe levels.

Next, ambiguity surfaces are computed for each source frequency using the all-
6-frequency-derived best-fit model and these are shown in Fig. 3.3(b). As shown in the
second column of Fig. 3.3(b), the sidelobe level is decreased significantly. The reason is
that by incorporating the mid-frequency data into the geoacoustic inversion, mismatch
in the environmental parameters has been minimized as far as the selected frequencies
are concerned. As a result, not only is higher maximum Bartlett power achieved, but
also sidelobe level is suppressed.

As a test, we use the low-frequency-derived best-fit model for source localization
using only the mid-frequency signals over the time interval from 20 to 50 minutes. Figure
3.4 (a) shows MF-derived source-receiver range (left panel) and source depth (right
panel). Based upon the GPS measurements, the data in this time interval cover the
range from 1 to 3.5 km. We see that the maximum Bartlett power is low (less than —3
dB) at each range and there is some source position ambiguity.

Figure 3.4 (b) demonstrates the performance of the all-6-frequency-derived best-
fit model in source localization (using only the mid-frequency signals) over the same
time interval. Relatively high maximum Bartlett power at each range is achieved and
the resulting source position is consistent with the experimental configuration up to 45
minutes. Because environmental mismatch is reduced, there is little ambiguity in source

position, resulting in the improvement in the performance of source localization.
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Figure 3.3: Range-depth ambiguity surfaces at SR = 1.7 km for each source frequency and

the multi-frequency average. (a) The replica pressure field is computed using the best-

fit model derived from the low frequency signals (Table 2.3). (b) The replica pressure

field is computed using the best-fit model derived from all 6 frequencies (Table 3.1).

The estimated source position (SR and SD) and the Bartlett power obtained using the

mid-frequency data are as follows: (a) (SR, sD) = (1722 m, 48.5 m) with Bartlett power

= 0.415 and (b) (SR, SD) = (1761 m, 49.5 m) with Bartlett power = 0.626. On each

ambiguity surface, the Bartlett power is normalized so that the peak level is 0 dB.
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(a) Low-frequency-derived best-fit model
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Figure 3.4: Comparison of MF-derived source-receiver range (left panels) and source
depth (right panels) over the time interval from 20 to 50 min. (a) The replica pressure
field is computed using the low-frequency-derived best-fit model. (b) The replica pressure
field is computed using the best-fit model derived from all 6 frequencies. The white line
on each plot indicates where the environmental model is estimated. The plus signs (right
panels) indicate the true measured source depths. Here, the Bartlett ambiguity surfaces

have not been normalized at each range.



3.4 Conclusions

This chapter has discussed geoacoustic inversion results based upon source tow
data obtained during the ASIAEX 2001 East China Sea experiment. The source tow
data recorded on a VLA were used to estimate the geoacoustic properties of the seafloor.
The waveguide was assumed to be range-independent and the seafloor was modeled as
a homogeneous sediment layer overlying a semi-infinite sub-bottom.

It was found that as frequency increases, the acoustic field is more sensitive
to geometric parameters, less sensitive to geoacoustic parameters, and the ocean sound-
speed profile becomes more important. Therefore, in addition to the original set of the
environmental model parameters used in low-frequency data analysis, two more EOF
coefficients were included. Matched-field geoacoustic inversions using 195, 295, 395, 805,
850, and 905 Hz were carried out by a genetic-algorithm-based optimization approach.
The inversion was performed with the set of data obtained at range of SR = 1.7 km.
The quality of the inverted model was confirmed by time-continuous, source localization

using the mid-frequency data over a 30-min time interval.

This chapter in part is a reprint of the material as it appears in Chen-Fen Huang and
William S. Hodgkiss, “Mid-frequency geoacoustic inversion of source tow data from the
ASIAEX East China Sea experiment,” Oceans2003 MTS/IEEE Conference Proceed-
ings, San Diego, California, 576-581, 2003. The dissertation author was the primary
researcher /author and the co-author listed in this publication directed and supervised

the research which forms the basis for this chapter.



Chapter 4

Uncertainty Estimation

Quantifying uncertainty for parameter estimates obtained from matched-field
geoacoustic inversions using a Bayesian approach requires estimation of the uncertainties
in the data due to ambient noise as well as modeling errors. In this study, the variance
parameter of the Gaussian error model, hereafter called error variance, is assumed to
describe the data uncertainty. In practice, this parameter is not known a priori, and
choosing a particular value is often problematic. Hence, to account for the uncertainty
in error variance, several methods are introduced for implementing both the full and
empirical Bayesian approaches. A full Bayesian approach that permits uncertainty of
the error variance to propagate through the parameter estimation processes is a natural
way of incorporating the uncertainty of error variance. Due to computational complex-
ity of the full Bayesian approach, several methods which use the empirical Bayesian
approach are developed, in which the posterior distributions of model parameters are
conditioned on a point estimate of the error variance. Comparisons between the full and
empirical Bayesian inferences of model parameters are presented using both synthetic

and experimental data.

4.1 Introduction

Ocean acoustic data inversions typically have focused just on inverting the
parameters for one environmental model [13,22,24,38,42], but some researchers have also

considered selecting the best environmental parametrization over a family of geoacoustic



ol

models [6,64]. Under the Bayesian framework, all inferences are based on the posterior

distribution p(m|d,n,) given by

p(mld, ng) o< p(d|m, ny)p(ming) , (4.1)

where m represents the geoacoustic model parameter vector, d the data, and p(d|m, n;)
and p(m|n,) represent the likelihood and prior distribution conditioned on 7, respec-
tively. The symbol n refers to other possible unknown quantities in our mathematical
model, such as uncertainty in signal characteristics as well as uncertainty of other pa-
rameters not included in m (e.g., ocean water column sound speed parameters). As
indicated above, it is customary to keep these quantities at fixed values n,.

Under the Bayesian approach, unless there is absolute certainty regarding the
value of n, inference of m should be made by integrating out the effect of 1 from the

joint posterior probability p(m, n|d):

p(m|d)

/ p(m, n]d) dn (4.2)
— [ s(mld, mp(nid) dn. (43)

The second representation shows that the posterior distribution of interest, p(m|d), is
a mixture of the conditional posterior distributions as shown in Eq. (4.1) given a fixed
n where p(n|d) is a weighting function for the different possible values of 5. This is
referred to as a full Bayesian approach. A major problem with this approach is that
the number of possible parameters to include in the uncertainty analysis might be quite
large.

An alternative, the empirical Bayesian approach [11], is to replace i by a single
estimate 7} obtained from the data. Inference of m is now based on the estimated
posterior distribution

p(ml|d, 7). (4.4)

This simplified approach essentially replaces the integration in Eq. (4.2) by an estimation
step. Since the full Bayesian approach accounts explicitly for the uncertainty in 7, the
inference of m based on Eq. (4.2) should produce a more correct distribution than that

based on Eq. (4.4). For the linear forward model case adjustments to account for the
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uncertainty induced by estimating n, especially to produce valid parameter variances,
can be found in Ref. [11].

This study discusses several methods for implementing both the full and empir-
ical Bayesian approaches with a focus on one important parameter usually not included
in the Bayesian analysis: the error variance v in a Gaussian error model. However, our
methods are applicable to any nuisance parameter. The error variance is influenced by
both errors in the data and systematic errors in modeling the data. While error in the
data, also known as noise, usually can be determined directly from the data (e.g., in the
absence of signal), the systematic error is more difficult to assess. The error variance is
important because incorrect choices for this parameter can seriously skew the posterior
probability density (PPD) for the model parameters of interest.

The full Bayesian approach requires integrating out the nuisance parameters
in Eq. (4.2) and either numerical or analytical integration can be used. Numerical inte-
gration is the most general approach as it can be carried out for any likelihood or prior
distribution (see Sec. 4.3.1). Analytical integration is only possible for certain parame-
ters with specific likelihood functions and prior distributions. For the error variance
parameter in a Gaussian model, integrating out the error variance analytically (Sec.
4.3.2) makes this an attractive approach from both a computational and an analytical
point of view.

For the empirical Bayesian approach, inferences are conditional on point es-
timates of the nuisa.nce parameters in Eq. (4.4) and these can be estimated by either
numerical or analytical optimization (as opposed to the integration used in the full
Bayesian approach). Numerical optimization of the posterior probability with respect to
both nuisance parameters and model parameters can easily be applied to most parame-
ters and likelihood functions using standard optimization procedures [23,66] (Sec. 4.3.3).
Analytic optimization is only feasible for certain combinations of likelihood functions and
prior distributions. Assuming a Gaussian error model, it is possible to estimate the er-
ror variance analytically [38] (Sec. 4.3.4) and thus it is not necessary to use numerical
optimization.

When estimating the error variance an interesting alternative to the point esti-

mate (fixing the error variance at some specified value) is to use the analytic estimator
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of the error variance for each value of the model parameter vector [63]. This gives the
same form of the posterior distribution as the full Bayesian approach (Sec. 4.3.4).

An objective of this study is the analysis of error variance. Since the com-
putational expenses are of little concern for the example, an exhaustive evaluation of
p(m|d) over a grid of parameter space combined with ordinary numerical integration
is employed. This is a robust and accurate approach and is recommended for inverse
problems with only a few parameters (e.g., less than eight parameters). However, if
the number of parameters is large, Monte-Carlo methods of numerical integration [6,22]
should be used.

For the exhaustive integration, it is easier to assess the convergence than for the
complex Monte Carlo methods. The convergence was assured by running the exhaustive
search with a certain discretization and then comparing the result to a down sampled
result. The integration is done by simply summing the enumerated values over the grid,
since the parameters near the edge of the parameter space usually has less contribution
to the integral.

The remainder of this chapter is organized as follows. In the next section,
the formulation of the inverse problem using the Bayesian approach is reviewed briefly.
Section 4.3 outlines the approaches for handling error variance. Section 4.4 provides
an analytic expression for PPD of error variance. Section 4.5 presents the results and
compares the model parameter posterior probability distributions using both synthetic

and experimental data. Lastly, a few concluding remarks are made in Sec. 4.6.

