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EPIGRAPH

And you will seek Me and find Me if you search for Me with all your heart; And I will be found

by you.

Jeremiah 29:13-14a

And we have the prophetic word made more firm, to which you do well to give heed as to a lamp

shining in a dark place, until the day dawns and the morning star rises in your hearts.

2 Peter 1:19
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Wideband source localization is an important problem in signal processing, and it has

wide-range applications in underwater acoustics, indoor speaker localization, teleconferencing,

etc. Over the past few decades, there are a significant amount of methods proposed for wideband

source localization. However, it still remains a challenging problem. This dissertation tackles

wideband source localization from data-driven and model-based perspectives.

For the data-driven part, a novel deep learning framework for sound source localization

(SSL) was proposed. SSL is to estimate the locations of the sound sources based on the received

signal from the microphone array. SSL in the reverberant environment can be challenging due

to the multipath artifacts in the received signals. To tackle with this challenge, a deep learning
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framework based on multi-task learning and image translation (MTIT) network is proposed.

MTIT utilizes the encoder-decoder structure and it consists of one encoder and two decoders. The

encoder aims to obtain a compressed representation of the input while the two decoders focus on

two tasks in parallel. One decoder focuses on mitigating the multipath caused by reverberation

and the other decoder predicts the source location. Due to the explicit dereverberation module and

the shared encoder (representation), the proposed localization framework can achieve superior

performance and can generalize to the unseen data in the reverberant environment compared to

the existing baseline methods.

For the model-based part, gridless direction-of-arrival (DOA) estimation based on atomic

norm minimization (ANM) for the multi-frequency signal was studied. ANM was formulated to

an equivalent computationally feasible semi-definite program (SDP) problem. The dual certificate

condition is given to certify the optimality. A fast algorithm implementation is given and the

dual problem of the SDP is considered. The method is further generalized to the non-uniform

array and non-uniform frequency case. Extensive theoretical analysis and numerical experiments

demonstrate the superior performance of the proposed method compared to sparse Bayesian

learning, the existing grid-based multi-frequency DOA estimation method.
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Chapter 1

Introduction

1.1 Background and Overview

Wideband source localization (WSL) is the problem of estimating the positions of one

or more wideband sources in the space based on the received responses from the sensor arrays.

It has wide-range applications in underwater acoustics, automatic speech recognition, speech

enhancement, and human-robot interaction. In many practical cases, source localization is

simplified to direction-of-arrival (DOA) estimation, i.e. it focuses on the estimation of the angles

without the need of estimating the distance.

WSL has been extensively studied in the past few decades. However, it remains a

challenging problem. The existing WSL methods can be divided into two main categories based

on the methodology: model-based and data-driven. The initial research in WSL began with model-

based methods. The model-based methods often relied on a well-defined physical model (usually

called the forward model). They usually had a solid theoretical foundation while they relied on

some critical assumptions which might limit their applications to real-world scenarios. In the

past decade, data-driven based deep learning methods have received increasing attention and they

have been applied to WSL. These methods demonstrate superior performance over conventional
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signal processing methods. However, these data-driven methods require a demanding amount of

training data to achieve satisfactory performance. The interpretability and generalization will also

be potential issues for these data-driven methods.

This dissertation will consider WSL from both model-based and data-driven perspectives.

1. For the data-driven part, a novel deep learning framework to localize the sound sources

under the indoor and reverberant environment is proposed. The deep learning framework is

based on multi-task learning and the image translation network. The multi-task learning

can overcome the challenges from the reverberation and the image translation modules can

enhance the generalization.

2. For the model-based part, gridless DOA estimation for multiple frequencies is studied.

Multiple frequencies can be used to characterize the wideband signal. The DOA estimation

problem will be formulated as an optimization problem and the source DOA can be

estimated without the need for grid search, which overcomes the quantization error from

the grid mismatch.

1.2 Prior Works

1.2.1 Deep Learning based Sound Source Localization

Deep learning has been extensively applied to sound source localization recently [1, 3,

5, 14, 20, 22, 24, 25, 27, 31]. Most of the approaches are based on supervised learning. In [31],

a multilayer perceptron DNN taking the generalized cross-correlation with phase transform

(GCC-PHAT) features as inputs for direction of arrival (DOA) estimation. This classification

based method shows improvement of the DOA estimation compared with the conventional signal

processing based approaches. In [5], a SSL framework based on convolutional neural network

(CNN) is proposed. The input features are the multichannel phase spectrograms and it can
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localize multiple sources in reverberant environment. DeepGCC [24], a SSL model based on

CNN and generalized cross correlation (GCC) is presented in [24]. The network can be adapted

to different microphone geometries without the need of retraining. The authors in [1] propose

a convolutional recurrent DNN for SSL and sound event detection. The architecture contains a

series of convolutional layers followed by max-pooling and bidirectional GRU (BGRU) layers.

A feedforward layer is then used for spatial pseudo-spectrum (SPS) estimation. The SPS is an

intermediate output and is shown to be useful for SSL. In [25], a robust SSL guided by deep

learning based time-frequency masking framework is presented. In [20], a deep learning based

SSL method is proposed, which uses two orthogonal first-order differential microphone arrays.

The sound intensity is considered and phase transform (PHAT) weighting is used to improve the

robustness against reverberation. There are also some works that use unsupervised learning [22],

as well as semi-supervised learning methods based on manifold learning [14] and deep generative

modeling [3]. These works do not assume all of the labels (ground-truth source positions) are

available, and can perform well in label-limited scenarios.

1.2.2 Atomic Norm Minimization

ANM was initially proposed in [6] as a general framework for promoting sparse signal

decompositions. The pioneering ANM paper [4] worked directly with the continuous (temporal)

frequency estimation problem and considered the complete data case. As long as the temporal

frequency separation was greater than a certain minimum separation, exact recovery of the active

temporal frequencies was guaranteed. Furthermore, a semidefinite programming (SDP) frame-

work that characterized the ANM problem was presented. The authors in [23] studied continuous

temporal frequency estimation based on randomly sampled data for the single measurement

vector (SMV) case. The minimum separation condition was relaxed in [12]. ANM for multi-

ple measurement vectors (MMVs) was studied in [19, 36, 38]. In [8], the author considered a

super-resolution problem that had a similar setup to [4] except that the point spread function was
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assumed to be unknown. Based on the assumption that the point spread function was stationary

and lived in a known subspace, the lifting trick was applied, and the problem was formulated

using ANM. The model was generalized to non-stationary point spread functions in [34]. The

sample complexity of modal analysis with random temporal compression was established in [18].

ANM for 2D temporal frequency estimation was studied in [9]. In [37], the authors proposed

a reweighted ANM framework, which enhances the sparsity and achieves super-resolution. An

atomic norm for DOA estimation under gain-phase noise [7] was proposed to mitigate the artifacts

for electromagnetic signals. ANM was also recently applied in digital beamforming [16, 30],

adaptive interference cancellation [15], denoising [2, 17], and blind demodulation [32, 33]. [10]

gave a comprehensive overview of ANM and its applications.

1.3 Research Contributions

1.3.1 Data-driven WSL

This dissertation studied data-driven WSL by proposing a novel multi-task learning (MTL)

framework for indoor sound source localization (SSL) [26, 27]. SSL is to estimate the locations

of the sound sources based on the received signal from the microphone array. SSL is an important

problem in WSL and it has widespread applications in human-robot interaction, teleconferencing,

and audio scene monitoring. However, SSL in the reverberant environment is challenging due

to the multipath artifacts in the received signals. Therefore, it is important to incorporate the

dereverberation module in the localization system.

The received signal from the microphone array was a time series. The beamforming

technique is initially applied to obtain the beamspectrum surface in two-dimensional space. The

beamspectrum surface is treated as an image and it will be the input to the DNN. The input, output,

and target are all images and we can incorporate the idea of the state-of-the-art image translation

network into the network design. The encoder-decoder architecture with one encoder and two
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parallel decoders is employed. The intuition for using two decoders originates from MTL [21, 39].

By training the network to learn multiple different tasks simultaneously, it performs better than

just learning the primary task. It acts as regularization and helps the shared layers to obtain a

more general representation of the input. Although one may only be interested in localization as

our primary task, a multipath alleviation decoder to learn how to compensate for the extra range

from the multipath is included as our auxiliary task. By training the network to perform both tasks

(i.e. two different decoders sharing the same encoder), the higher-level feature representations in

the encoder can be improved. The benefit of applying MTL is that the model complexity is only

increased during the training phase. During the testing phase, only the primary task is performed

and the auxiliary task is discarded.

Extensive experiments are conducted to verify the effectiveness of the proposed method.

The experiments show that the proposed method can outperform the classical signal processing

based methods and the state-of-the-art convolutional neural network (CNN). The ablation study

shows the importance of the multipath alleviation decoder to reduce multipath and the gener-

alization experiments show strong generalization abilities and robustness against the mismatch

between the training and testing data.

1.3.2 Model-based WSL

For the model-based part, gridless DOA estimation under multiple frequencies is studied

[28, 29]. The multi-frequency model can characterize the wideband signal. Atomic norm

minimization (ANM), a modern optimization technique was used to achieve the continuous

(gridless) DOA estimation. There are some technical challenges to extending ANM from single-

frequency to multi-frequency cases. First, in the multi-frequency setup, each channel (frequency)

is modulated with a different sinusoid and that heterogeneous modulation makes it difficult to

derive an equivalent SDP based on the Vandermonde decomposition as has been done in many

prior works. Second, each frequency other than the first frequency will experience spatial aliasing
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of the DOAs. We developed a novel solution to overcome these two challenges. Our main

contributions are summarized as follows:

• (1) Formulate an equivalent SDP problem. Although ANM itself is a convex optimiza-

tion problem, it is not directly solvable due to an infinite number of optimization parameters.

Therefore, it is critical to find a computationally feasible solution that equivalently charac-

terizes the ANM problem. Several prior works showed that certain ANM problems could

be equivalently characterized by SDPs [19, 23, 38]. The derivation of an SDP problem

typically relied on a Vandermonde decomposition and equivalence with the ANM could

be proved by showing that the SDP solution was both an upper and a lower bound for the

ANM [19, 23, 38]. Unfortunately, this commonly used technique cannot be applied in

the multi-frequency case due to the heterogeneous temporal frequencies across different

channels. In [13, 16], certain SDPs were derived using the Vandermonde decomposition,

but only the lower bound for the ANM problem could be guaranteed. In [29], an equivalent

SDP based on the bounded real lemma for trigonometric polynomials [11] is derived. This

equivalent SDP provided a computationally feasible solution for the ANM when multiple

frequencies were considered. That paper also explained how the proposed SDP was the

dual to a minor adaptation of the SDP proposed in [35] for line spectrum estimation with

harmonics.