4.2 Formulation of the Inverse Problem

In a Bayesian approach for geoacoustic inversions, inferences about the model
parameter vector m based upon an observed data vector d are made in terms of prob-
ability density functions (pdfs). The basic formula for Bayesian parameter estimation
is represented by the posterior probability density function, p(m|d), which by Bayes’

theorem is given by:
p(d/m)p(m)

p(mid) = BETRE

(4.5)
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where p(m) is the pdf associated with our a priori understanding of m before having
access to the data d.

The posterior probability density provides the full description of the state of
knowledge about model parameters after observing the data. To interpret the multidi-
mensional PPD, marginalization is used to summarize the PPD for a single parameter

m; by integrating over the remaining parameters m’

p(m;ld) = /p(mi,m'|d) dm’. (4.6)

Also, 2-D marginal probability distributions of paired parameters can be obtained in a
similar way. Further, the structure of the marginal posterior distribution is captured
by the highest posterior density (HPD) interval (or region in the 2-D marginal) at a
specified level of probability [8](Sec. 4.5.1).

4.2.1 Single frequency matched-field likelihood function

For matched-field geoacoustic inversions, the relationship between the observed
complex-valued pressure field at a single frequency sampled at an N-element array and

the predicted pressure field, at the frequency of interest, is described by the data model:
d = D(m) + n, (4.7

where d is the observed data and D(m) is the modeled data based upon a parameterized
environmental model. In general, the modeled data is nonlinear with respect to the model
parameter vector m. The residual vector n represents the error terms. Typically, the
residual vector is ambient noise but here the interpretation of n is broadened to include
modeling errors.

If we assume that the error vector n is zero-mean complex Gaussian with co-
variance matrix Cp, i.e., n ~ CN(0,Cp), then the likelihood function p(dim) may be

expressed as:
p(djm, Cp)=7~V|Cp|™! (4.8)
x exp|- (d - D(m))' C5*(d - D(m))]

where N is the number of elements in the array and superscript T denotes the complex

conjugate transpose. Here, for simplicity, we also assume that the error terms may be
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described by independent and identically distributed (IID) complex Gaussian random
variables with common variance v, i.e., Cp = v1. This IID type of assumption is useful
for convenience, but it may not completely model all the errors of interest. In what
follows we shall always refer to the variable v as the variance of the data errors.

The likelihood of the model parameter vector m for a given set of data may be

written as:

L(m,v,s) = p(dm,v,s)
_ 2
= WleN exp (_”dd—(m)s)"_) , (4.9)

v

in which the modeled data D(m) is represented by D(m) = d(m)s, where d(m) is the
replica field vector (or normalized signal field) computed using an acoustic propagation
model for the model parameters m, and s is the complex-valued source signature at the
frequency of interest.

The source signature can be estimated either by the maximum-likelihood (ML)
estimator, i.e., finding the value of s that maximizes the likelihood function [38], or,
should we have no interest in its value, by treating s as a nuisance parameter and eliminat-
ing it by integration (as will be discussed in Sec. 4.3). Here we adopt the former method
and obtain the ML estimate of the source parameter s as: sy, = df(m)d/|d(m)|?.

Substituting this relationship into Eq. (4.9) yields [38]:

1 $(m)
L(m,v) = NN P (———y—) , (4.10)
where ¢(m) denotes an objective function defined as:
d(m)id]?
¢m=d2{1——————- 4.11
(m) = |d| EEECIE (4.11)

in which the second term in the bracket is the normalized Bartlett power objective
function {5] measuring the correlation between the data and the replica vectors. The
objective function in Eq. (4.11) can be generalized [38] when multiple data snapshots

are available.

4.2.2 Multi-frequency matched-field likelihood function

Assuming that the data errors are statistically independent across frequencies,

then the multi-frequency matched-field likelihood function is the product of the single
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frequency counterparts:

J
Lm,vy,...,vy) =[] £i(m,v) (4.12)
J
where J indicates the number of the processed frequencies and £;(m,v;) is the j-th

frequency likelihood with the error variance denoted by v; as in Eq. (4.10). To illuminate

the significance of v;, Eq. (4.10) is rewritten as

L;(m,v;) < exp <—M —Nln 1/j> (4.13)

Vs
in which 1 /I/JN has been expressed as exp(~N Inv;) and the constant 7~ is omitted.

Frequency-dependent error variance

Error variance is frequency dependent. Not only does ambient noise vary across
frequency but the error due to modeling mismatch also varies across frequency. With the
assumption that errors are independent across frequencies, as in Eq. (4.12), the likelihood
of m for multi-frequency cases is the product of the marginal likelihoods of m for each

frequency, with v; being integrated out:

J
L(m) =[] / L;(m, v;) p(v;) dy; (4.14)
i v
where p(v;) is the prior distribution of ; which will be specified in Sec. 4.2.3.

A single global error variance

A common approach is to assume the variation of the data error variances v;

over the selected frequencies is negligible and model them by a single variable vy, i.e.,
vj=u, forj=1,...,J. (4.15)

The likelihood for the selected frequencies with a common error variance vy can be
written as:

L{(m,1y) x exp <—Vi$a(m) —JNIn 1/0> (4.16)
0

where ¢°(m) = 15" ¢;(m) is the arithmetic mean of the objective function over fre-

quencies.
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Equations (4.14) and (4.16) hold under the assumption that the errors are
independent for each frequency. However, when the errors due to frequency-dependent
modeling mismatch are the dominant source of error, the modeling error may not be
independent across the frequencies used. Therefore, the number of frequencies J must

be replaced with an effective number of frequencies Jeg.

4.2.3 Noninformative priors

Before applying Bayes’ theorem to make inference of model parameters, one
needs to specify their prior distributions. In situations where one does not have a strong
prior belief, it is of use to have a natural reference prior. A noninformative prior is so
called because it is noninformative with respect to the information in the data. For the
model parameters m, one may have prior knowledge from either historical data or the
other measurements. Based on the prior knowledge, we assume that the values of the
parameters are within lower bounds /; and upper bounds u; and are equally likely. Then

a uniform distribution over that range is a practical choice for the prior,

p(mi) = i <my <. (4.17)

For the error variance parameter, all one knows about this parameter a priors
is that it is always positive but possibly of unknown order of magnitude (e.g., a standard
deviation or a variance). It was suggested by Jeffreys [51] that based on invariance
principles the noninformative distribution can be approximated by a uniform prior on
Inv yielding :

p(v) x l (4.18)

14
For further discussion, see Jaynes [49], Tarantola and Valette (78], and Box and Tiao [8].
With the additional assumption that all model parameters (my,...,mps) and v
are mutually independent, the prior distribution is the product of the prior distributions

for each parameter:

Rirm

M
p(m,v) = p(m)p(v) = Hp(mi)p(V) x =, (4.19)

over the interval where prior probability of m is nonzero. Then, based upon Bayes’
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theorem, the posterior distribution is as follows:

p(m,v|d) o p(djm,v)p(m,v)
« L(m,v)i (4.20)
X exp (—ﬂuﬂ) —(N+ 1)1n1/>
with the scale factor that makes the posterior distribution integrate to one being omitted.
The final representation of Eq. (4.20) will be extensively used in this analysis.
Note that the posterior distribution for a uniform prior on v or for a uniform

prior on Inv differs only in an N or N + 1 in front of Inv (Eq. (4.20)). This suggests

that for reasonably large N their respective PPDs are similar.

4.3 Error Variance as a Nuisance Parameter

In this section, we shall treat the error variance in a Gaussian error model as a
nuisance parameter and discuss both the full and empirical Bayesian methods from an
implementation perspective. For convenience of comparison, the approaches discussed

below are summarized in Table 4.1.

4.3.1 Full Bayesian estimation — numerical integration

The full Bayesian approach is a natural way of incorporating the uncertainty
of error variance in the analysis. The approach does not assume the error variance at a
particular value, rather, it regards the error variance as an unknown in the parameter
space. In this way, the approach allows the data uncertainty to propagate through the
parameter estimation processes, and at the end, reflect uncertainty in the error variance
in the resulting parameter estimation.

Therefore, the true posterior distribution of the model parameters is obtained

by integrating out v from the joint posterior distribution of m and v:

p(mid) = /p(m, v|d) dv. (4.21)

4.3.2 Full Bayesian estimation — analytic integration

In this approach, the error variance is considered as a nuisance parameter and

is eliminated by integrating the likelihood function weighted by the prior distribution of
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v over the entire range [2]:

p(mld) = /0 ” p(m, vjd)dv

x p(m) /Ooop(d|m, v)p(v)dr. (4.22)

- -~
v~

p(d/m)

Incorporating the noninformative prior of v in Eq. (4.18), the exact expression of p(d|m)
can be shown to be of the form#:

1 (N-1)

p(djm) = N )

(4.23)

This likelihood function is preferable in estimating PPD of model parameters for
two reasons. Theoretically, this formula is derived based on a full Bayesian methodology.
Computationally, this method is faster than a computer-based numerical integration of
the full Bayesian procedure.

The above analytic solution, Eq. (4.23), can be extended straightforwardly to
the multi-frequency data set. From Eq. (4.14), the multi-frequency likelihood function

can be written in a concise form:

where ¢’ (m) = {/TI¢,(m) is the geometric mean of the objective function over frequency
when the error variance is frequency dependent. However, for the case where the error
variance is assumed to be constant over the processed frequencies, the arithmetic mean

6" (m) is used instead of ¢’ (m) in Eq. (4.24) in a manner analogous to that used by Ref.
[63].

HThe derivation of the following formulas (4.23) requires substituting Eq. (4.10) and Eq. (4.18) into
Eq. (4.22) and completing the integrand by the use of Gamma integral of the form:

Strictly speaking, the limits of the integration do not have to go form zero to infinity, since this prior is
nultiplied by a Gaussian likelihood function which dies away rapidly as v — 0 and v — oo (c.g., Refs.

[2] and [9])
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4.3.3 Empirical Bayesian estimation — optimizing error variance jointly

with model parameters

The main idea behind this approach is to consider the error variance on the
same level as the model parameters and optimize the joint posterior probability p(m, v|d)
to find the estimate of v

Vmap = arg max p(m, v|d). (4.25)
14

Then, the posterior distribution of the model parameters is approximated by fixing the

error variance at vysp:

(4.26)

Umap

p(m|d) ~ p(m|d, vyap) x exp [-—m] .

This approach is easier to implement numerically compared to the full Bayesian ap-
proach because the value of the error variance can be found by any efficient optimization

procedure, such as simulated annealing or genetic algorithms [34].

4.3.4 Empirical Bayesian estimation — maximum likelihood estimate

The maximum likelihood estimator for the error variance can be obtained an-
alytically
¢(m)

e (m) = N (4.27)

Two approaches for implementing this estimator in ocean acoustic inversions have been
proposed by Mecklenbrauker and Gerstoft [63].

Following an empirical Bayesian methodology, one requires only an estimate of
the error variance. First, the ML solution of model parameter vector, m, is found (by
minimizing the objective function, Eq. (4.11) over all m). Second, an estimate of error

variance is obtained [38]

N m
VML(m) = % (428)
Then, the PPD of m is approximated by fixing v at vy, (f):
~ m
planfd, i, () o exp |~ 222 . (1.29)
Unme

The error variance estimated from either vysp (Eq. (4.25)) or vy (Eq. (4.28))
often results in overly optimistic posterior distributions of the model parameters since a

single value of the error variance may not be representative.
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The other approach proposed in Ref. [63] is to substitute Eq. (4.27) into the
likelihood formula (Eq. (4.10)) without fixing a value for . With the noninformative

prior for m, the PPD of m is proportional to the likelihood function

p(mid, i (m)) « p(m)L(m, vy (m))

x L{m, vy (m)) (430)
X SN

Note that the likelihood formula derived in Sec. 4.3.2 (Eq. (4.23)) and the result derived

above (the third representation of Eq. (4.30)) possess the same functional form.

4.4 PPD of the Error Variance

The posterior distribution of v is obtained by integrating the joint PPD over

the model parameter vector:

prv|d) = /p(m,l/|d) dm (4.31)

One could always evaluate the integral in Eq. (4.31) numerically, but an analytic expres-
sion can be obtained under the simplifying Gaussian approximation for the PPD of the
model parameters. This approach is known as Laplace’s method, a family of asymptotic
techniques used to approximate integrals. [7)

Inspired by Malinverno [61], let us assume that, for any value of v, the PPD
of the model parameter vector is approximated by a Gaussian function of m centered
on the MAP solution m § with the posterior covariance matrix of model parameters 6M

(The hat is used to denote the quantity inferred a posteriori),

T O m B
p(m,v|d) =~ p(m, v|d) exp (_(m m) (;M (m m)) . (4.32)
Since an unnormalized Gaussian pdf has the following constant
T3-1 —
/exp <—m—2“9 dm = (27)M/2\/|Cy], (4.33)

fNote that the symbol M refers to both MAP and ML estimates of m. In the abscnce of prior
information on m, the m that maximizes the likelihood function, the ML solution, is the same as the
MAP solution that maximizes the posterior pdf p(mi|d).
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substituting Eq. (4.20) into p(m, v|d) yields the approximation to the marginal PPD of
V.

p(v|d) ~ % exp (—%n—)) |Cul, (4.34)

where a is a scale factor that makes p(v|d) integrate to one.
To evaluate the posterior covariance matrix of model parameters éM, the for-

ward model is linearized with respect to the best-fit model vector
D(m) ~ K (m - m) + D(m), (4.35)

where K = a—Dl%nE) |m= & isan N x M matrix of Fréchet derivatives evaluated at the best-
fit model solution m. Comparing the exponent of Eq. (4.32) with Eq. (4.8) in which the
nonlinear forward model is substituted by Eq. (4.35) gives

Cu = (2KTC',51K)"1 . (4.36)

Since the data errors are expected a priori to be IID with variance v (Cp = vI) and
with the further assumption that the model parameters are resolved by the data set, the

determinant of GM is

[Cul =

—1 .
g(KTK) 'oc WIpge] oc M7 (4.37)

where M* is the number of model parameters resolved by the data. Generally speaking,
M* is determined by the number of elements in the model parameter vector when K
has full rank (all the model parameters are constrained by K). However, due to the
presence of noise, the parameter sensitivity and the possibility of linear dependence
between the model parameters, not all of these may be estimated to a useful accuracy.
Therefore, M* < M. Then, substituting Eq. (4.37) into Eq. (4.34), we obtain the

following approximation
p(vld) o v [GN=M")/2+1] oy, (—@) . (4.38)

This approximation to the marginal PPD of v is the so-called inverse chi-square dis-
tribution used in Bayesian analysis (see Ref. [8], Sec. 2.3.1). However, the inverse

chi-square distribution presented in Ref. [8] is based on real-valued Gaussian random
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Figure 4.1: Posterior distribution of v with a log-uniform prior on ». solid curve: the
numerical integration result from the full Bayesian approach. Dashed curve: the analytic

result with AM* = 4.

variables. For the complex-valued Gaussian random variables, the scaled error vari-
ance v/(2¢(m)) has the inverse chi-square probability density with 2N — M* degrees of
freedom.

Figure 4.1 shows the posterior distribution of error variance taken from the
synthetic data case where we inverted for 4 non-linear model parameters (details are
given in Sec. 4.5.1 and Fig. 4.4). The solid curve is the numerical integration result
obtained from the full Bayesian method. We approximate this full Bayesian result with
the analytic expression in Eq. (4.38) by adjusting the parameter M™* and found that with
M* = 4 (dashed curve in Fig. 4.1) it has excellent agreement with the true PPD of v. In
this example, for the nonlinear forward model, the analytic expression of the posterior
distribution of v agrees well with the full Bayesian result, given the number of well
determined parameters is used. As discussed later, setting M™* = 4 is reasonable since in
this case all 4 parameters are well determined. Note that even though the PPDs of the
geoacoustic parameters are only very approximately Gaussian, the PPD of v follows an

inverse chi-squared density.

4.5 Results and Discussion

4.5.1 Synthetic data

To illustrate the various approaches presented in Sec. 4.3, a data set is synthe-
sized using the environmental model employed in the Geo-Acoustic Inversion Workshop

1997 [81]. Figure 4.2 shows the baseline model that consists of a downward refracting
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Figure 4.2: The sdc environment from the Geo-Acoustic Inversion Workshop 1997 [81]

shown here for the parameters corresponding to ground true.

sound speed profile overlying a positive-gradient sediment layer atop of a homogeneous
subbottom layer. The vertical array consists of 20 hydrophones equally-spaced over a
95 m interval with the first phone at 5-m depth, and the source located at 1-km range
and 20-m depth, transmitting CW tones at 100 and 200 Hz. The calculations of acoustic
fields are performed by the normal-mode propagation model ORCA [82]. To understand
the interaction of acoustic fields with the environment, the range-depth acoustic fields
for these two frequencies are plotted in Fig. 4.3.

In order to demonstrate the effect of error variance on the parameter estimation,
the amount of noise corresponding to 20-dB SNR (equivalent to vgye = 0.0083, see Eq.
(4.45) in the Appendix) is purposely added to the data. The parameters to be estimated
are the geoacoustic parameters, including sediment thickness d, top and bottom sediment
sound speeds Csed tops Csed,bots and subbottom sound speed cgy1,, and the error variance v.
Figure 4.4 shows the parameter estimate using the full Bayesian approach for a frequency
of 100 Hz. The line subplots along the diagonal are the one-dimensional (1-D) marginal
PPDs for each parameter, p(m;|d), and the contour subplots in the upper triangle are
the 2-D marginal PPDs corresponding to the paired parameters in the bottom-most and
left-most line subplots, p{my, m;|d). In each contour plot, the gray-scale coloring from
darkest to lightest represents 50%, 75%, and 95% highest posterior density (HPD). The
% HPD describes a region which contains 8% of the total probability {8]. Due to the

nonlinearity of the forward model, the PPD of model parameters is no longer Gaussian.
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Figure 4.3: Range-depth transmission loss for F = 100 and 200 Hz, respectively using
the sdc environment. The two white lines mark the water-sediment (top) and sediment-

subbottom {bottom) interfaces.

Therefore, the best-fit model (cross signs in 2-D contours or arrow lines in 1-D plots) is
not necessarily coincident with those from the mode of the marginal (plus signs in 2-D).

The 1-D and 2-D marginal PPDs reveal the uncertainty of the parameter es-
timation but in addition the 2-D PPDs also show the correlations between the paired
parameters. For example, the contour subplot on row 1 and column 3 shows the cor-
relation between bottom sediment sound speed Cged ot and sediment thickness d. The
result suggests that there is a strong positive coupling between these two parameters.
Therefore, the inter-parameter correlation results in a relatively flat distribution in the
1-D marginal PPDs for the parameters cgednot and d. If more information about one
of these two parameters could be obtained, then the 1-D marginal of the other could
be sharpened. Likewise, the parameters of Cged bot and Ceed,top are strongly correlated
in a negative manner. However, the 2-D PPDs for each pair of m; and v show that
the error variance v has little correlation with any other geoacoustic parameters, i.e.,
p(mi, v|d) = p(m;|d)p(v|d).

The error variances estimated from various approaches are summarized in Fig.

4.5. It shows the marginal PPD for the error variance using the full Bayesian approach,
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Figure 4.4: Marginal posterior probability densities (PPDs) of the geoacoustic parame-

ters as well as the error variance for F' = 100 Hz. In each 1-D marginal, the horizontal

error bar shows 95% highest posterior density (HPD) interval.
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Figure 4.5: The enlarged version of the marginal posterior distribution of the error

variance in Fig. 4.4. The vertical lines indicate the estimated error variances and the

actual value of the error variance added to the data (14 = 0.0083). Note that vyyap

is the MAP estimate of the marginal PPD of v; it is not to be confused with the MAP

estimate of the multidimensional joint PPD, vyap.
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Figure 4.6: Comparison of the marginal PPDs for the geoacoustic parameters using

different approaches in handling the error variance. (F = 100 Hz)

along with the estimates from the other approaches. In Sec. 4.4, it was shown that the
error variance is distributed @ posteriori as an inverse chi-square with (2N — M*) degrees
of freedom, where here M* = 4. One may consider the peak of this marginal posterior
distribution as an estimate of the error variance, named as the marginal MAP (MMAP)
value of error variance, vyuap. The solid line shows the actual value of the error variance
added to the data (0.0083). The ML (dashed), MAP (dot) and MMAP (dashed-dot)
estimates of error variance are also shown. Among the various point estimates of error
variance, vyuap is the largest since it automatically takes into account the reduction in the
degrees of freedom (for the inverse chi-square distribution) in the process of integration
over the model parameters. The difference between the MAP and ML estimates of the
error variance is due to the 1/v prior being used. Since the only uncertainty is the
random error added to the data, there is not much difference in the estimated error
variances among the various approaches.