• (2) Provide the dual certificate condition. The dual certificate condition that could be

used to certify the optimal atomic decomposition is derived. In particular, the DOAs

of the sources are localized with the help of the dual polynomial arising from the ANM

optimization problem. As long as the dual polynomial satisfies the dual certificate condition,

the frequencies can be localized by finding the roots of a polynomial. Therefore, the dual

certificate condition not only provides a theoretical guarantee for the optimality but also

offers a method for DOA estimation.
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• (3) Construct the dual polynomial that satisfies the dual certificate condition. In cases

where the existence of a dual polynomial that satisfies the dual certificate condition can be

proved, then the optimality and therefore exact DOA estimation is guaranteed. The dual

polynomial based on Fejér kernel is constructed. It is shown that under some assumptions,

the constructed dual polynomials will satisfy the dual certificate condition.

• (4) Fast implementation. A fast implementation is proposed so that the SDP has a reduced

size. This fast implementation also extends the approach to an arbitrary set of frequencies.

Numerical results show that the dual polynomial still serves as a precise indicator for the

DOAs. Hence, in terms of the DOA estimation, the algorithm succeeds even when aliasing

is present.

• (5) Extend to multiple measurement vector (MMV) and non-uniform case. The ANM

framework is initially derived under the assumption that both the frequency set and the

array spacing is uniform. It turns out that it can be further extended to MMV and non-

uniform cases (both the array spacing and frequency set can be non-uniform). The SDP

is formulated in the primal domain and the DOAs can be extracted based on irregular

Vandermonde decomposition (IVD). The existence of IVD is formally proved.

• (6) Regularization-free Framework. Both the primal and dual SDP formulation are

considered. Compared to the dual formulation, the primal formulation is more favorable

as it does not need regularization to achieve the robustness to the noise and aliasing.

The robustness to the noise and aliasing is obtained through the post-optimization step.

Therefore, it overcomes the regularization bias and can obtain an improved performance.

• (7) More sources than sensors under the uniform linear array case Prior works showed

that the maximum number of uniquely identifiable sources in an Nm-element uniform linear

array (ULA) is Nm−1. However, it turns out that it is possible to overcome such a bottleneck

in the multi-frequency case. The physical intuition is that multiple frequencies increase the
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diversity of the harmonics and these “new harmonics” can serve as extra “virtual sensors”

in a large virtual array. Due to such an intrinsic property of the multi-frequency signal

model, it is possible to break through such a bottleneck in the ULA setup. In many practical

scenarios, the array geometry is fixed and ULA is one of the most commonly used arrays.

Hence, this result has a practical impact and demonstrates the benefit of multi-frequency

processing.

1.4 Dissertation Organization

This dissertation is organized as follows. Chapter 2 will introduce the data-driven sound

source localization methods. Chapters 3 and 4 will introduce the model-based source localization

methods. In specific, Chapter 3 will focus on the development of the gridless DOA estimation

method for multiple frequencies based on ANM. The DOA can be estimated by first solving

an SDP problem and then finding the roots of a polynomial. We call this framework the dual

formulation as we work on the dual polynomial. Chapter 4 is an extension of the work done in

Chapter 3. The primal formulation is considered and the benefit of this formulation is that the

regularization bias can be avoided. In addition, the method is extended to the MMV case, and it

can also deal with NUA and NUF cases, which makes the method more general and practical.

Chapter 5 concludes the dissertation.
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Chapter 2

Sound source localization based on

multi-task learning and image translation

network

Supervised learning-based sound source localization (SSL) methods have been shown

to achieve a promising localization accuracy in the past. In this paper, MTIT, sound source

localization for indoors using Multi-Task learning and Image Translation network, an image

translation-based deep neural networks (DNNs) framework for sound source localization is

presented to predict the locations of sound sources with random positions in a continuous space.

We extract and represent the spatial features of the sound signals as beam response at each

direction which can indicate the chance of the source in each point of the room. We utilize the

multi-task learning (MTL) based training framework. There are one encoder and two decoders in

our DNN. The encoder aims to obtain a compressed representation of the input beamspectrum

surfaces while the two decoders focus on two tasks in parallel. One decoder focuses on resolving

the multipath caused by reverberation and the other decoder predicts the source location. Since

these two decoders share the same encoder, by training these two decoders in parallel, the
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shared representations are refined. We comprehensively evaluate the localization performance

of our method in the simulated data, measured impulse response and real recordings datasets

and compare it with multiple signal classification (MUSIC), steered response power with phase

transform (SRP-PHAT), and a competing convolutional neural network (CNN) approach. It turns

out that MTIT can outperform all of the baseline methods in a dynamic environment and also can

achieve a good generalization performance.

2.1 Introduction

Sound source localization (SSL) has widespread applications in human–robot interac-

tion [1, 2], ocean acoustics [3, 4], hearing aids [5, 6], teleconferencing [7], automatic speech

recognition [8, 9], and audio scene monitoring [10]. For example, in a hospital, attending robots

can locate and attend to patients based on their voices [11]. However, SSL in reverberant envi-

ronments is challenging due to multipath artifacts in received signals. This effect degrades SSL

performance. Thus, it is important to develop SSL methods that are robust to reverberation [12].

While traditional SSL algorithms [13–16] rely on estimation theory or statistics, they fail

in dynamic and reverberant environments. A well-known subspace based technique, multiple

signal classification (MUSIC) [13] is known to suffer from correlated sources which are prevalent

in reverberant environments. Another classical SSL method, steered response power with phase

transform (SRP-PHAT) [14–16] has been shown to not be robust to non-stationary signals

like speech. Recently, SSL approaches based on deep neural networks (DNNs) have been

proposed [17–26]. Most of the approaches are based on supervised learning. In Ref [17], a

multilayer perceptron DNN taking the generalized cross-correlation with phase transform (GCC-

PHAT) features as inputs for direction of arrival (DOA) estimation. This classification based

method shows improvement of the DOA estimation compared with the conventional signal

processing based approaches. In Ref [18], a SSL framework based on convolutional neural
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network (CNN) is proposed. The input features are the multichannel phase spectrograms and it

can localize multiple sources in reverberant environment. DeepGCC [19], a SSL model based on

CNN and generalized cross correlation (GCC) is presented in [19]. The network can be adapted

to different microphone geometries without the need of retraining. The authors in [20] propose

a convolutional recurrent DNN for SSL and sound event detection. The architecture contains a

series of convolutional layers followed by max-pooling and bidirectional GRU (BGRU) layers.

A feedforward layer is then used for spatial pseudo-spectrum (SPS) estimation. The SPS is an

intermediate output and is shown to be useful for SSL. In [21], a robust SSL guided by deep

learning based time-frequency masking framework is presented. In [22], a deep learning based

SSL method is proposed, which uses two orthogonal first-order differential microphone arrays.

The sound intensity is considered and phase transform (PHAT) weighting is used to improve the

robustness against reverberation. There are also some works that use unsupervised learning [23],

as well as semi-supervised learning methods based on manifold learning [24] and deep generative

modeling [25]. These works do not assume all of the labels (ground-truth source positions) are

available, and can perform well in label-limited scenarios.

In this work, we present MTIT, an SSL method based on multi-task learning with image

translation network. Multi-task learning [27–29] (MTL), a training framework with multiple tasks

(including both the primary task and auxiliary tasks) in parallel, have received much attention in

the machine learning community. It can be thought as inductive transfer, or transfer learning, in

which knowledge obtained from one task is applied to other tasks [27–29]. Since related tasks

often share representations or parameters, learning the auxiliary tasks can help the network to

perform better in the primary task. The benefit of MTL is that it only increases the complexity in

the training phase and the auxiliary tasks will be turned off during the testing stage. In recent years,

MTL has been successfully applied in speech recognition [30], natural language processing [31],

and computer vision [32].

For SSL problem, by applying the standard beamforming technique, the features can be
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extracted as an image in spatial dimension. With the help of this representation, we can apply

the image translation network to learn how to generate the desired image. The generated image

contains the location of the source and therefore the source can be localized. Hence, the SSL

problem is framed as an image translation problem. Image Translation [33–35] has been well

studied in the computer vision community. The key idea of image translation is to utilize the

generator models focusing on outputting synthetic images that fit the target paired with tailored

targets and loss functions to solve image-to-image translation problems like real-to-art image

translations [34], image denoising [35] etc.

We use the MTL framework via an encoder-decoder structure to localize sound sources

in reverberant and dynamic environments. Inspired by [36], we have one encoder to obtain the

compressed representation of the input and two decoders to solve the localization and multipath

alleviation tasks simultaneously. Since these two decoders share the same encoder for related

tasks, in training the two decoders can help each other. Therefore, although we are only interested

in localization, the localization decoder can benefit from the multipath alleviation decoder and

perform better in localization.

We train and test our model using reverberant speech under four datasets including

simulated data, Multiple Impulse Response Dataset (MIRD) [37], one dataset from Technical

University of Denmark (DTU) [38], and Sound source localization for robots (SSLR) [39]. For

the first 3 datasets, the reverberant speech is obtained by convolving the clean speech from

LibriSpeech corpus [40] with the room impulse responses (RIRs) either from simulation (for

simulated data) or real measurements (for MIRD and DTU dataset). For the SSLR dataset, the

reverberant speech is directly obtained from the microphone recordings in the robots.

We compare MTIT with other SSL methods, including MUSIC [13], SRP-PHAT [14–16],

and CNN [18]. Based on the experiment results, we find MTIT outperforms the baseline methods

in all of the four datasets. In addition, MTIT can also achieve a good generalization performance

and be robust against the mismatch between the training and testing data.
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In Sec. 2.2, we introduce the technical details of MTIT. In specific, we discuss the details

about feature extraction, range compensation, target processing and network architecture. The

experiments and details of the four datasets are presented in Sec. 2.3 and 2.4. Sec. 2.5 shows

the testing results for MTIT and other baseline methods and parameter studies for the number of

microphones and microphone spacing under MIRD dataset. The ablation study and generalization

evaluation are conducted in Sec. 2.6 and 2.7, respectively. Finally, Sec. 2.8 concludes the paper.

2.2 Proposed Method

To understand how the proposed DNN solves for the reverberation problem and helps in

effective SSL, let us first look into the fundamentals of sound transmissions in a given environment.

Consider the acoustics signals in the time domain

ym = s∗hm +nm (2.1)

where ym ∈ RL is the signal received by mth microphone (m ∈ {1 . . .M}, M is number of micro-

phones), s the source signal, and nm the noise for the mth microphone. hm is the RIR, which

characterizes the reverberation of the room. Denote y = [y1 . . .yM]T ∈ RM×L as the collection of

the received signal from all sensors with audio length L.

For N arrays with K microphones in each array (i.e. M = NK), y can be reshaped as a

tensor with dimension K×N×L. In the following sessions, y ∈ RK×N×L.

2.2.1 Features extraction

Features extraction is one of the key steps in designing the DNN model. In our work, we

will try to use images to represent the input, output and target so that we can leverage the state of

the art image translation network [33, 34] which has been shown great potential in the computer
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Figure 2.1: Beamspectrum surfaces (a) before and (b) after range compensation, and (c) after
range compensation and coordinate transformation, (d) Output beamspectrum surface from
localization decoder. The correct source position (+), and maximum value or predicted location
(◦) are indicated.

vision community. The spatial features are encoded as images and the network is directly trained

to generate images. By decoding these output images, we can find out the locations of sound

sources.

We first use standard beamforming to obtain source location beamspectrum surfaces in a

2D space. We first consider the short time Fourier transform (STFT) of the received signal (in

the time domain) y ∈ RK×N×L. The number of snapshots can be expressed in terms of the audio

length L and fast Fourier transform (FFT) window length F as S = L
2F (only the positive half of

the frequency bins are considered). Hence, we obtain Y ∈ CS×F×K×N as the STFT output for y.

Note that the above Y is evaluated for the single measurement case. If we have T independent

measurements in the dataset, then there are C = T S frames for Y (i.e. Y ∈ CC×F×K×N).
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DOA Features Extraction

Assuming a uniform linear array (ULA) and a broadband signal, the magnitude of

conventional beamforming output on any arbitary angle θ is

P(θ) = |wH
θ Yns

f |= |
K

∑
k=1

Yns
f [k]e

j 2πkusinθ f0
c | (2.2)

where wθ = [e− j 2πusinθ f01
c ... e− j 2πusinθ f0K

c ]T , u, f0 and c stand for the spacing between micro-

phones, median frequency and speed of sound. Each point in P(θ) indicates the similarity of the

signal to the expected beamformer response based on free-space propagation. Yns
f ∈ CK×1 is a

slice of Y for nth array, sth snapshot and f th frequency bin.

Range Features Extraction

Now that we know how to extract the features of DOA in the free space cases, let’s take a

look at how to obtain the features of range. Suppose we only consider the phase difference due to

the range, similar to the angle features extraction, the conventional beamforming output at range

d is

P(d) = |wH
d Yns

k |= |
F

∑
l=1

Yns
k [l]e j 2πl fl d

c |, (2.3)

where wd = [e− j 2π f1d1
c ... e− j 2π fF dF

c ]T , and Yns
k ∈ CF×1 is a slice of Y for kth microphone in

nth array and sth snapshot. fl is the frequency corresponding for the lth frequency bin.

DOA-Range Features Extraction

We can define a 2-D function [41] combining (2.2) and (2.3) which can indicate the

chance of the signal coming from the angle θ and distance d for array n ∈ {1, ...,N} and frame

s ∈ {1, ...,S}

Pns(θ,d) = |wH
θ Ynsw∗d|= |

K

∑
k=1

F

∑
l=1

Ykle j 2πkusinθ f0
c e j 2πl fl d

c | (2.4)
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where Yns[k, l] = Ykl . Pns(θ,d) is the magnitude of 2-D conventional beamformer output. Ykl

represents the STFT output for the kth microphone and lth frequency bin. (·)H , (·)T and (·)∗ are

Hermitian transpose, transpose and complex conjugate, separately. When the sound source is

from the ground-truth angle and range, then Pns(θ,d) have a high value. Therefore, Pns(θ,d) can

indicate how likely the source is from each candidate angle θ and range d in the searching space.

If we have U and V grid points for θ and d, then we will obtain a beamspectrum surface with

dimension U×V which can indicate the chance of the signal in the given θ and d. Fig. 2.1 (a) is

one of the examples.

It is worth mentioning that we applied 2-D conventional beamforming technique to extract

the features. There exists other feature extraction techniques like SRP-PHAT. However, it is

shown to be computationally prohibitive due to the grid search [42].

For reverberation and noise free data, the localization is simply identifying the θ and d that

correspond to the maximum value in the beamspectrum surface [36]. Due to the reverberation,

much of the sound received by the microphones is a result of multipath, which is a complicated

function of the different microphone locations relative to the source. Therefore, peaks in the

beamspectrum surface may no longer indicate the correct result in terms of their predicted distance

d as depicted in Fig. 2.1 (a).

2.2.2 Range compensation

To help overcome challenges of source localization in reverberant environments, we

design a second decoder to correct for variation in multipath artifacts due to differences in

microphone location. Details on the decoder and the loss function are further described in Sec.

2.2.4.

To enable this decoder to learn to alleviate range offsets cause by multipath artifacts,

we will artificially generate beamspectrum surfaces with range compensation. These artificial

beamspectra will be used as targets of the range compensation decoder in the training phase.
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Figure 2.2: Target images under different σ. From left to right, the values of σ are 0.15, 0.25
and 0.35, respectively.

To generate the artifical beam spectra, we first identify the direct path as the path with the

least range measurement, d̂ in the incorrect range image as shown in Fig. 2.1 (a). We assume

there exists a direct path between the source and at least one of the arrays. We then use the actual

range measurement expected range measurement, d, from the given ground truth location for that

specific measurement. We then compensate this offset in the given RIR measurement to get the

expected beamspectrum profile as seen in Fig. 2.1 (b). More formally, for the STFT output in the

sth frame and kth microphone of the nth array Y ns
k ∈ CF×1, the range is compensated by

Ȳ ns
k = Y ns

k ◦ e j2πϑ
d̂n−dn

c (2.5)

where ϑ= [ f1, ..., fF ]
T ∈RF×1 is a collection of all frequencies. Scalar dn and d̂n are the estimated

ranges for the direct path and true ranges of the nth array, and ◦ represents the Hadamard product.

Fig. 2.1 (b) shows the beamspectrum surface after range compensation. Our results show that

the range compensation will make it easier for DNN to identify the correct location of the sound

source.

We have generated two categories of beamspectrum surfaces with dimension U ×V .

While we can perform single point identification based object detection tasks on these images,

each of these images are with respect to their own microphones and lack the context of the global

coordinates. To overcome that problem, we convert these range-angle images into 2D Cartesian

images which show the coordinate with respect to one of the arrays. We perform a coordinate
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transform on these images to convert to a 2-D Cartesian plane with dimension Y ×X as shown in

Fig. 2.1 (c) to encode the locations of these multiple arrays.

2.2.3 Localization targets

Now that we have defined the images for us to perform the single source localization, we

need to define the targets for the network to learn the SSL task. Since we are using an image

translation network, the target is also represented as an image. In our work, we use a negative

exponential label to represent the target position in 2-D space. The target of the network will also

be a heatmap image with dimension Y ×X . The distance between a random position (x′,y′) and

ground-truth position (x,y) is

d(x′,y′) =
√
(x′− x)2 +(y′− y)2; (2.6)
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Then its value in the target image l(x′,y′) will be marked as

l(x′,y′) = e−d(x′,y′)2/σ2
(2.7)

where σ is a hyperparameter controlling the rate of decay. For d(x′,y′) = 0, then l(x′,y′) = 1 its

maximum value. Far from the target position, the value will decay significantly. For most of the

points in the heatmap, the values are close to 0. The benefits of such a design can be explained as

follows. Instead of penalizing the wrong predictions equally as binary “hard labels”, this “soft

assignment” gives a weighted penalty to the incorrect predictions [43]. Depending how far the

predicted location is away from the true location, this “soft label” can quantify the level of error

and give adaptive tolerance to the wrong predictions.

Fig. 2.2 shows the effects of σ on controlling the rate of decay. We can see that if σ is

small, the target is closer to binary labels. However, if σ is too large, then the target will lose its

sparsity and the localization error will increase since as long as the estimated location is belong

to the region which has high values, the loss will be small. In our future experiments, we choose

σ = 0.25, which is a good balance for these two issues.

2.2.4 MTIT architecture

Now that we have appropriately represent the inputs and targets as images for performing

localization, we utilize the image translation network architecture as shown in Fig. 2.3. One

might think of using a regression network with mean square error (MSE) loss to perform the

localization. However, there are two main drawbacks. First, it is difficult to deal with the data

collected in different rooms. If the room dimension changes, then the size of the image will also

change, leading to a different number of connections for dense layers while performing regression.

Thus, to avoid all the issues related to scaling that occur because of dense layers involved during

regression, we avoid using regression and stick to more scalable image translation networks
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that are robust to scaling and translation. Second, simply using MSE loss does not promote the

sparsity in localization. As we will see later, our network employs the regularization term in the

loss function to avoid ambiguities of multiple local maxima.

We employ the encoder-decoder architecture with one encoder and two parallel decoders

inspired from [36]. The intuition for using two decoders originates from MTL [27–30]. By

training the network to learn multiple different tasks simultaneously, it can perform better than

just learn the primary task. It can act as regularization and help the shared layers to obtain a more

general representation of the input. In [30], the authors try to apply MTL in speech recognition.

Although the primary task is senone classification, the feature enhancement task is also introduced.

By introducing such an additional task, the network has to denoise and dereverberate the features

while trying to classify them. That will help the network learn the good representations that can

produce clean speech, which will reinforce the network to finish the primary task. In this work,

although we are only interested in the localization as our primary task, we also include another

decoder to learn how to compensate the range as our auxiliary task. By training the network to

perform both tasks (i.e. two different decoders sharing the same encoder), they can improve the

higher-level feature representations in the encoder. The benefit of applying MTL is that the model

complexity is only increased during the training phase. During the testing phase, only the primary

task is performed and the auxiliary task is discarded.

We apply the Instance Norm [44] instead of the conventional Batch Norm for the normal-

ization in each layer. Instead of normalizing the images across the batch jointly, Instance Norm

will normalize each individual image independently and it has been shown to be more successful

than batch normalization in the image translation network.

The input to the encoder is the beamspectrum surface without range compensation indi-

cated as (2). The encoder compresses this representation and then feeds to both of the decoders.

The two decoders will focus on two different tasks simultaneously. The multipath alleviation

decoder will focus on the auxiliary task and use the beamspectrum surface with range compen-
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sation mentioned in Sec. 2.2.2 as targets to train the network to generate the beamspectrum

surface without range offsets. The range offsets come from the reverberation. When the speech

signal transmits from the speaker to the sensor, the shortest path (direct path) include the es-

sential information about the locations of the source. However, in the indoor environment, the

reflection is typically unavoidable and it will bring about extra travelling distance thus additional

time-delays [45]. To cancel the extra time-delay, we will employ such a decoder to learn how to

compensate the range. With the help of this decoder, the neural network will learn the multipath

profile and how to alleviate such an artifact by range estimation. The localization decoder aims

to predict the location of the sound source by using the target mentioned in Sec. 2.2.3 as labels.

The output for the localization decoder is also a heatmap image with dimension Y ×X (See Fig.

2.1 (d)). The location with the highest value in this output image will be marked as the predicted

location. Note that since we have used the ground-truth position to generate the target images

with range compensation, the multipath alleviation decoder will only appear during the training

phase, and it will be turned off during the testing phase.

The loss function for the multipath alleviation decoder is l2-loss

Lmultipath =
1
N

N

∑
i=1
∥Ii

out− Ii
target∥2 (2.8)

where Ii
out and Ii

target are the decoder outputs and the targets (beamspectrum surfaces with

range compensation) of the ith array, separately. All of the outputs and targets share the same

dimension. N is the number of arrays. The advantage of averaging across multiple receiver arrays

is that we can enforce consistency of peaks across all the target images, and the network will

learn the consistency across these multiple receiver arrays.

For the localization decoder, we use l2-norm loss with l1 regularization to enforce the

sparsity so that there only exists one global maxima in the output. The loss function of that
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decoder can be expressed as

Llocalization = ∥Tout−Ttarget∥2 +λ∥Tout∥1 (2.9)

where Tout and Ttarget are the decoder outputs and targets (target images with negative

exponential labels), respectively. λ is the regularization term.