The comparison of the marginal PPDs for each of the geoacoustic parameters
is given in Fig. 4.6. The 1-D PPDs are estimated using full Bayesian treatment of
error variance via numerical integration (solid; Sec. 4.3.1) and these using the empirical
Bayesian methods based on the true value (dashed-dot), the ML (dashed) and MAP (dot)
estimates of the error variance. In addition, the PPDs using the analytic integration of

the full Bayesian approach (Sec. 4.3.2) are identical to these using numerical integration
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(solid). From the simulations, the empirical Bayesian method using an ML or MAP

estimate of the error variance is a good approximation to the full Bayesian approach.
p(m|d) ~ p(m|d,v) (4.39)

However, the difference would become more distinguishable when the number of inverted
parameters is similar to the number of the data points.

Figure 4.7 shows the marginal PPDs for the same parameter set using 200-Hz
frequency data with the additive noise corresponding to 15-dB SNR (1vgye = 0.0194)
in contrast to the 20-dB SNR noise added to the 100-Hz data. Except for cseq top, the
geoacoustic parameters are poorly estimated in comparison of Fig. 4.4. Since the higher
frequency has higher resolution in the upper sediment {more structure in the acoustic
field at the water-sediment, as seen in Fig. 4.3) but shorter penetration depth, only
Csed,top 15 better resolved at this frequency.

Having estimated the marginal PPDs using data at 100- and 200-Hz frequen-
cies separately, we then estimate the PPDs using data from both frequencies which have
different error variances. Figure 4.8 demonstrates the multi-frequency case: (a) the error
variance are appropriately accounted for (modeled by v; and 1») and (b) the error vari-

ance are assumed the same over these two frequencies (modeled by vp). In addition, the



69

1-D PPDs using the analytic integration of full Bayesian method, Eq. (4.24), are shown
in both figures; where the geometric mean is used for Fig. 4.8(a) and the arithmetic mean
for (b). The results are not distinguishable from those using the numerical integration.
Comparing Figs. 4.8(a) with (b), we see there is slight difference between the
two treatments of error variance. The uncertainties of the geoacoustic parameters using
two frequencies (Fig. 4.8) are reduced significantly in contrast to those using single

frequency (Figs. 4.4 and 4.7), in agreement with Refs. [13,22,38,42].

4.5.2 Experimental data

Data acquired during the 2001 East China sea experiment (see Ref. [46]) are
used to illustrate the approaches. A 16-element vertical line array was deployed in 105-m
deep water (Element #4 failed during deployment). The source was towed at a depth
of about 48.5 m. A general bathymetric and geological survey has indicated that in
the neighborhood of the experimental site, the environment is nearly range-independent.
Therefore, the ocean environment is modeled as an ocean layer overlying a uniform
sediment layer atop of a basement. All layers are assumed to be range independent.

In our previous study [46], matched-field geoacoustic inversion using the fre-
quencies 195, 295, and 395 Hz was carried out to invert for the seafloor parameters.
Based upon the GPS position of R/V Melville, the observed data d was approximately
1.7 km away from the source. To reduce mismatch in water depth, source position, array
geometry and ocean sound-speed profile, we have inverted for total 13 model parame-
ters. In order to estimate the model parameters, a global optimization method, based
on genetic algorithms, along with the normal-mode propagation model SNAP [52] was
used.

We inspect here the posterior probability densities of the following 5 model
parameters: water depth (WD), sediment sound speed (cgq), basement sound speed
increase (Ac), sediment thickness (d) and sediment attenuation (ogeq), with all other
parameters fixed at their optimal values (using the empirical Bayesian treatment). The
same data set is used in this analysis but with the selected frequencies of 195 and 395
Hz.

Figure 4.9 shows the full Bayesian approach for the multi-frequency case: (a)
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Figure 4.8: Full Bayesian approach for the multi-frequency case. (a) 1-D and 2-D mar-
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Figure 4.10: Posterior marginal distribution of the error variance obtained from the
numerical integration. (a) F = 195 Hz and (b) F = 395 Hz. The vertical lines show the

different estimates of error variance.

the frequency-dependent error variances are considered and (b) the error variances are
assumed constant over frequencies. The error variances do not vary too much across
the processed frequencies, therefore, the PPDs of the model parameters do not have
significant difference between the two treatments of error variances.

Figure 4.10 shows the posterior marginal distributions of error variance obtained
from the numerical integration: (a) F = 195 Hz and (b) F' = 395 Hz. The error estimates
from the other examined approaches are superimposed on the PPD of v; the dotted line
represents the ambient noise estimated directly from the data (corresponding to SNR =
23 and 21 dB, respectively) and the dashed line denotes the ML estimate of the error
variance. The marginal distribution of the error variance captures that the effective error
variance may be larger than the ambient noise estimate.

In the experimental data, with the high SNR, the modeling error in the parame-
terized environment is the dominant source of error in the estimation procedure. Because
the modeling error may not be independent across the receivers, the IID assumption in
the likelihood function is no longer appropriate; a full data uncertainty covariance ma-
trix Cp is needed. Therefore, to describe the data uncertainty for N complex-valued
measurements, a huge number of quantities, N2, needs to be estimated. A way to fix

the defect of the likelihood function is to down sample the observations as adopted by
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Figure 4.11: Comparison of the marginal PPDs for the model parameters.

Ref. [83].

Finally, the comparison of PPDs for the model parameters using different error
variance estimates is shown in Fig. 4.11. The PPD of the model parameters using the
ambient noise variance {dotted) yields too optimistic an uncertainty estimate. The PPD
based on the ML estimate of error variance (dashed) is similar to the one obtained by
the full Bayesian approach (solid). It is noteworthy that, in the 1-D marginal PPDs
of WD and cgeq, the location of the peaks varies with different values of error variance.
The reason is that there exists nonsymmetrically-distributed HPD contours in the joint
marginal PPD, and when using a lower value of the error variance, the lower probability

density in the 2-D marginal contributes more into the 1-D marginal distribution.

4.6 Conclusions

This chapter describes several methods for handling the nuisance parameters
based on both the full and empirical Bayesian approaches. In a full Bayesian approach,
the inference is made from the joint posterior probability distribution (PPD) of the model
parameters and the nuisance parameters, whereas in an empirical Bayesian approach
the PPD of the model parameters is conditioned on a point estimate of the nuisance

parameters. The full Bayesian approach takes more complete accounting of uncertainty
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in nuisance parameters, but it is computationally expensive. The applications of the
approaches to the error variance parameters in a Gaussian error model were examined.

Following a full Bayesian methodology, the analytic expression of PPD of the
model parameters was derived for both single frequency (Eq. (4.23)) and multi-frequency
data (Eq. (4.24)). The results (the discussions of Figs. 4.4, 4.7, and 4.8) show that the
PPD of the model parameters using this analytic formula cannot be distinguished from
that using numerical integration of the full Bayesian approach. Therefore, the analytic
integration of the full Bayesian approach is theoretically and computationally preferred.

The analytic expression for the PPD of the error variance was derived. This
analytic result agrees well with the distribution obtained using numerical integration,
provided that the number of well-determined model parameters is used.

The empirical Bayesian approach using either the maximum likelihood or the
maximum a posteriori estimate of the error variance was implemented. For the examples
presented here, the 1-D PPDs of the model parameters using both the empirical and full

Bayesian approaches yield similar results, but this is most likely not true in general.

4.7 Appendix: Additive noise

For the case that the observed data is written in the form of cross spectral
density matrix (CSDM), the noise-contaminated data with error variance g is synthe-
sized, based on true data d, by

R =dd' + iyl (4.40)

The array signal-to-noise ratio (SNR) is the ratio of signal and noise powers

d’
SNR = 10log —;g (4.41)
0

Equation (4.11) can be generalized as

d(m)'Rd(m)

¢o(m) =TrR |1 - TR

(4.42)

Note that the replica field vector d(m) is computed from an acoustic model for the vector
of unknown parameters m and is normalized to have unit length. If we normalize the

objective function by the trace of the CSDM, denoted by TrR, (the total intensity of
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the acoustic field recorded at the receivers):

_ ¢o(m)
¢n(m) = TR’ (4.43)
the noise estimate needs to be scaled by TrR
_ 1Z1] _ 1 0]
"TTR T did+ N (4.44)
and is written in terms of the array SNR
1
Un (4.45)

T 10SNR/I0 L V-
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Chapter 5

Estimation of Transmission Loss:

A Postertori Analysis

A common problem in sonar system prediction is that the ocean environment
is not well known. Utilizing probabilistic based results from geoacoustic inversions we
characterize parameters relevant to sonar performance.

This chapter develops an approach for predicting transmission loss and its sta-
tistical properties based on posterior parameter probabilities obtained from inversion of
ocean acoustic array data. This problem is solved by first finding an ensemble of rele-
vant environmental model parameters and the associated posterior probability using a
likelihood based inversion of the acoustic array data. In a second step, each realization
of these model parameters is weighted with their posterior probability to map into the
transmission loss domain.

This approach is illustrated using vertical-array data using a recent benchmark-
ing data set and from data acquired during the ASTAEX 2001 East China Sea experiment.
The environmental parameters are first estimated using a probabilistic-based geoacoustic
inversion technique. Based on the posterior probability that each of these environmen-
tal models fits the ocean acoustic array data, each model is mapped into transmission
loss. This enables us to compute a full probability distribution for the transmission loss
at selected frequencies, ranges and depths, which potentially could be used for sonar

performance prediction.

~1
~3
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Data domain, D

Environmental
domain, M

Figure 5.1: An observation d (€ D) is mapped into a distribution of environmental
parameters m (€ M) that potentially could have generated it. These environmental

parameters are then mapped into the usage domain U.