For each decoder, the loss is computed based on (2.8) and (2.9) and back-propagated from

the output to the input of each decoder. Then, when the losses from these two decoders arrive the

output of the shared encoder, they are summed and back-propagated to the network input. Since

they share the same encoder, during the training phase, they will help each other to refine the

weights in the encoder so that the shared representations (the input to these two decoders) are

optimized. Therefore, they will help each other and the localization decoder can perform better

with the help of multipath alleviation decoder.

2.3 Dataset

In this section, we will describe the four datasets we will use for the experiments including

simulated data, MIRD [37], DTU [38] and SSLR [39]. For the simulated data, the RIRs are

simulated by open-source software packages while for MIRD [37] and DTU [38] datasets, the

RIRs are measured. The recordings are obtained via convolution between the RIRs and the “clean”

audio. For SSLR [39], the recordings are obtained from real measurements.

2.3.1 Simulated Data

Simulated RIRs are synthesized by the RIR generator [46], which models the reverberation

using the image method [47]. The room is 8×5 m with reverberation times (RT60) from 0.4–0.8

s and speed of sound c = 340 m/s. RT60 is a parameter to reflect the level of reverberation and it
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is defined as the time the sound pressure level takes to decrease by 60 dB after a sound source

deactivates. Therefore, the greater the RT60 is, the more severe the reverberation is. There are N =

3 identical ULA with array centers (0,2.5), (4,0), and (8,2.5) m and K = 4 sensors in each array

with identical space 2.6 cm (See Fig. 2.4 (a)). To train the generalization across space, the sources

have random (x,y) on the boundary of the room. We generate T = 600 RIRs with random source

positions. The size of the dataset C = 37,800 (See Sec. 2.4 for details). The sampling frequency

is 16 kHz. The input speech signal is a 1 s clean segment randomly chosen from LibriSpeech

corpus [40]. Voice activity detection (VAD) is performed on all of the clean speech segments by

WebRTC system. The microphone signals are obtained by convolving the RIRs with the speech

signal. White noise is added to give a 20 dB signal-to-noise ratio (SNR).
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2.3.2 MIRD Dataset

MIRD [37] is also utilized to evaluate the localization performance. It provides measured

RIRs with 3 eight-element array apertures: 26 cm (3-3-3-8-3-3-3, the number represents the

spacing between two microphone), 32 cm (4-4-4-8-4-4-4), and 56 cm (8-8-8-8-8-8-8). There

are 3 different RT60s (0.16, 0.36, and 0.61 s) in a 6×6 m room. We downsample to the audio

frequency from 48 kHz to 16 kHz. All RT60s are applied to assess the localization performance.

There are 2 ranges (1 and 2 m) and 13 candidate DOAs, [−90,90◦] in 15◦ steps (See Fig. 2.4 (b)).

The sound source is located in one of the 26 candidate positions. We use 20 recordings with 2 s

duration and half female/male voices, resulting in T = 520 datapoints. The size of the dataset

C = 65,000 (See Sec. 2.4 for details). VAD is also performed for all of the recordings.

2.3.3 DTU Dataset

We also use impulse responses measured in a classroom in Technical University of

Denmark (DTU), obtained for a semi-supervised source localization study [38]. The classroom is

approximately rectangular with dimension 7×6 m. However, one of the sidewalls is not regular,

with a 100×40 cm extrusion across the entire wall. There are some scattering elements (like

blackboards, whiteboards, diffusers and windowpanes) on all of the walls. The RT60 is around

400 ms. Three microphones are placed in the classroom with 8.5 cm spacing to form a ULA.

The microphones are approximately in the center of the room with 4 m distance to the back wall

and 3 m distance to the other walls and the height of the microphones are 1.5 m. The typical

source-array distance is 1.5 m, and the DOAs are from [−90◦,90◦] with 10◦ resolution (See Fig.

2.4 (c)).

The DTU dataset also has off-range and off-grid RIRs. There are three off-grid RIRs

with 25◦,28◦,45◦ DOAs and 1.5 m range. The DOAs (ranges) of the off-range RIRs are 0◦(1 m),

10◦(2 m), 40◦(2 m),−30◦(2.5 m),−40◦(2.5 m), and−30◦(3 m). We use the 19 RIRs with 1.5 m
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range, 2 RIRs with 2 m range and 1 RIR with 3 m range for training. For the testing datasets, we

use 3 off-angle RIRs (25◦,28◦,45◦) and 3 off-range RIRs that are different from the training set

(−30◦(2.5 m), −40◦(2.5 m) and 0◦(1 m)). We use 20 recordings (after VAD) with 2 s duration

and half female/male voices, resulting in T = 560 recordings in total. 440 of them are used for

training set and the rest 120 of them are used for testing. The size of the dataset C = 70,000

(See Sec. 2.4 for details). The first half of the testing set is off-grid data and the second half is

off-range data.

2.3.4 SSLR Dataset

For the three datasets we have mentioned above, we convolve clean speech signals with the

RIRs to generate the recordings. Therefore, we assume that the room is a linear and time-invariant

system such that the impulse response can characterize the room. However, in the real cases, there

will be some non-linear factors (e.g. the non-linear measurement errors from the imperfections

of the devices [48]) involved. Therefore, even the impulse responses are measured, they may

not be enough to fully characterize the room. In this case, we try to test our method under the

real recordings instead of generating the recordings by convolving clean audios with the RIRs.

Therefore, the SSLR dataset [39] is used for performance evaluation.

In the SSLR dataset, the audio was transmitted from a loudspeaker and recorded by the

microphones in the robot Pepper 1. The received audio signals are strongly affected by the robot’s

fan noise from inside the head (ego noise). The sampling rate is 48 kHz. There are 4 microphones

located at (−0.0267,0.0343), (−0.0267,−0.0343), (0.0313,0.0343) and (0.0313,−0.0343) on

the top of the Pepper, forming a 2 × 2 rectangle of 5.8×6.86 cm which can be thought as two

2-element ULAs. The azimuth angle of the source is randomly distributed between [−180◦,180◦)

and the source-array range is between 0.5 to 1.9 m (See Fig. 2.4 (d)). The audio is recorded in

three environments: a large conference room, a small conference room and a small library room

1[Online]. Available: http://doc.aldebaran.com/2-5/home_pepper.html
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Table 2.1: MAE (m) of localization for testing data (second row) and ablation study (last
row) for all datasets. DTU1 and DTU2 refers to DTU off-angle and off-range testing data,
respectively.

RT60 (s) (Simulated) RT60 (s) (MIRD) RT60 (s) (DTU1) RT60 (s) (DTU2) SSLR
.40 .60 .80 .16 .36 .61 .40 .40 /

Testing MAE (m) .89 .89 1.0 .23 .29 .39 .35 .95 .70
Ablation MAE (m) 1.3 1.6 1.7 .35 .43 .59 .42 1.0 .75

Table 2.2: MAE/90th percentile error (◦) of DOA estimation for MTIT and other baseline
methods

Method RT60 (s) (Simulated) RT60 (s) (MIRD) Testing Setup (DTU) SSLR
.40 .60 .80 .16 .36 .61 off-angle off-range small

SRP-PHAT 32/74 33/73 34/74 13/45 16/64 19/60 20/70 15/70 16/50 44/91
MUSIC 34/73 36/74 36/73 12/45 17/60 19/60 18/70 14/70 22/60 45/92

CNN 10/30 11/36 12/37 4.6/15 8.0/30 10/30 14/40 13/40 9.4/20 64/137
MTIT 7.5/23 7.7/25 8.8/28 4.3/15 5.7/17 8.1/25 9.9/28 11/40 8.5/20 27/72

with shelves. The recordings are chosen such that the array and source are almost in the same

plane. There are T = 633 recordings (1 s length each) in total. 480 of them are used for training

and the rest of them are used for validation and testing. The speech and source positions of the

testing data are not seen in the training set so that it can test the generalization performance. The

size of the dataset C = 30,384 (See Sec. 2.4 for details).

2.4 Experiments and Implementation Details

MTIT is compared with MUSIC [13], SRP-PHAT [14–16] and CNN [18]. We use the

implementation of Pyroomacoustics [49] for MUSIC and SRP-PHAT. The spectrogram is used as

input to train the CNN for classification. Since the source positions are random in simulation and

SSLR datasets and have 15◦ and 10◦ resolution for MIRD and DTU datasets, respectively, we

use 1◦ resolution for MUSIC and SRP-PHAT in simulations and SSLR, and 15◦ for MIRD and

10◦ for DTU dataset.

For CNN, based on the parameters suggested by [18], we have M−1 (M is the number of
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microphones) convolutional layers with kernel size 2, and 64 filters per layer. Then, two fully

connected layers (512 units for both of them) are added following the convolutional layers. To

reduce overfitting, we apply dropout (0.50 dropout rate) in output layer [18]. ReLu is used as

activation function.

For simulated, MIRD and DTU data,

• We use NFFT = 256 with no overlap for the STFT implementation, the number of snapshots

Ssim = 63 and SMIRD = SDTU = 125.

• We only consider positive frequency bins, thus F is 128 for the aforementioned datasets.

• The sizes of the datasets are

Csim = T ×Ssim = 600×63 = 37,800;

CMIRD = T ×SMIRD = 520×125 = 65,000;

CDTU = T ×SDTU = 560×125 = 70,000.

• The dimensions of the beamspectrum surfaces are

101(Y )×161(X) for simulated data;

121(Y )×121(X) for MIRD data;

121(Y )×141(X) for DTU data.

For SSLR data,

• We use NFFT = 2048 with 50% overlapping and SSSLR = 48.

• We only consider positive frequency bins, thus F is 1024.

• The size for that dataset is and CSSLR = T ×SSSLR = 633×48 = 30,384

• The dimension of the beamspectrum surface is 41(Y )×41(X).

For MTIT, σ = 0.25 (See (2.7)) is chosen for generating the target. The beamspectrum

surface is normalized by dividing the intensity of each pixel by the maximum intensity in that
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Table 2.3: STOI and PESQ scores for each dataset

Simulated Data MIRD DTU SSLR

RT60 (s) .40 .60 .80 .16 .36 .61 non-small small /

STOI .62 .55 .49 .67 .64 .60 .82 .82 .21

PESQ 2.4 2.3 2.2 2.6 2.3 2.0 2.6 2.5 1.9
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Figure 2.5: CDF of localization error for (a) simulated data, (b) MIRD data, (c) DTU data and
(d) SSLR data.

image so that it is normalized between [0, 1]. The model is implemented by Pytorch [50] with

learning rate 10−5, batch size 32, and weight decay regularization λ = 5×10−4, and Adam [51]

is the optimizer with weight decay 10−5. The model is trained for a maximum of 50 epochs.

We used early stopping based on validation localization error. We will stop the training if the

validation error keeps increasing for 2 consecutive epochs.
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2.5 Results and Discussions

We will use mean absolute error (MAE) and 90th percentile error as evaluation metrics.

The localization error for ground-truth (x,y) and predicted (x̂, ŷ) location can be expressed as

e =
√
(x̂− x)2 +(ŷ− y)2 . (2.10)

The MAE of localization error and DOA estimation θ (the correct DOA is θ̂) for C datapoints are

defined as

MAE(e) =
1
C

C

∑
c=1

e(c) (2.11)

MAE(DOA) =
1
C

C

∑
c=1
|θ(c)− θ̂(c)|. (2.12)

The 90th percentile error is the worst 10% of the data. By including such an evaluation metric,

we can observe the worst case for the localization performance.

We will present the localization performance of MTIT and compare the performance with

baseline methods. The localization performance of MTIT for all datasets are available in Table

2.1 and Fig. 2.5. We also compare the DOA estimation error of MTIT with baseline methods and

list the results in Table 2.2.

2.5.1 Testing Results

The MAE of MTIT for testing data is listed in the third row of Table 2.1. We also plot the

cumulative distribution function (CDF) of the localization error for the testing data in Fig. 2.5.

From Fig. 2.5, we can see that for the simulated and MIRD data, the median error is less than

0.2 m, which results in a competitive localization performance. Notice that the testing data of

both DTU and SSLR are not seen during the training phase, and we can see MTIT has a good

generalization performance. We will discuss more about that in Sec. 2.7.
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Figure 2.6: Parameter studies for (a) Number of microphones (2, 4, 6, and 8) and (b) Aperture
(9, 12 and 24 cm) under MIRD data (with M = 4 microphones)

2.5.2 Comparison with Baseline Methods

The comparison of MAE and 90th percentile error for DOA estimation with other baseline

methods is in Table 2.2. From these tables, we can see that our approach outperforms all baseline

methods for all of the datasets.

For the SSLR data, due to the randomness of the source positions and strong robot fan

noise, the localization performance of all methods degrades significantly (See Table 2.2). The

results can also be attributed to the poor quality and intelligibility of the audio in SSLR dataset.

We computed the short-time objective intelligibility (STOI) [52] and perceptual evaluation of

speech quality (PESQ) [53] scores of each dataset (See Table 2.3). STOI is a metric to evaluate the

intelligibility of the speech. It ranges from 0 to 1 and the higher STOI leads to more intelligible

speech. PESQ can be used to evaluate the quality of the audio. It ranges from −0.5 to 4.5 and

higher PESQ indicates the better audio quality. From the table, it is shown the strong robot fan

noise adversely affects the intelligibility and quality of the audios in SSLR. However, MTIT can

still have a satisfactory performance in such a harsh acoustics environment.

2.5.3 Parameter Studies

MIRD offers different microphone spacing options and for each spacing option, if we

pick up half of the array (either left half or right half), it will form a ULA. In addition, for the 8
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cm option, since the spacing is the same for any two adjacent microphones, regardless of how

many microphones we pick up, it will form a ULA. Due to such a unique merit of MIRD, we

can study the influence of number of microphones and microphone spacing on the localization

performance based on that dataset.

Number of Microphones

In the previous experiments, we considered a ULA with M = 8 microphones with mi-

crophone spacing 8 cm. In this section, we will empirically demonstrate that based on limited

number of microphones, how the localization performance will change.

In this experiment, we will consider a ULA M = 2,4,6,8 microphones. For each case,

the array is formed by selecting the M microphones starting in the middle of the array so that all

of the arrays share the same inter-microphone distance. For all cases, RT60 = 0.61s

The MAE of the DOA estimation for each method is shown in Fig. 2.6 (a). For the CNN,

the number of convolutional layers is set as (M−1) for each case, as suggested by [18]. From the

figure, we can easily find out that the localization performance will improve if the array has higher

number of microphones. Therefore, for ULA, a larger aperture will result in a better performance.

In addition, we observe that for the baseline methods, the MAE will decrease significantly when

M increases from 2 to 4, but only slightly decrease when M is greater than 6. But MTIT can still

achieve a satisfactory performance when M = 2, which shows the robustness against the limited

number of microphones.

Influence of Microphone Spacing

In the previous experiments, we considered the ULA with 8 cm spacing. For MIRD

dataset, it also provides another two apertures: 26 cm and 32 cm (See 2.3.2). In this section, we

will use left half of the eight element array forming 4-element ULAs with apertures 9, 12 and 24

cm to explore the influence of the microphone spacing on the localization performance. For all of
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Figure 2.7: Localization results for moving sources (See Sec. 2.5.4 for details). The array 3 is
not shown, and its center position is (8, 2.5) m. The ground-truth and predicted trajectory are
shown in the bottom right part of the figure.

the three apertures (9, 12 and 24 cm), the RT60 is 0.61 s.

From Fig. 2.6 (b), for all of the methods, the best localization performance is obtained

when the spacing is 8 cm, which also shows that the larger aperture will lead to a better perfor-

mance.

2.5.4 Moving Source

We evaluate the localization performance for a moving source. In this experiment, we

test the localization performance based on the pre-trained network under the simulated data

(RT60 = 0.40 s, and SNR = 20 dB. Other parameters are described in Sec. 2.3.1.). We use RIR

generator [46] to generate 25 additional RIRs from these 25 testing positions with the same setup

mentioned above. The x and y coordinates of these positions range from (0.5,3.5] and (0.3,3.5),

respectively. The trajectory is generated as a line with some small random perturbations (See

Fig. 2.7). The source is moving from the beginning point to the end point (the begin and end

points are marked in Fig. 2.7). Then, we convolve the generated RIRs with the same audio used

for training to obtain the recordings polluted by reverberation. Only one snapshot is used for

35



4

2
Network
Input

Array 1 Array 2 Array 3

4

2
Decoder1
Output

4

2
Decoder1
Targets

0 2 4 6

4

2
Decoder2
Output

X (m)

Y 
(m

)

Figure 2.8: Visualization of the input, output, and target of the multipath allevation decoder
(decoder 1) and the output (fourth row) of the localization decoder (decoder 2) under simulated
data (RT60 = 0.4 s). The ground-truth source position (+) and the maximum point (◦) are
indicated.

localization. We extract the features from these recordings and generate the targets for the testing

data based on the same procedure described in Sec. 2.2 and the same parameters described in

Sec. 2.4. The feature heatmaps are then fed into the pre-trained network for localization. We

localize these 25 positions individually and compare the localization results with the ground-truth

positions (See Fig. 2.7). From the figure, we can see MTIT captures the trajectory of the moving

source accurately.

2.6 Ablation Study

To validate the function of multipath alleviation decoder, we conduct ablation study which

removes that decoder during the training phase. The MAEs for the testing data are listed in the

second row of Table 2.1. Compared with the first row, we can see that The localization error

increases when that decoder is removed for all of the cases, which verifies the role of that decoder

in resolving the multipath artifacts.
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To understand the role of multipath alleviation decoder, we show one example of input,

output and target beamspectrum surfaces of the multipath alleviation decoder for all of the three

arrays in Fig. 2.8. The example is from the testing data in the simulated dataset when RT60 = 0.4s.

We highlight the following two observations:

2.6.1 The function of Multipath alleviation decoder

The multipath alleviation decoder is supposed to compensate the range offset caused by

multipath artifacts. Let’s focus on Array 1. For the input to the multipath alleviation decoder,

the ground-truth position does not lie in the bright regions. Thanks to the target of that decoder

which compensates the range offset, the network learns how to compensate the range and output

a beamspectrum surface that is very close to the target. For Array 3, we can clearly see two

local maxima in the input. But in the output of the decoder, we can see the maximum point is

close to the ground-truth position. Therefore, the multipath alleviation decoder can overcome the

imperfections of the input and learn how to compensate the range.

2.6.2 Evidence of Overcoming the Imperfections of the Target and Gener-

alization

For the target of Array 2, we can see the peak is far from the ground-truth position.

However, the network still overcomes such an imperfections and output an image such that the

ground-truth position is close to the maximum point. Note that for this testing sample, the source

position has not been seen during the training phase. Therefore, these sample images serve as

an initial evidence to the generalization of MTIT. The network can even perform well when the

target is not perfect.
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Table 2.4: Training time (unit: mins) for 4 datasets

Simulated Data MIRD DTU SSLR

2 Decoders 308 354 371 166

1 Decoder 215 180 181 33

2.6.3 Complexity Studies

For MTIT, we introduce the auxiliary task to improve the localization performance.

However, it may bring about additional computational workload in the training phase. Notice that

the multipath alleviation decoder used for auxiliary task will be turned off during the testing phase.

Hence, the auxiliary task will not increase the complexity in the testing phase. We compare the

training time for MTIT in the cases when both decoders are active and only localization decoder

is active (ablation case). We list the results in Table 2.4. We can see the auxiliary task indeed

increases the computational workload.

2.7 Generalization Evaluation

One important assumption for the deep learning is that the training and testing data

obeys the same distribution (i.e. the data are from the same environment). However, in the real

applications, there will be some mismatch with the training environment. Therefore, it is crucial

to evaluate the robustness of the model when the environment changes. In this section, we will

comprehensively evaluate and discuss the generalization performance of our method for the four

datasets under different environment changes.

2.7.1 Simulated Data

For simulated data, it is relatively easy to change the room dimension, reverberation time

and SNR, so it is employed to test the generalization to unseen reverberation time and acoustic
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Figure 2.9: CDF of generalization experiments for (a) Base Case I (simulated data, general-
ization evaluation to unseen reverberation time), (b) Base Case II (MIRD data, generalization
evaluation to unseen speech) and (c) Base Case III (MIRD data, generalization to unseen micro-
phone spacing).

conditions.

Generalization to Unseen Reverberation Times

The reverberation time is a critical factor for SSL and it is determined by the room shape,

the construction materials of the room, the objects placed in the room etc. Even for the same

room, the reverberation times may change if the objects in the room are relocated or removed.

Therefore, it is important to study the generalization to unseen reverberation times.

We train the MTIT under RT60 = 0.6 s (Base Case I) and test it under RT60 = 0.7 s (Case

(i)). From Fig. 2.9 and Table 2.5, we can see that there is only a minor increase of the localization

error, which shows the robustness of the model.

Generalization to Unseen Acoustics Conditions

To verify the generalization to unseen acoustics conditions, we simulate the training and

testing datasets based on the configuration listed in Table 2.6. For the testing data, the RT60, room
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Table 2.5: Generalization performance of MTIT and CNN under simulated data (Base Case I)
and MIRD data (Base Case II and III)

Training Setup Testing Setup MAE (°)

CNN MTIT

Base Case I Base Case I 10.8 7.7
Base Case I (i) 11.7 8.4
Base Case II Base Case II 9.8 8.0
Base Case II (ii) 23.9 12.0
Base Case III Base Case III 14.7 11.6
Base Case III (iii) 25.6 19.9

Table 2.6: Configuration for training and testing data for generalization experiment in Sec. 2.7.1

Training Data Testing Data

Room Size (m) 8×5×4 9×6×4 8×6×4 10×7×4 9×5×4 8.5×5.5×4

RT60 (s) .40 .60 .60 .80 .60 .70

SNR (dB) 35 25 25 15 25 20

dimension and SNR are all not seen from the training data. In addition, the positions of sound

sources for the testing data are completely disjoint with that of training data. Other configurations

are the same as what mentioned in 2.3.1. We compare the MAE and 90th percentile error of the

DOA estimation for the testing data with other baseline methods (See Table 2.7). From the table

we can see that by training MTIT in a diverse set of acoustics conditions, it can generalize well to

acoustic environment variation. In addition, since the positions of sources are also not seen in the

training data, our method can also generalize well across space.