5.1 Introduction

A weakness in sonar performance prediction has been the lack of means for
quantifying the impact of uncertainty in estimates of the ocean environment. In the
last decade there has been much work on inversion of geoacoustic parameters and their
associated uncertainty, see Refs. [22, 32, 38,48, 57,71, 79]. An important problem is
how to translate these parameters and their associated uncertainty into other domains
where information can be used. In this chapter we will develop and show a method for
translating this uncertainty into a utility domain, the transmission loss (TL) domain.
The transmission loss domain is important as it can be used in connection with sonar
performance prediction (e.g., Ref. [54] and in particular the paper by Abbot and Dyer (1]).

Figure 5.1 summarizes the estimation of TL (usage domain) from ocean acoustic
data observed on a vertical or horizontal array (data domain). The geoacoustic inverse
problem is solved as an intermediate step to find the posterior distribution of environ-
mental parameters p(m|d) (environmental domain). We are not directly interested in
the environment itself but rather better statistical estimation of the TL field, the usage
domain u. Based on the posterior distribution p(m|d), the probability distribution of
the transmission loss p(u) is obtained via Monte Carlo simulation. From this TL proba-

bility distribution, all relevant statistics of the TL can be obtained, such as the median
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and percentiles.

Both the experimental data d and the usage domain model u are related to
m via forward models D(m) and U(m), respectively. Thus formally we have u =
U(D~!(d)). However, this direct mapping is ill-posed and is instead interpreted proba-
bilistically where we also can include prior information. It is assumed that the mappings
D(m) and U(m) are deterministic, so that all uncertainties are in the data and environ-
mental parameters. However, in Mosegaard and Tarantola [69] and Rogers et al. [72],

the forward mapping is assumed to be probabilistic.

Overview of Algorithm

The principle of the inversion is indicated in Fig. 5.1. Based on the ocean
acoustic data d we statistically characterize TL (the usage domain u). The vector d
represents the acoustic data observed at N hydrophones and the vector u represents
TL at several ranges and depths. As shown in Fig. 5.1, this is mapped via a set of
M environmental parameters m. The approach involves a number of steps as outlined
below:

1. Determine an environmental parametrization for the ocean acoustic envi-
ronment and select an appropriate propagation model. This defines the
mapping D(m) from the environmental domain m to the data domain d.

2. Determine the mapping U(m) from the environmental domain m to usage
domain u. Except for a change in geometry, here this is similar to the
mapping used to determine D{m), but could be any other mapping.

3. Find acceptable model parameters m from the acoustic array data. As indi-
cated in Fig. 5.1, a region around the data can map into several acceptable
solutions in the environmental model domain.

4. Map the acceptable models m into the usage domain u. Several environ-

mental models can map into the same usage region.

As indicated in Fig. 5.1, the mapping from data to usage domain is non-unique.
There are many environmental models that give about the same fitness to the observed
data. Among those models, the maximum likelihood (ML) estimate of the environmental

model gives the most likely fit. Instead of using just one estimated environment, it is
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proposed to describe the environmental solution probabilistically. This probability is
then mapped into the usage domain. Knowing the posterior probability distribution
in the usage domain is preferable to having a single point estimate, such as the usage

domain result corresponding to the ML solution.

5.2 Inverse Problem Framework

In the Bayesian paradigm, the solution to determining parameters of interest
m given an observation d is characterized by the posterior probability p(m|d). First,
the prior information about the model parameter vector is quantified by the probability
density function p(m). Then, this information is combined with the likelihood function
p(d|m) provided by the combination of data and the physical model to give the posterior
information of the model parameters p(m|d). A complete discussion of inverse theory
from a probabilistic point of view may be found in the recent textbooks by Tarantola [77].
Additional details of Monte Carlo sampling of posterior distributions can be found in

Refs. [22,38,60,68,69,74]. The solution to the inverse problem is then
p(d|m)p(m)
p(m|d) = W )

x  L{m)p(m) (5.1)
where p(d) is a normalizing factor that makes the posterior probability density p(m|d)
integrate to one; since it does not depend on environmental model m, it is typically
ignored in parameter estimation. Hence, as shown in the second representation, the
normalization constant p(d) is omitted and a brief notation £(m) is used to denote the
likelihood function p(d|m). The posterior distribution p(m|d) carries all information
available on models originating from the data and from data-independent prior infor-
mation. From this distribution all relevant features of the environmental model can be
found such as the maximum a posteriori (MAP) estimator.

The posterior probability distribution p(m|d) is M-dimensional, where M is
the dimension of m. How to compute the posterior distribution p(m|d) depends on the
dimension M. For small scale problems, M < 8, evaluating the likelihood function over
a grid of parameter values seems most efficient. For medium scale problems, utilizing

sequences of random numbers sampling from the posterior distribution, as known as
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Markov chain Monte Carlo methods {6,22], is most efficient. For large scale problems
obtaining samples from the posterior distribution is impractical, it is necessary to make
a Gaussian approximation to the posterior distribution which do not require extensive
sampling of the posterior distribution, see e.g., Ref. [60, 78].

In order to develop the present method, we focus on small scale problems and
thus the posterior distribution p(mld) is evaluated by computing the distribution over

a grid of parameter values.

5.2.1 Probability of u

We are not only interested in the environment itself but also better estimates
in the information usage domain u. Based on the posterior distribution p(m|d), the
distribution p(u) is obtained and from this distribution all relevant statistics of the usage
domain can be obtained. In the present application, the usage domain is transmission
loss.

For either the posterior or prior probability distribution of the environmental

parameters, the probability distribution of u is obtained

p(w) = [ dU(m) - ulp(m) dm (5.2)

where M represents the environmental model domain. This integral is implemented
numerically by using samples from the model domain m based on the probability dis-
tribution p(m) and then binning U{m). For the posterior it is implemented by first doing
an inversion to determine p(m|d) and storing the environmental samples m; found in
the inversion. These samples are then reused to compute the TL.
As the full probability distributions are available and are not necessarily Gaussian,

it is preferable to characterize the distributions with medians and percentiles instead of
means and standard deviations. Since the distributions are not symmetric around the

medians, neither are the percentiles.

5.2.2 Likelihood and Objective Function

This section derives a likelihood function to be used in the probabilistic inver-

sion following the same approach as described in Gerstoft and Mecklenbrauker [38,63].



82

The relation between the observed complex-valued data vector d(w;) on an N-element
hydrophone antenna array and the predicted data D(m,w;) at an angular frequency w;
is described by the model

d(w;) = D(m, w;) + n{w;) (5.3)

where n(w;) represents the error term. The predicted data is given by D(m,w;) =
d(m,w;)s(w;), where the complex deterministic source term s{w;) is unknown. The
transfer function d(m,w;) is obtained using an acoustic propagation model and an en-
vironmental model m [52]. For simplicity, data from only one frequency is assumed.
However, the theory for multifrequency is also described in Refs. [38,63].

Assume the errors n to be Gaussian distributed with zero mean and covariance
Cp. The errors represent all features that are not modeled in the data such as noise,

theoretical errors, and modeling errors. Hence, the likelihood function is

L(m,Cp,s) = 7 V|Cp|™! (5.4)
exp (~[d ~ sd(m)])fCp1[d — sd(m)])

where N is the number of data points and superscript t denotes the complex conjugate
transpose. Although strictly speaking not true, for convenience we assume Cp = v1.

The source term s can be estimated in closed form by requiring Qlﬂgfﬁ = 0, whereby

dfd(m)
SmL = W . (5-5)

It is seen that s depends on m but not on v. After substituting sy, back into Eq. (5.4),
the likelihood function is then

L(m,v) = ﬁleN exp <—@) (5.6)
where T
o= e [

is the objective function. The maximum likelihood estimate of the noise vy, can be

estimated in closed form by solving mﬁé =0,

_ ¢(m)
Unp = —N—— . (58)
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The ML solution of the model parameter vector my,, is obtained by maximizing
the objective function over all m. Finally, an overall estimate for the error power v is
obtained from Eq. (5.8) at the environmental ML solution: vy (my,.) and can be re-
inserted into the likelihood function. For simplicity, we consider the error as known and
only keep the free argument m of the objective function ¢. This approach leads to [38]

N N m
o] Vo]

The above derivation assumes that the error in each sample is uncorrelated

L(m) = (5.9)

with the next sample. In practice these are strongly correlated because the independent
information is limited by the number of propagating modes. Therefore the number of
samples N in the above equations must be replaced with the effective number of samples,

Neg.

5.3 Examples

Two examples are used to illustrate the approach. The first example (described
in Sections 5.3.1 and 5.3.2) is based on Test Case 1 (TC1) of the geoacoustic inversion
workshop [12] sponsored jointly by the Office of Naval Research (ONR) and the Space and
Naval Warfare Systems Command (SPAWAR). The second example (Sections 5.3.3 and
5.3.4) is based on real data taken from the ASTAEX 2001 East China Sea experiment [46].
For both examples, we first carry out an inversion to obtain the posterior probability
p(m|d) as discussed in Section 5.2.2 and then estimate the probability of the TL using
Eq. (5.2).

As described in Sections 5.3.1 and 5.3.3, we first do a full inversion and then
an exhaustive inversion for a few of the more important parameters. The reason for
the two-step inversion procedure is to be sure that the posterior probabilities p(m|d) is
sampled sufficiently dense so the transmission loss probability is correct. Ideally, these
two inversions could be combined into one step.

Both examples were solved using the standard inversion package SAGA [32,34].
SAGA is a software package that helps the user determines the best set of parameters
to match a given data set. SAGA has integrated some of the best ocean acoustic and

electromagnetic forward model codes into the inversion and can handle many types of
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data, as documented in papers. As its main thrust it uses genetic algorithms, but also
can handle simulated annealing, very fast simulated annealing, Cramer-Rao bounds, and

Monte Carlo Metropolis sampling.

5.3.1 TC1 - Inversion

In the recent geoacoustic inversion workshop, several range dependent bottoms
with a complicated geoacoustic structure were supplied. Here we focus on TC1. TC1
represents a monotonic downslope propagation with the bathymetry ranging from 90
m (0-km range) to 150 m (5-km range). The ocean sound speed profile is downward
refracting and is given by ¢, (z) = 1495 — 0.4z, where z is the water depth in meters.
The source depth is 20 m. The data were generated by the fidelity parabolic equation
RAMGEO code [16]. There was no uncertainty in recording geometry and both ampli-
tude and phase were provided. For the present application, we use the vertical array
data at 0.5-km range at frequencies 50 and 300 Hz to do the inversion. The bottom is
modeled as a 3-layered sediment overlying a basement where the thickness and the sound
speeds of each layer are the unknown model parameters. It should be pointed out that
the true bottom is considerably more complicated than the 3-layered sediment model we
are using. The inverted environmental parameters and their search bounds are indicated
in Fig. 5.2 (e).