2.7.2 MIRD Dataset

For MIRD data, the network is trained with 20 different speech recordings, it is desirable

to test whether the network has learned to be adaptive to new recordings. In addition, since it

offers 3 array apertures and if we consider the left four (or the right four) sensors, it will form
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Table 2.7: MAE/90th percentile error (◦) of DOA estimation to unseen acoustics conditions and
unseen source positions based on the configuration in Table 2.6

MUSIC SRP-PHAT CNN MTIT

MAE (◦) 33.1 27.5 18.5 13.7
90% Error (◦) 68.8 64.9 47.0 34.2

a ULA. Therefore, it may also be interesting to test whether the network can be adaptive to the

unseen microphone spacing.

Generalization to Unseen Speech

It is also essential to ensure the model can generalize to different speech so that it can

adapt well to arbitrary speakers. To verify the generalization to unseen speech, we pick up 3

recordings that are different from the training set and re-generate the testing data. The model is

trained on M = 8 ULA (8 cm spacing) with RT60 = 0.61 s and 20 speech signals but tested with

3 recordings that are seen (Basecase II) or not seen (Case (ii)) from the training set. The MAEs

of the DOA estimation are listed in Table 2.5. We can see that CNN is sensitive to the unseen

speech and the MAE of the localization increases significantly for the new testing data. However,

such a change does not seriously influence the localization performance of MTIT, which shows

the potential for generalization to different speech.

Generalization to Unseen Microphone Spacing

In this section, we will use half of the eight element array (M = 4 ULA) and two spacings

(3 cm or 4 cm) to evaluate the generalization to unseen microphone spacing. The model is trained

based on 4 cm aperture (Basecase III) but tested on 3 cm aperture (Case (iii)). From Table 2.5,

we can see that MTIT is more robust to the unseen microphone spacing than the CNN.
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2.7.3 DTU Dataset

Although DTU and MIRD datasets are similar in that both of them are measured RIRs,

DTU dataset offers off-grid and small-device measurements. Hence, it can be used to test the

generalization across unseen source positions and measurement devices.

Generalization across Space

There are two sets of testing data (off-angle and off-range) in the DTU dataset (See 2.3.2).

From Table 2.2, we can see that our method has a superior performance than the baseline methods.

Therefore, MTIT can generalize well to unseen source positions.

Generalization across Devices

When we are doing the measurements, the sound sources were played by two type of

loudspeakers including a compact loudspeaker (single-driver) and a full-range loudspeaker (two-

way). To verify the generalization across devices, we train the model under the RIRs collected

from full-range loudspeaker and test it by the data from compact loudspeaker. It can be seen from

Table 2.2 that MTIT performs well under different measurement devices.

2.7.4 SSLR Dataset

For all of the datasets mentioned above, the recordings are obtained by convolving the

RIRs with “clean” speech signals, which means that we assume the room is a linear system. So it

may be necessary to include the real recordings to double check whether the network can still

generalize well under a non-linear system. SSLR is therefore used to test the generalization

across speech and space under non-linear system though we have tested them in MIRD and DTU

datasets.

For the SSLR dataset, the speech recordings and source positions are not seen during the
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training. Based on the superior performance shown in Table 2.2, we can conclude that MTIT has

a good generalization performance in the presence of ego noise etc.

2.8 Conclusions

We developed MTIT, a SSL method based on MTL and image translation network. This

enables the DNN to simultaneously predict the locations of sound sources and mitigate multipath

artifacts. Since they share the same encoder, these two decoders will help each other during the

training stage. Experiments indicate our method outperforms MUSIC, SRP-PHAT, and CNN in

environments in all of the four datasets we used. The ablation study shows the importance of

multipath alleviation decoder to reduce multipath and the generalization experiments show strong

generalization abilities and robustness against the mismatch between the training and testing data.
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Chapter 3

Gridless DOA Estimation with Multiple

Frequencies

Direction-of-arrival (DOA) estimation is widely applied in acoustic source localization. A

multi-frequency model is suitable for characterizing the broadband structure in acoustic signals.

In this paper, the continuous (gridless) DOA estimation problem with multiple frequencies is

considered. This problem is formulated as an atomic norm minimization (ANM) problem. The

ANM problem is equivalent to a semi-definite program (SDP) which can be solved by an off-

the-shelf SDP solver. The dual certificate condition is provided to certify the optimality of the

SDP solution so that the sources can be localized by finding the roots of a polynomial. We

also construct the dual polynomial to satisfy the dual certificate condition and show that such

a construction exists when the source amplitude has a uniform magnitude. In multi-frequency

ANM, spatial aliasing of DOAs at higher frequencies can cause challenges. We discuss this

issue extensively and propose a robust solution to combat aliasing. Numerical results support our

theoretical findings and demonstrate the effectiveness of the proposed method.
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3.1 Introduction

Line spectrum estimation is a fundamental problem in signal processing, and has many

applications in direction-of-arrival (DOA) estimation in sensor array processing [1], wideband

channel estimation [2], and modern imaging modalities [3]. In line spectrum estimation, the

observed signal x[n] is a superposition of K complex sinusoids (i.e. x[n] = ∑
K
k=1 cke− j2π fkn) and

the goal is estimating the frequencies fk of these K sinusoids. An important application of line

spectrum estimation is DOA estimation [1]. For DOA estimation, we have K plane waves from

angles {θ1, . . . ,θK} impinging on an array with Nm sensors. Due to different propagation delays to

each sensor, the received data is a sum of K spatial sinusoid vectors [1 . . . e− j 2π f0(Nm−1)d cosθk
c ]T (k ∈

{1, . . . ,K}) parameterized by the plane wave directions θk ( f0 is a temporal frequency). Our goal

is to estimate the K DOAs (θk) based on the received data. The cosine of each DOA linearly

maps to a single spatial frequency 2π f0d cosθk
c of the sinusoid, and once the spatial frequencies

are estimated, the DOA can be retrieved. Many line spectrum estimation methods as multiple

signal classification (MUSIC) [4], and estimation of signal parameters via rotational invariant

techniques (ESPRIT) [5], have been used for narrow band signals.

Unfortunately, the aforementioned methods cannot be applied in wideband DOA estima-

tion problems such as ocean acoustics localization and speaker localization. Wideband signal

DOA estimation has been studied for decades [6–10]. A subspace-based wideband DOA estima-

tion approach, incoherent signal subspace method [6], was proposed with later improvement in

the coherent signal subspace method (CSSM) [7]. A broadband spatial-spectrum estimation ap-

proach [8] overcame the peak bias and source spectral content sensitivity from CSSM. Variants of

CSSM, such as the weighted average of signal subspaces method [9], and the test of orthogonality

of projected subspaces method [10] were also proposed. Recently, some wideband DOA estima-

tion methods based on sparse recovery have also been developed [11–14]. These sparsity-based

methods have demonstrated superior performance compared to conventional methods.
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The multi-frequency (or multi-dictionary) model [14–18] has shown success in modeling

wideband signals. The multi-frequency model uses N f (rather than 1) temporal frequency bins

in a frequency set F = { f1, . . . , fN f } to characterize a wideband signal. These frequencies are

then used for estimation, as opposed to using a single frequency under the narrowband model.

The multi-frequency model was used for ocean acoustics localization [18]. Most of the existing

methods assume that the true spatial frequencies lie on a finite set of grid points, and their

performance may degrade if the true spatial frequencies fall off the grid.

To overcome the grid mismatch problem, atomic norm minimization (ANM) methods that

work on continuous (gridless) dictionaries have been proposed in a variety of contexts [19–32].

ANM extends grid-based, sparsity-promoting ℓ1 norm minimization to the continuous setting

and is commonly applied to solve the line spectrum estimation problem for signals that are

sparse in the temporal frequency domain. ANM was initially proposed in [19], which provides a

general recipe for finding convex solutions to promote sparse decompositions, where one seeks

to represent a given signal based on a minimal number of atoms from an atomic set composed

of an ensemble of signal atoms. The ANM framework overcomes the grid mismatch issue and

can achieve potentially infinite precision. However, all prior ANM works used a narrowband

assumption and are not applicable for wideband DOA estimation.

3.1.1 Related Work

Multiple Frequencies

Multiple frequencies decompose a wideband signal into multiple narrowband signals

and therefore are widely applied in acoustics source localization [15, 16, 18] when the signal

contains a wide range of frequency bins and cannot be characterized by a narrowband model.

Some grid-based sparse localization approaches for the multiple frequencies were proposed

[14, 15, 17, 18, 33] for robustness and aliasing suppression.
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Atomic Norm Minimization

ANM was initially proposed in [19] as a general framework for promoting sparse signal

decompositions. The pioneering ANM paper [20] worked directly with the continuous (temporal)

frequency estimation problem and considered the complete data case. As long as the temporal

frequency separation was greater than a certain minimum separation, exact recovery of the active

temporal frequencies was guaranteed. Furthermore, a semidefinite programming (SDP) frame-

work that characterized the ANM problem was presented. The authors in [21] studied continuous

temporal frequency estimation based on randomly sampled data for the single measurement

vector (SMV) case. The minimum separation condition was relaxed in [24]. ANM for multiple

measurement vectors (MMVs) was studied in [23, 26, 30]. In [25], the author considered a

super-resolution problem that had a similar setup to [20] except that the point spread function was

assumed to be unknown. Based on the assumption that the point spread function was stationary

and lived in a known subspace, the lifting trick was applied, and the problem was formulated

using ANM. The model was generalized to non-stationary point spread functions in [27]. The

sample complexity of modal analysis with random temporal compression was established in [28].

ANM for 2D temporal frequency estimation was studied in [22]. In [29], the authors proposed

a reweighted ANM framework, which enhances the sparsity and achieves super-resolution. An

atomic norm for DOA estimation under gain-phase noise [34] was proposed to mitigate the arti-

facts for electromagnetic signals. ANM was also recently applied in digital beamforming [35, 36],

adaptive interference cancellation [37], denoising [38, 39], and blind demodulation [40, 41]. We

refer readers to [42] for a comprehensive overview of ANM and its applications.

Our multi-frequency problem is different from the MMV problems [23, 26, 30] extensively

studied in the past few years. Although both our work and MMVs fall under the general topic of

multi-channel line spectrum estimation, the temporal frequencies in each channel are different

in our problem while they are the same in MMVs. Therefore, each channel is modulated with a

different sinusoid while this heterogeneous modulation is absent in MMVs. This heterogeneous
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modulation leads to several challenges for theoretical analysis. First, it makes it difficult to derive

an equivalent SDP problem based on the Vandermonde decomposition as has been done in many

prior ANM works. Second, under our setup, each frequency other than the first will experience

spatial aliasing of the DOAs. This leads to potential collisions or near collisions of the DOAs

which are challenging to resolve. Thus, although having multiple frequencies does provide more

data, one must ensure that aliasing does not undermine this benefit. These challenges make our

problem more difficult to analyse than MMV problems. We will elaborate on these two challenges

and our solutions in Sec. 3.1.2.

3.1.2 Our Contributions

In this work, we extend ANM to the multi-frequency framework so that it can be used for

DOA estimation with wideband signals. Our contributions are summarized as follows:

(1) Formulate an equivalent SDP problem. Although ANM itself is a convex optimiza-

tion problem, it is not directly solvable due to an infinite number of optimization parameters.

Therefore, it is critical to find a computationally feasible solution that equivalently characterizes

the ANM problem. Several prior works showed that certain ANM problems could be equivalently

characterized by SDPs [21, 23, 26]. The derivation of an SDP problem typically relies on a

Vandermonde decomposition, and equivalence with the ANM can be proved by showing that

the SDP solution is both an upper and a lower bound for the ANM [21, 23, 26]. Unfortunately,

this commonly used technique cannot be applied in our case due to the heterogeneous temporal

frequencies across different channels. In [35, 43], certain SDPs were derived using the Vander-

monde decomposition, but only the lower bound for the ANM problem could be guaranteed.

In this work, we derive an equivalent SDP based on the bounded real lemma for trigonometric

polynomials [44]. This equivalent SDP will provide a computationally feasible solution for the

ANM when multiple frequencies are considered. We also explain how our SDP is the dual to a

minor adaptation of the SDP proposed in [45] for line spectrum estimation with harmonics.
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(2) Provide the dual certificate condition. We derive a dual certificate condition that can

be used to certify the optimal atomic decomposition. In particular, the DOAs of the sources are

localized with the help of the dual polynomial arising from the ANM optimization problem. As

long as the dual polynomial satisfies the dual certificate condition, the frequencies can be localized

by finding the roots of a polynomial. Therefore, the dual certificate condition not only provides a

theoretical guarantee for the optimality, but also offers a method for the DOA estimation.

(3) Construct the dual polynomial that satisfies the dual certificate condition. In cases

where we can prove the existence of a dual polynomial that satisfies the dual certificate condition,

then the optimality and therefore exact DOA estimation are guaranteed. If the array spacing

d ≤ c
2N f f0

=
λNf

2 , spatial aliasing would be fully avoided for all of the temporal frequencies, and

it may be possible to construct a valid dual polynomial under a mild separation assumption on the

source directions. In such a case, the success of the algorithm is guaranteed.

The dual polynomial is developed our model for arbitrary spacing d. A larger aperture

(Nm−1)d with greater d may improve spatial resolution but introduces spatial aliasing. If the

spacing d = c
2 f0

= λ1
2 , spatial aliasing is present in all but the first frequency. This spacing

necessarily creates periodicity in all but the first frequency of the vector-valued dual polynomial.

Such periodicity brings the risk of creating ambiguity in the source direction. More specifically,

after spatial aliasing, when two source directions coincide at one frequency, we refer to this as

collision. Collision may happen in multiple frequency bins, and it becomes more likely for great

N f . Most ANM works need well-separated harmonics to work [20, 21, 23, 26]. However, in a

multi-frequency scenario, one must consider the separations for DOAs across all frequencies.

Assuming collisions and near collisions are thus avoided and under some additional assumptions

about the source amplitudes, we guarantee that there exists a dual polynomial satisfying the dual

certificate condition.

(4) Implementation. We propose a fast implementation so that the SDP has a reduced size.

This fast implementation also extends the approach to an arbitrary set of frequencies. Numerical
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results show that the dual polynomial still serves as a precise indicator for the DOAs. Hence, in

terms of the DOA estimation, the algorithm succeeds even when collisions are present.

Finally, our work is inspired by recent advances in ANM for super-resolution, but signif-

icantly deviates from the existing MMV works. This work significantly extends our previous

ICASSP paper [46]. It includes additional analysis for the dual polynomial construction, aliasing

and collision, and provides a fast algorithm and extensive simulations. This paper is the first work

that extends ANM to multiple frequencies so that it can be adapted to gridless DOA estimation

for wideband signals via convex programming.

3.1.3 Notations and Organization

Boldface letters represents matrices and vectors. Conventional notations (·)T , (·)H , (·)∗,

⟨·⟩R, and ⟨·⟩ stand for matrix/vector transpose, Hermitian transpose, complex conjugate, real inner

product, and inner product, respectively. Tr(·) is used to represent the trace of a matrix. ∥ · ∥p and

∥ · ∥F are used to express vector ℓp norm and matrix Frobenius norm. For a Hermitian matrix A,

A⪰ 0 means A is a positive semidefinite (PSD) matrix. ⊙ stands for the Hadamard product. The

ℓ1,2 norm of a matrix A = [a1 . . . aN ] is defined as ∥A∥1,2 := ∑
N
i=1 ∥ai∥2. The imaginary unit is

denoted by j =
√
−1.

The rest of the paper is organized as follows. Sec. 3.2 introduces the signal model and the

assumptions. The equivalent SDP and the dual certificate condition are derived in Sec. 3.3. Sec.

3.4 constructs the dual polynomial that satisfies the dual certificate condition and also analyses

the collision and near collision issues. Sec. 3.5 presents some numerical examples to support and

demonstrate theoretical findings. Finally, Sec. 3.6 concludes the paper.
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3.2 Signal Model

3.2.1 Assumptions and Model Framework

Assumptions

The following assumptions are made for the array configuration and signal model:

1. There are Nm sensors forming a uniform linear array (ULA) with array spacing d.

2. There are K active sources impinging on the array from unknown directions of arrival

(DOAs) θ.

3. Each source has N f active temporal frequency components, each at an integer multiple

f of a fundamental frequency f0, i.e., f ∈ {1, . . . ,N f } and f f0 ∈ { f0, . . . ,N f f0}. This is

only a technical assumption to simplify the analysis, and our method can be applied in any

frequency set with the fast algorithm proposed in Sec. 3.3.6.

4. Suppose d ≤ c
2 f0

holds (or, equivalently, 2π f0d
c ≤ π), where c is the speed of propagation.

We also notice that d = c
2 f0

is the maximum separation to avoid spatial aliasing at the

fundamental frequency. For higher frequencies (i.e. f ≥ 2), aliasing will still exist. Such

aliasing is not considered in conventional narrowband ANM papers. It is possible to develop

the method with d = c
2N f f0

so that aliasing can be completely avoided in all frequencies.

Multiple Frequencies

Based on the above assumptions, we absorb the constant parameters d, f0, and c into a

scaled DOA parameter w=w(θ) := f0d cos(θ)
c ∈ [− f0d/c, f0d/c]. Henceforth, w is simply referred

as the DOA.

For each temporal frequency f f0 ∈ {1, . . . ,N f } · f0, let y f ∈ CNm denote the received

signal across the Nm sensors. y f can be expressed as a sum of K spatial sinusoid vectors, with
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the k-th vector having spatial frequency f w(θk). Importantly, the spatial frequency depends on

both the temporal frequency f f0 and the DOA w(θk). To better illustrate these effects, we refer

the reader to Fig. 3.1. Suppose N f = 3, Nm = 5, and the input signal (top row) is a complex

sinusoid with temporal frequency f f0. The spatial samples obtained from the sensors (red) will

be sampled sinusoids (bottom row) with different spatial frequencies that depend on both the

temporal frequency and the DOA.

Stacking all of the data from the N f frequencies into a matrix, the full set of received data

is denoted by Y := [y1 . . . yN f ] ∈ CNm×N f . Summing over the K active DOAs, we write

Y = X+W, (3.1)

where
X := ∑

w
cw[xw(1)a(1,w) . . . xw(N f )a(N f ,w)]

= ∑
w

cwA(w)�xT
w,

(3.2)

a( f ,w) := [1 . . . e− j2πw f (Nm−1)]T ∈ CNm is the array manifold vector (steering vector) corre-

sponding to the f -th frequency bin and DOA w, xw( f ) is the signal amplitude for the f -

th frequency bin, and W := [w1, . . . ,wN f ] ∈ CNm×N f is additive Gaussian uncorrelated noise.

xw := [xw(1) . . . xw(N f )]
T ∈ CN f is a collection of N f amplitudes corresponding to the same

DOA, A(w) := [a(1,w) . . . a(N f ,w)] ∈ CNm×N f , and � is the Khatri-Rao product defined as

[A(w)� xT
w] := [a(1,w)xw(1) . . . a(N f ,w)xw(N f )] ∈ CNm×N f . We assume that ∥xw∥2 = 1; the

coefficient cw absorbs any other scaling of the source amplitudes cwxw. Our goal is to identify the

K active DOAs w from the data matrix Y.

In the following sections, we primarily develop the optimization methods within the

noise-free model, i.e., where W = 0. We describe, however, how the optimization problem is

modified if noise is present (see (3.10) and (3.21)).
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3.2.2 Mapping Operator

In this section, we will define some mapping operators that help us set up our method.

Define
z = z(w) := [1 e− j2πw1 . . .e− j2πwN f (Nm−1)]T

= [z0 z1 . . .zN−1]T ∈ CN
(3.3)

that collects all possible complex exponentials from the array manifolds in all frequencies,

where N := N f (Nm−1)+1 and z = z(w) := e− j2πw. The intuition for defining the z notation will

be explained after the definition of the dual polynomial vector (3.13). Introduce Z = Z(w) :=

[z . . .z] ∈ CN×N f and define X′ ∈ CN×N f as

X′ :=
(

∑
w

cwZ�xT
w

)
. (3.4)

Then, we define the R operator that maps X′ to X as

X = R (X′)⇒ X(i, j) = X′(1+(i−1) j, j), (3.5)

where R : N×N f → Nm×N f is a mapping that selects Nm elements from the N elements in each

column of X′. We demonstrate the mapping in Fig. 3.2. Note that A(w) can be represented in

terms of Z by using the R operator as

A(w) = R (Z). (3.6)

Note that in [45, (8)], an analogous mapping operator is introduced in the context of the

line spectrum estimation problem with harmonics. In [45, (9)], the transformation is applied in

the signal space and enables the formulation of an SDP problem in the primal domain. In our

paper, R is applied to the coefficient matrix H (see (3.15)) and that enables us to formulate an

SDP problem in the dual domain.
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Figure 3.1: Multi-frequency data on array with Nm = 5 sensors. Top: time snapshot of
propagating plane wave with DOA θ and temporal frequency f0, 2 f0, 3 f0. Bottom: array data
are samples of a spatial sinusoid whose spatial frequency depends on the temporal frequency
and DOA. Only the real part is shown.

3.3 Methodology

3.3.1 Atomic Norm Minimization (ANM)

To efficiently represent matrices of the form (3.2), we define the atomic set

A := {A(w)�xT
w : w ∈ [− f0d/c, f0d/c],∥xw∥2 = 1}. (3.7)

From (3.2), X is a sparse combination of K atoms from A since only a few directions have active

sources. ANM provides a framework for identifying such sparse combinations in continuously

parameterized dictionaries. In our case, the dictionary A is parameterized by the continuous DOA

w.