Figure 5.2 summarizes the whole inversion process (which is repeated from

Ref. [36]). Detailed comments for each panel are provided below:

(a) A contour plot of the TL (dB) derived from the most likely (best-fit) envi-
ronmental model.

(b) The comparison of observed TL (solid) and predicted TL (dashed) at 250
Hz for both the 20 m and 85 m deep array (the TL at 85 m has been offset
downward 25 dB). Note that data from this frequency has not been used in
the inversion and is thus a test of how well the inversion performed on the
vertical array data.

(¢) The match of the observed data (solid) and inverted field (dashed) on the
vertical array at the frequencies (50 and 300 Hz) used in the inversion.

(d) The obtained (dashed) and true (solid) bottom sound speed profiles.
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Figure 5.2: Inversion results for Test Case 1 (TC1) using vertical array data at 0.5 km

(see the text for the details).
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maximum in the marginal distribution might not correspond to the ML estimate.

(e) The posterior distributions for the inverted model parameters.

Having found a good environmental parametrization and a model parameter
estimate, a second inversion run is carried out to estimate the posterior distribution of
the bottom sound speed profile, as shown in Fig. 5.3. All other parameters are kept at
their optimal values found in the first inversion. Note that here we select arbitrarily a
three-layered model for the bottom profile, but a more systematic approach would be
to use evidence testing to find the most likely environmental parametrization [6]. The
inverted parameters in the second inversion are the layer-1 sound speed, the increase
in sound speed for layer-2 (from layer-1), the increase in sound speed for layer-3 (from
layer-2) and the basement sound speed increase (from layer-3). For each parameter the
search interval is discretized by 20 values. The upper and lower bounds of the search
interval are indicated in Fig. 5.3. The likelihood function is evaluated exhaustively over

the entire grid of 160,000 (20%) samples.

5.3.2 TC1 — TL Estimation

All of the 160,000 samples are used for estimating the statistics of transmission

loss at 250 Hz, 0 — 5 km in range, and 0 ~ 200 m in depth. For computing the prior field,
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each parameter is weighted uniformly with bounds as indicated in Fig. 5.3. While for the
posterior field, each model parameter is weighted according to its posterior distribution
in Fig. 5.3.

Using these 160,000 samples, the probability distribution for the TL is com-
puted at 80-m depth as a function of range, Fig. 5.4. The prior distribution is wider
and the nulls are less sharp than the nulls for the posterior distribution. This can eas-
ily be seen by making a line plot (Fig. 5.5) of the prior (dashed) and posterior (solid)
probabilities of TL at a range of 4200 m.

The prior and posterior median TL-fields are computed, Fig. 5.6. There is less
structure in the prior TL fleld than in the posterior field. This is because the main
parameters are more constrained. The spread in the prior and posterior fields is defined
as the range between the 5th and 95th percentiles and is plotted in Fig. 5.7. It is seen
that the spread in the water column for the posterior TL is much less than that for the
prior TL. At shorter ranges (less than 1 km), the posterior field shows a large spread
in the bottom. This may be a consequence of the choice of the bottom model, which is
much more simple than the true bottom:.

However, as seen in Fig. 5.7, this modeling error has limited influence on the
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predicted wave field in the far-field bottom or near-field water column. At shorter ranges
the sound field in the water column has fewer interactions with the bottom, due to the
higher attenuation for the higher angle rays (higher-order modes). At longer ranges, the
resolving power of the surviving low-order modes is consistent with the simple bottom
model.

A practical way to display the uncertainty is to plot the median TL (dashed)
combined with the 5th and 95th percentiles (represented by the gray area), as shown
in Fig. 5.8. Clearly, the posterior spread is decreased significantly. Based on the true
environment {12] the true TL (solid) is computed. Because the environmental model used
in the inversion is a simplification over the true model, it is not clear how the true TL
curve should relate to the median or spread of the posterior TL distribution. However,
most of the true TL (solid) is within the spread (gray area) of the TL distribution.

It is interesting to notice that the range of the posterior probability (gray area)
in Fig. 5.8 is larger than the prior at certain points in range. These points correspond

to the ranges where the field is close to a null, causing large variations in the field.

5.3.3 ASIAEX - Inversion

Data from the 2001 East China sea experiment (see Ref. [46]) also are used to
illustrate the method. A 16-element vertical line array (VLA) was deployed in 105-m
deep water. The source was towed at a depth of about 48.5 m. The seafloor model
consists of an ocean layer overlying a sediment layer atop of a basement. All layers are
assumed to be range independent. Matched-field geoacoustic inversion using the selected
frequencies 195, 295, and 395 Hz was carried out at T = 29 min. Based upon the GPS
position of R/V Melville, the source was approximately 1.7 km away from the VLA.
An environmental domain of 13 parameters, as indicated in Fig. 5.9 (with their search
bounds), including geometrical, geoacoustic, and ocean sound speed EOF coefficients is
inverted for.

Figure 5.9 shows the marginal dot diagrams for the model parameters. The
vertical axis is the achieved misfit using a Bartlett objective function with respect to the
parameter sampled during the SAGA optimization [32]. For each parameter, a simple

parameter sensitivity (solid curve) was computed by keeping the other parameters fixed
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50-m depth.

at the optimal point and just varying the one parameter. We see that the sampled values
for the array bow and tilt parameters (b and 6) are spread mainly inside the sensitivity
curve and align mostly with the best-fit values. A similar behavior is observed for the
ocean sound speed EOF coefficients but with a wider span. The consistency between
the local (solid curve) and global (dots) searches shows that this set of parameters is
weakly correlated with the other parameters. For the geoacoustic parameters, most
sampled values wander outside the parameter sensitivity (solid curve). This reveals
the more complicated structure of the multi-dimensional search space. Note that the
sampled values for the source range (SR) and the water depth (WD) are spread uniformly
throughout the range of the parameter interval. This is due to the strong coupling
between these two parameters as could be observed by computing the 2D marginal
distribution between these two parameters.

A second inversion is now carried out to determine the uncertainty for two
of the most important model parameters. For simplicity, we assume that only water
depth (WD) and sediment sound speed (cseq) have any associated uncertainty. All other
parameters are fixed at the optimal values found in the inversion detailed above. Varying

only the above two parameters gives posterior probability indicated in Fig. 5.10. It is
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Figure 5.12: Posterior (solid) and prior (dashed) probabilities of TL at 830-m range and
50-m depth. These correspond to a cut (vertical dashed lines) though the contours in

Fig. 5.11.

based on the likelihood formulation (Eq. (5.9)) and using the same data as in the full

inversion.

5.3.4 ASIAEX — TL Estimation

The posterior probability (Fig. 5.10) is used to compute the posterior probabil-
ity u using a frequency of 500 Hz and a source depth of 20 m. Except for water depth
(bounds 100 to 120 m) and bottom sound speed (bounds 1550 to 1750 m/s), we keep
the environment fixed at the values found in the inversion. In the present application,
we evaluate this using grid integration. First the probability for TL at mid-water depth
(50 m) is evaluated, Fig. 5.11. The prior probability assumes evenly weighting of all the
explored environmental models with the same bounds as above. The prior distribution
(a) is spread out over a wide range but the posterior distribution (b) is more narrow.
For the first 200 m, the transmission loss is only little influenced by the waveguide para-
meters and thus there is little difference between posterior and prior distributions. We
then examine the probability at one point (50-m depth and 830-m range). This is done
by taking a cut through the contour plots in Fig. 5.11 at 830-m range (indicated by a
vertical dashed line, corresponding to a peak in TL curve), as shown in Fig. 5.12. The
posterior (solid) is much more concentrated than the prior (dashed).

Contours of the median TL then are computed for the prior and posterior fields,
Fig. 5.13. A good way to understand the uncertainty is to plot the 5th to 95th percentile
ranges (gray area) of the prior and posterior fields, Fig. 5.14. Close to the source, there

is little uncertainty for both prior and posterior fields as the sound field is not influenced
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by the waveguide parameters. Further away from the source, the prior uncertainty
increases earlier in range than the posterior does, as the waveguide parameters are less
well determined. It also is seen that around the nulls of the median fields, Fig. 5.13, the
variations in the fields are the largest, Fig. 5.14.

The uncertainty is easily conveyed by plotting the median TL (solid) combined
with the 5th and 95th percentiles (represented by the gray area), see Fig. 5.15. Similar
to the results for TC1, Section 5.3.2, it is observed that the posterior probabilities have
the largest spread around the nulls of the median field. Overall, the posterior spread has

decreased significantly.

5.4 Conclusions

An approach for estimating the statistical properties of transmission loss in the
presence of uncertainty embedded in geoacoustic inversion has been developed using a
likelihood formulation. The likelihood function assumes the error in the observed data is
Gaussian. Examples presented used acoustic data on vertical arrays for the inversion, but
any data could be used. The result of this inversion is a probabilistic-based description

of the environmental parameters. The environmental parameters are mapped via their



96

probability distributions into a probability distribution of transmission loss.

In the transmission loss domain, we can compute the full posterior distribution
at all frequencies, ranges and depths. In the examples, we demonstrated how to use the
full transmission loss probability distribution and extracted characteristic features such

as median and lower/upper percentiles from this distribution.



Chapter 6

Conclusions

6.1 Conclusions

In this dissertation, I have developed a Bayesian framework for making quan-
titative statistical inferences about seabed properties from ocean acoustic data using
matched-field processing techniques. Several important issues such as quantifying un-
certainties due to measurement noise and modeling errors as well as estimating the
statistical properties of transmission loss have been investigated. A few important ac-

complishments and conclusions of this study can be summarized as follows:

¢ An analysis of matched-field geoacoustic inversion based on data acquired
during the ASIAEX 2001 East China Sea experiment was carried out. The
source tow data (CW tones at 195, 295, 395, 805, 850 and 905 Hz) were
used to infer the the geoacoustic properties in the area. The waveguide was
assumed to be range-independent and consisting of an ocean layer overlying
a uniform sediment layer on top of a subbottom.

o The environmental characteristics of the experimental site were identified.
A sensitivity analysis was conducted to investigate the effects of geoacoustic
and geometric parameters as well as the ocean sound-speed profile on the
acoustic fields. It was found that the degree of influence of the environmen-
tal parameters on the acoustic fields depends on frequency. As frequency
increases, the acoustic field is more sensitive to geometric parameters, less

sensitive to geoacoustic parameters, and the ocean sound-speed profile be-
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comes more important.

The quality of the inverted model was checked using matched-field processing
for source localization. It was found that, in the less than 1 kHz frequency
band, the effect of environmental mismatch on source tracking can be reduced
by using matched-field inversion techniques, resulting in improved source
localization performance.

The parameter uncertainty (in terms of the mean and standard deviation)
given by the Bayesian approach was validated by comparing the variabilities
of the estimated parameters inverted from multiple independent data sets.
An extension of the Bayesian parameter uncertainty analysis to include un-
certainty of data errors was carried out by two Bayesian approaches, i.e.,
full Bayesian and empirical Bayesian. In general, a full Bayesian approach
is preferred, because it fully accounts for the posterior uncertainty of the
data error, but an empirical Bayesian approach may be implemented more
efficiently. The two Bayesian approaches were examined from the numerical
and the analytical points of view.

Following a full Bayesian methodology, we have derived the analytic expres-
sions for the posterior probability distribution of the model parameters for
single and multi-frequency data. The computational cost of implementing
the full Bayesian approach is reduced significantly.

The impact of uncertainty embedded in the geoacoustic inversion results on
the estimation of transmission loss was investigated. An approach for es-
timating the statistical properties of transmission loss was developed using
information on the model parameters obtained from the inversion. The util-
ity of this approach is that one can compute the probability distributions of
transmission loss at all frequencies, ranges and depths. Examples demon-
strate the use of transmission loss probability density functions to extract

characteristic features such as median and lower/upper percentiles.
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6.2 Suggestions for Future Research

Throughout this study, we have assumed that data errors were independent and
identically distributed complex Gaussian for the sake of simplicity. However, in reality,
the errors may possess certain degree of correlation, especially those due to the modeling
errors. Neglecting significant error correlations may lead to representing the data as
more informative than they actually are, resulting in under-estimating the parameter
uncertainties. Thus, estimating the data error matrix deserves further investigation.

Furthermore, in a Bayesian approach, the solution to the geoacoustic inversion
problems always depend on the parametrization of the seabed. Information from the
seismic measurements, sediment coring, etc., is often used to build the environmental
model at the outset. However, the proposed model might be more or less complex than
that warranted by the measured data. A Bayesian approach to the model selection,
as adopted by Battle et al. [6], may be used to find the most favorable environmental
parametrization over a family of geoacoustic models.

An initial investigation has been made to apply matched-field geoacoustic in-
version techniques to the highe‘r frequency source tow data (CW tones at 1.6, 2.4, 3.5
and 4.4 kHz), but the estimated geoacoustic model performed poorly for matched-field
source tracking. Matched-field processing/matched-field geoacoustic inversion utilizes
the relative phase information of the observation and is very sensitive to the geometric
parameters and the dynamics of the water column as frequency increases. In the study
area, significant ocean sound speed fluctuations (about 15-m vertical shift of the thermo-
cline) were observed in the CTD measurements made before and after the high frequency
transmissions. Time dependent motion of the sea surface also gives rise to heaving of the
towed source, thus introducing additional temporal variability in the acoustic field. Both
of these, in addition to range dependent seafloor characteristics, lead to a fluctuating and
complex spatial structure in the acoustic field that must be accommodated.

Further theoretical research in this area may include devising signal processing
techniques included with the inversion procedure that are robust to the fluctuating com-
ponent of the acoustic fleld. Also, transmitting broadband signals may be considered

in the future experiments. Integrating across frequency might provide additional stabil-
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ity and would facilitate implementing a broadband matched-field processing or envelope

approach as done in Hursky et al. [47].



Appendix A

Parabolic-Shape Array

— in which Eq. (2.5) is derived.

The shape of array may be deviated from a straight line due to the drag force
resulted from nonuniformly-distributed currents. The bent array is computed in the
xzz-plane with the axis of the array located along the z-axis and the deviation in the
z-axis. The parabolic array has be assumed and specified in terms of the bow b at the
mid-point of the array and the length of the straight array Ls;. The standard equation
of a parabola that opens to the left with the vertex at (b, %’3) is

(zp - %)2 = ~4p(z, b) (A1)

where z, and z, are the local z- and z-coordinates, respectively, L, is the length of the
2
parabolic-shape array along the z-axis, and the length 4p can be replaced by %g because

the first element is located on the origin. Then, Eq. (A.1) can be rewritten by

4b

Tp = L_%(Lp — 2p)2p. (A.2)

The arc length L, of the parabola from 2, =0 to 2z, = Ly is

Ly
/ ,/1+ 8% dzp (A.3)

L,

= L+c+ o Lo e (AA)
2 VT2 -c

8 b 32b4 _

= Lp<l+§L—g—'g-—ng+...) (Ao)
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where ¢ = %%‘. By solving Eq. (A.5), the length of the parabolic-shape array along the

z-axis can be approximated by
8 b?
Ly=Li|1l--— A
<1 (1-37) (40

Due to the bow of the array, the displacement and depth of each array element are

modified by

) = (3 Eam 2z (1-357) ). (A7)

8

where z; is z-coordinate of the straight array.
Figure A.1 shows the bowed-array shape and the depth deviation of the upper-

most element for 0.5-m bow increment.
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Appendix B

Empirical Orthogonal Functions

— in which the details of EOF analysis are documented.

One of the most ubiquitous uses of eigen analysis in data analysis is the construction of
empirical orthogonal functions (EOFs) [20,58]. EOFs are a transform of the data into
a set of orthogonal basis vectors. In this sense the EOF transform is similar to other
transforms such as the Fourier or Laplace transform: we project the original data onto
a set of orthogonal functions, thus replacing the original data with the set of projection
coefficients on the basis vectors. In EOF analysis, we also project the original data on
a set of orthogonal basis vectors. However, the basis vectors of the EOF transform are
determined by the data themselves, and therefore characterize the co-variability of the
data records for a set of grid points in a more compact way.

Note that the number of EOFs is one less than the minimum of the number
of records and grid size. The reason is that the sample mean vector has been extracted

from the original data for constructing the covariance matrix.

B.1 Recipes

The EOF simulation algorithm can be summarized in the following steps:
Given the measured data C = [c1,c2,...,Cp,...,CN] Where ¢, is the n-th measured

profile.

1. Re-sample each sound speed profile ¢, on the given depth points [z1, 22, ..., 2D T,
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2. Estimate the mean sound speed profile

1 N
c=— n B.1

3. Estimate the covariance matrix R of the CTD castings
;N
R=o—s) (cn—0)(cn~ e)r. (B.2)

n=1
4. Eigenvalue decompose R into the eigenvectors and the corresponding eigen-
values.

N
R=VAVT => Av,vi. (B.3)
n=1

Given any one of the c; and the eigenvectors v;,¢ € 1, ..., J, where J is the number of

the significant eigenvectors.

1. Subtract the mean from that profile: ¢} = c; — €.

2. Project onto eigenvector space a = Ac), where
A =[ilval ... vs)” (B.4)

Therefore, a measured profile ¢y can be written by a series representation of the first J

eigenvectors:
J
cy=C+ Z a;V; (B.5)
i=1
where the coefficients a; are given by the vector inner product

a; = V;‘F(Ck — ). (B.6)

B.2 Example: EOF Analysis on ASTAEX CTD Data
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Figure B.1: Empirical Orthogonal Function (EOQF) analysis for the 2001 ASIAEX CTD

casts. (a) sound-speed profiles measured from R/V Melville and the average sound-speed

profile (thick black line); (b) Residual sound-speed profiles; (¢) Percent of total fit energy

with limited sets of EQOF’s; (d) First 6 EOF’s,

Table B.1: The EOF coefficients for the ocean sound-speed profiles measured during the

acoustic transmissions (Fig. 2.4).

Measured SSP EOFl EOF2 EOF3

EOF4 EOFD EOF(

CTDO0123 9.39 -0.63 —=0.80
CTDO0547 6.77 —2.50

CTD0820  11.95 —4.04 —2.73

1.97 2.20 -0.27
2.79 0.03 -0.28

1.45 021 0.6

eor ¢ denotes the i-th EOF coeflicient.
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Figure B.2: Upper panel: measured sound-speed profiles as a function of time. Lower
panel: time series of the estimated EOF coefficients of the above measured sound-speed

profiles.
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Figure B.3: Upper panel: reconstructed CTD0123 $sps (solid line) using the mean plus

different numbers of EOFs. Dashed line indicates CTD0123. Lower panel: residual ssp

versus number of EQFs.
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Figure IB.5: Upper panel: reconstructed CTD0820 ssps (solid line) using the mean plus

different numbers of EQFs. Dashed line indicates CTD0820. Lower panel: residual $sp

versus number of EOFs.



Appendix C

Monte Carlo Sampling Algorithm

— in which the Monte Carlo integration is described briefly,

and the algorithm implemented in SAGA is documented.

Under the Bayesian approach the solution to inverse problems is the pos-
terior probability distribution (PPD) of model parameters, p(m|d). Due to multi-
dimensionality the PPD is not susceptible to graphic display, and mainly integral proper-
ties of the distribution are of interest. From the PPD, all the desired statistical quantities
such as the means, variances and the marginal 1D /2D PPDs will be extracted to describe
the solution. These quantities can be written as expectations of relevant functions f(m)*

under p(m|d), as follows:

I =E[f(m) = / £ (m)p(mid)dm. (C1)

When the dimension of the model parameters is very small, a grid integration over the
model space is a practical way of solving the above integration. When the dimension of
the parameter space is high, this can be very difficult to obtain. Monte Carlo integration

using MCMC is one answer to this problem.

tFor example, if the desired statistical quantity is the mean of the parameters, then f (m) = m. As
for the marginal PPD of the i-th parameter, i.e., I = p(m;!d), then
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Monte Carlo integration estimates the integral of Eq. (C.1) by obtaining samples

my, t=1,...,n, from the distribution p(m|d) and calculating

I~ =3 f(m) (©2)
t=1

Section C.1 describes deterministic methods of numerical integration and fol-
lowed by a discussion of Monte Carlo integration. Section C.1.1 presents a class of
MCMC sampling algorithms: Metropolis-Hastings sampler to obtain the samples that
approximate the PPD. Section C.2 summarizes the Monte Carlo sampling algorithm

implemented in SAGA. Finally, a list of the SAGA options is tabulated.

C.1 Numerical Integration

Deterministic methods

Deterministic methods of numerical integration operate by defining a grid over
the model space and computing p{m/|d) everywhere in the grid and directly use these
results to calculate the desired quantities. Although the most precise and direct method,
numerical integration is extremely computationally intensive. For M model parameters
each discretized to k values, it requires k™ forward model evaluations. For example,
k = 100 and M = 10, this is a prohibitively large number 1000, as for each of these
points, a forward model that takes about one CPU-second must be evaluated. This

approach is practical only for a very small number of parameters, e.g., M < 8.

Monte Carlo methods

Monte Carlo methods provide a way out of this exponential time-increase. In
Monte Carlo integration the integration points are selected at random from a uniform
distribution. It is not necessary to evaluate the integral at all points as in a grid search.
In contrast to deterministic computing methods, the efficiency of Monte Carlo integration
depends only weakly on the dimension and geometric details of the problem. Thus, even
for high dimensions and complicated boundaries of the parameter set M, the numerical

effort remains moderate. The integral is evaluated at randomly selected points from a



112

uniform distribution. The disadvantage is that many of these points will be located in
areas contributing little to the integral.

A refinement of the Monte Carlo integration method is to somehow make the
points random, but more likely to come from regions of high contribution to the integral
than from regions of low contribution. MCMC sampling algorithms provide a way to

obtain the samples that approximate the PPD.

C.1.1 Metropolis-Hastings Sampler

The Metropolis-Hastings algorithm described here is strongly inspired by Mar-
tinez and Martinez [62]. The algorithm consists of two repeated steps. In the exploration
step, the current parameter vector m is modified at random to obtain a “candidate”
vector m’. This candidate is drawn from a “proposal” distribution ¢(m’|m), where the
choice of m’ depends on the current vector m. In the exploitation step, the parameter
vector is changed to m’ with an “acceptance probability”

(m’) g(mjm’)
m(m) ¢(m'|m)

a(m’|m) = min |1,

(C.3)

where the target distribution 7(m) represents the PPD of m. Note that the target
distribution does not have to be normalized, since what matters is the ratio of the
distributions. The acceptance probability in Eq. (C.3) effectively guides the random
walk toward regions of parameter space that have higher posterior probabilities. It can
be proven that this algorithm will asymptotically sample the posterior pdf (see Chib and
Greenberg [15]).

The Metropolis sampler (the original method of Metropolis et al. [65]) is a
special case of the Metropolis-Hastings methods, where symmetric distributions are con-

sidered for the proposal distribution. Thus we have
g(m'|m) = ¢(m/m’). (C.4)

Then those terms cancel out in the acceptance probability yielding

a(m’|m) = min [1, %} . (C.5)

Usually the Boltzmann probability distribution is used for the likelihood func-

tion and a uniform prior is assumed for each parameter. Then, the target function
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~(m) = p(m|d) o exp (—@) (C6)

where ¢(m) is the objective function and T is the temperature or the error variance.
Here, an analytical consideration of the likelihood function, in which the error variance
is integrated out analytically (see discussion in Chapter 4 and Eq. (4.23)), is used and
it yields

7(m) = p(m|d) x ¢(m) "N, (C.7)

Therefore, the acceptance function can be rewritten as:

n1-N
a(m’|m) = min {1, {%((—E—)l] } . (C.8)

Procedure ~ Metropolis-Hastings/Metropolis Sampler

One starts from an arbitrary points mg and generates the sequence by repeating
the following cycle, with m; being the previously selected point at each iteration:
1. The exploration step. Select a new candidate point m’ chosen according to
a symmetric proposal distribution ¢(m’/m;).
2. The exploitation step. Decide if the candidate point should be accepted as
the next point. Calculate the acceptance probability Eq. (C.3). Accept m’
with probability a(m’|my), i.e.

(a) if 7(m')g(m/m’) > 7(m;)q(m’|m;), then accept m’;

(b) if m(m’)g(m;/m’) < m(m;)q{m’|m;), extract a uniform random
number between 0 and 1 and accept m’ if the random number is
less than %%%%%%.

If the point is accepted, then my;; = m’. Otherwise msy; = m;.
Repeat the above n times where n sufficiently beyond point of convergence to target

distribution and sufficiently large to achieve desired precision for estimate of interest.
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C.2 Monte Carlo Sampling Algorithm Implemented
in SAGA

The Monte Carlo sampling algorithm implemented in SAGA consists of the
following components: 1) a burn-in period, 2) sampling PPD of m, 3) convergence

monitoring.

C.2.1 Burn-in Period

The purpose of the burn-in period is to have a good starting point, near a
point where the likelihood is maximum, thus we avoid heavy sampling in non-important
areas of the model space. For this purpose, a optimization algorithm such as simulating
annealing or genetic algorithms can be used to find a point in a high-posterior probability

region.

C.2.2 Sampling PPD of m

The choice of the proposal distribution g(m’/m) will have a large effect on the
efficiency of the algorithm. For example, suppose that the current parameter vector
m is in a high-posterior probability region. If the proposed modifications to m are
large compared to the spread of the posterior distribution, m’ will typically have a low
posterior probability, a in Eq. (C.3) will be small, and it will take many iterations before
a proposed move is accepted. At the other extreme, if the changes proposed are too
small, a will be large, but many iterations will be needed to cover the high-posterior
probability region of the parameter space [15]. The best choice for ¢(m’|m) would be a

pdf that approximates as closely as possible the posterior distribution of m.

Sampling interval

For a Metropolis sampler, the next model m;. is selected based the current
model m;.

mey; = m; + Amy (Cg>

where Am; is a random move selected from the distribution ¢(I;) and I; is the search

interval. This is often referred to as the move class in simulating annealing vocabulary.
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For a Metropolis sampler the move class ¢ should be a uniform distribution from the
whole sampling interval for each parameter. This will ensure an unbiased convergence
to the posterior distribution.

However, this can be quite slow in practice. Improvement might involve either
a reduction of the search interval, or using a non-uniform distribution. In essence, both
approaches are similar as they both attempt to modify the uniform distribution ().

The default is to assume a uniform distribution over the whole search space,
as this assures convergence. If there is only one main minimum overlaying with small
ripples, then a smaller move class can be used with a signiﬁcant saving in computation

time. Inspired by Dosso [22], the following algorithm is used
I = maX(It—h kgrow * Aobs) * fdecay (C.lO)

subject to I;+1 > Ip, so that the interval cannot become too small. Agps is the size of
the current accepted move. Typically Iy = 0.01% of the search interval, fgecay = 0.99,

and kgrow = 2.

Parameter Coordinate Rotation

In ocean acoustics, parameter correlations are frequently encountered [26] and
a parameter covariance matrix computed from field derivatives contains information
about parameter coupling {17]. As noted by Collins and Fishman [17] and others, a
simulating annealing algorithm benefits from the coordinate rotation, when sampling
strongly correlated parameter spaces. Collins and Fishman [17] originally suggested
using the covariance matrix of the derivative field. However, to compute the gradient
of the pressure vector does in general require M + 1 forward model evaluations for an
M-parameter problem, thus it can be computational demanding, and further it does not
fit well into a Metropolis sampler which does not use gradient information.

Instead, Dosso [22] has suggested to use the covariance matrix of the accepted
sampled vectors as C,. He found that often this covariance matrix works as well as
using the gradient covariance matrix.

Here, the covariance matrix estimated from the accepted sampled vectors m

is used for determining the coordinate rotations. By using the eigenvalue decomposi-
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tion expression of Cy = UAUT, the parameter coordinate is rotated via the following
transformation

Am = UTAm. (C.11)

Then, the transformed coordinate is aligned with the parameter landscape

E[amAmT] = E[UTAmAmMTU] (C.12)
= UTE[AmAmT|U
= UTc,U
= A,

The parameter coordinate may be different for different parts of the parameter
space. In SAGA, the parameter coordinate is rotated when the maximum difference of
the two covariance matrices estimated from parallel chains for the previous m iterations

is larger than a prescribed threshold €., typically with € = 0.1.

C.2.3 Convergence Monitoring

As we were mainly interested in marginal PPDs, we use a dual-population
convergence criteria [22], i.e., the total difference between the marginal distributions for
all parameters is less than a prescribed threshold egqp, typically with esop = 0.1. Since
each chain is run independently, any convergence problems are more likely to appear

with dispersed starting points.

C.3 Options in SAGA

The Monte Carlo sampling is started using option 8 (iopt{4)=0). On a new
line below the GA parameters the user must specify
nu e._stop e_rot k.grow N_eff

where

nu is the error variance in Eq. (4.45).
e_stop is the convergence criteria (recommended value 0.1).

e_rot is the criteria for accuracy of the matrix before rotating (recommended value 0.1).



k.grow is the factor in Eq. (C.10).
N_eff is the parameter in Eq. (4.23).

Options

S0 (default) (isubopt(4)=0) perturbs one parameter at a time.
s1 (isubopt(4)=1) perturbs all parameters at once. For some cases
this can cause premature convergence. Often it is faster.
Sx1  (isubopt(35)=1) Use the adaptive search interval.
s2 enumerative integration for M < 8.
* (isubopt(36)=2) uses the acceptance distribution in Eq. (C.8).
Either 8, 81 or Sx1 should always be specified. When this option is used,

the error variance is integrated out @ priori, and the parameter N_eff is required.

Graphic

For the Monte Carlo integrations, marginal PPD for each parameter can be obtained
using MATLAB

>> plotgibbs( ’filename’)

For the enumerative integration, marginal PPDs can also be plotted

>> plotenum(’filename’)
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