In the the noise-free case, to identify the K active DOAs w from the data matrix Y, we

propose the following ANM-based optimization framework:

min
X

∥X∥A s.t. Y = X, (3.8)
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𝑁𝑙 = 3

𝑁𝑓 = 2
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𝑹∗ 𝑹∗

𝑓 = 1 𝑓 = 2

Figure 3.2: Compaction of matrix X′ to X by mapping R : N×N f → Nm×N f defined in (3.5).

where the atomic norm is defined as

∥X∥A := inf{t ≥ 0|X ∈ t · conv(A)}

= inf
{
∑
w
|cw|

∣∣X = ∑
w

cwA(w)�xT
w
}
.

(3.9)

When noise is present, we modify the optimization problem to relax the equality constraint:

min
X

∥X∥A s.t. ∥Y−X∥F ≤ η, (3.10)

where η depends on the noise level.

It is not obvious how to obtain DOAs directly based on (3.8) (and (3.10)), as one of the

solutions is Y itself. In the following sections, we develop an equivalent optimization problem

for computing the atomic decomposition of Y, which enables determining the DOAs via the dual

polynomial.

3.3.2 Dual Atomic Norm and Dual Polynomial

Let ∥X∥ be a matrix norm. The associate dual norm, denoted ∥Q∥∗, is defined as [47,

Appendix A.1.6],

∥Q∥∗ := sup
∥X∥≤1

⟨Q,X⟩R. (3.11)

Also note that the dual of the dual norm is the primal norm.
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Now we apply (3.11) to the atomic norm. The primal atomic norm ∥X∥A is expressed in

terms of the dual atomic norm ∥Q∥∗A (where Q := [q1 . . .qN f ] ∈ CNm×N f is the dual variable) as

∥X∥A := sup
∥Q∥∗A≤1

⟨Q,X⟩R = sup
∥Q∥∗A≤1

⟨Q,Y⟩R, (3.12)

where the last equality is only for the noise-free case (see the constraint in (3.8)).

For any dual variable Q, we define the corresponding dual polynomial vector ψψψ(Q,w) ∈

CN f as
ψψψ(Q,w) := [qH

1 a(1,w) . . .qH
N f

a(N f ,w)]T

= [
Nm

∑
m=1

q∗1(m)z(m−1) · · ·
Nm

∑
m=1

q∗N f
(m)zN f ·(m−1)]T .

(3.13)

Note that each entry in ψψψ(Q,w) is a polynomial in z. The dual polynomial will be useful for

setting up the dual certificate condition and extracting the DOA (see Sec. 3.3.4 and Sec. 3.3.5).

However, since each frequency has different array manifold vectors, it is difficult to express

ψψψ(Q,w) as a matrix product of Q and a vector. To construct a homogeneous representation

for ψψψ(Q,w), we will leverage z, an ensemble of the array manifold, and the matrix H ∈ CN×N f

defined in terms of Q as follows (m = {1, . . . ,Nm}, f = {1, . . . ,N f })

H(i, f ) =

 Q(m, f ) for (i, f ) = ( f · (m−1)+1, f )

0 otherwise,
(3.14)

or H = R ∗(Q), where R ∗ : Nm×N f →N×N f is the adjoint mapping of R . Note the relationship

between Q and H can be alternatively expressed as

Q = R (H). (3.15)
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With the help of H and z, ψψψ(Q,w) has the homogeneous representation

ψψψ(Q,w) = HHz. (3.16)

Now, we consider ∥Q∥∗A , which appears in a constraint in (3.12). Recalling that ∥xw∥2 =

1, we have

∥Q∥∗A := sup
∥X∥A≤1

⟨Q,X⟩R = sup
∥X∥A≤1

Re[Tr(QHX)]

= sup
xw
w

Re[Tr(QHA(w)�xT
w)]

= sup
xw( f )

w

Re
( N f

∑
f=1

xw( f )qH
f a( f ,w)

)
(a)
= sup

xw
w

Re(xH
w ψψψ(Q,w)) = sup

xw
w

|xH
w ψψψ(Q,w)|

(b)
= sup

w
∥ψψψ(Q,w)∥2 = sup

w
∥HHz∥2

(3.17)

where (a) follows by the definition of the dual polynomial vector and (b) follows from the

definition of the operator norm.

Using (3.17), the condition ∥Q∥∗A ≤ 1 can be equivalently formulated as an SDP constraint.

To simplify the theoretical analysis, we assume d = c
2 f0

and thus w ∈ [−1/2,1/2] here. We

however notice that the “if” part can be generalized to any d ≤ c
2 f0

.

Proposition 3.3.1 Let ψψψ(Q,w) be as defined in (3.13) and w ∈ [−1/2,1/2]. Then ∥Q∥∗A ≤ 1

holds if and only if there exists a matrix P0 ∈ CN×N ⪰ 0 such that

N−k

∑
i=1

P0(i, i+ k) = δk =


1, k = 0,

0, k = 1, . . . ,N−1,
(3.18)
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and such that  P0 H

HH IN f

⪰ 0. (3.19)

Proof See Appendix 3.7.1. □

3.3.3 SDP Formulations of ANM Problems

Noise-free ANM

In the noise-free case, based on Proposition 3.3.1 and (3.12), we have an SDP that is

equivalent to (3.8):

max
Q,P0
⟨Q,Y⟩R s.t.

 P0 H

HH IN f

⪰ 0,

N−k

∑
i=1

P0(i, i+ k) = δk,H = R ∗(Q),

(3.20)

where the dual variable Q ∈ CNm×N f , and H is related to Q as in (3.14).

Robust ANM

To make ANM robust to noise and near collisions (see (3.50)), we use the following

alternative to (3.20):

max
Q,P0
⟨Q,Y⟩R−η∥Q∥F −λ∥Q∥1,2 s.t.

 P0 H

HH IN f

⪰ 0,

N−k

∑
i=1

P0(i, i+ k) = δk,H = R ∗(Q), (3.21)

where the term η∥Q∥F suppresses noise [25, (15)] [36, (34), and App. D]. The value of η is the

same as in (3.10) [25, 36]. Based on similar arguments to [36, App. D], (3.21) with λ = 0 is the
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dual problem of (3.10). We further add an ℓ1,2 regularization term to suppress near collisions.

The ℓ1,2 regularization term λ∥Q∥1,2 promotes column sparsity, and it reduces the contributions

from the “bad frequencies”. Near collision is a phenomenon that arises in our multi-frequency

ANM model, and it is introduced in Sec. 3.4.4. For the noise-free data, one may set η = 0, and

for the near-collisions-free data, one may set λ = 0.

3.3.4 Dual Certificate

The dual polynomial ψψψ(Q,w) introduced in (3.13) serves as a certificate for the optimality

of (3.8) and can therefore be used to extract the unknown DOAs. Specifically, we have the follow-

ing dual certificate theorem, which is inspired by [21, Proposition II.4]. To ensure uniqueness, a

linear independence assumption is added.

Theorem 3.3.2 Define W := {w1, . . . ,wK} as a collection of DOAs with cardinality K. Then

X = ∑w∈W cwA(w)� xT
w (∥xw∥2 = 1) is the unique atomic decomposition such that ∥X∥A =

∑w∈W |cw| if the following two conditions are satisfied:

(1) There exists Q such that the dual polynomial vector ψψψ(Q,w) satisfies


ψψψ(Q,w) = sign(c∗w)xw ∀w ∈W

∥ψψψ(Q,w)∥2 < 1 ∀w /∈W ,

(3.22)

where sign(c∗w) := c∗w
|c∗w|

.

(2) {A(w)�xT
w : w ∈W } is a linearly independent set.

Proof See Appendix 3.7.2. □

3.3.5 DOA Extraction

Based on Theorem 3.2, we know if (3.22) is satisfied, the optimality is guaranteed. In

(3.22), ∥ψψψ(Q,w)∥2 = 1 for w ∈W . After solving the SDPs (3.20)–(3.21) by CVX [48], the
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optimal dual variables Q (and thus H) are obtained. Then, the DOA is retrieved by finding the

roots for R(w) defined in (3.57).

Based on (3.16), R(z) has the polynomial representation

R(z) = 1− zHP1z = 1−
(N−1)

∑
i=−(N−1)

rizi, (3.23)

where P1 := HHH and rk := ∑
N−k
i=1 P1(i, i+k). Indeed, R(w) is a polynomial with degree 2(N−1).

The roots ẑ can be obtained, and ŵ is retrieved by locating the roots of R(z) on the unit circle (see

Fig. 3.3 (c)):

ŵ =

{
− ∠ẑ

2π

∣∣∣∣R(ẑ) = 0, |ẑ|= 1
}
. (3.24)

Note ∠ẑ =−2πŵ =−2π f0d
c cosθ = 2π f0d

c cos(π−θ). θ̂ is therefore estimated by

θ̂ = π− cos−1
(

∠ẑ
2π f0d/c

)
. (3.25)

The implementation details for the proposed algorithm are summarized in Algorithm 1.

3.3.6 Fast Algorithm

We notice that many rows in the matrix H are all zero, yet they contribute to the size of the

SDP constraint in (3.19). This inspires us to come up with a fast algorithm which only includes

the non-zero rows of H in the SDP constraint. This fast algorithm generalizes the method to any

frequency set.

In particular, consider a frequency set F = {F1, . . . ,FN f } · f0 with integers F1, . . . ,FN f

and define U = {m · f |m ∈ {0, . . . ,Nm−1}, f ∈ {F1, . . . ,FN f }} with cardinality Nu. The ratio of

N/Nu in Fig. 3.4(a) shows a factor of 2 in savings for large Nm and N f which gives up to a factor

of 30 savings in CPU time (Fig. 3.4 (b)). Assume the entries in U are sorted in ascending order.
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Algorithm 1: Gridless DOA estimation algorithm
Input: Y ∈ CNm×N f ,d, f0,c,K, η (for noisy case), λ (for near collision case)
Initialization:

(For noisy or near collision case) Solve (3.21) by CVX and obtain H
(Otherwise) Solve (3.20) by CVX and obtain H from Q
P1←HHH

N← N f (Nm−1)+1
while −(N−1)≤ k ≤ (N−1) do
rk← ∑

N−k
i=1 P1(i, i+ k)

end while
r← [−r−(N−1) · · ·− r(N−1)]
r(N)← r(N)+1
roots← roots(r)
[dist, ind]← sort(abs(1− abs(roots))
roots sort← roots(ind)
roots unique← roots sort(1 : 2 : 2K)
θ̂← 180− acosd(angle(roots unique)/( f0d/c))

Output: θ̂

The matrix Hr ∈ CNu×N f with a reduced number of rows can be expressed in terms of Q as

Hr(r, f ) =

 Q(m, f ) for (Ur, f ) = ( f · (m−1)+1, f )

0 otherwise;
(3.26)

note r is the index of Ur = f · (m−1)+1. We have the following proposition for an SDP with

reduced dimension.

Proposition 3.3.3 Let ψψψ(Q,w) be as defined in (3.13). Then ∥Q∥∗A ≤ 1 holds if there exists a

matrix Pr0 ∈ CNu×Nu ⪰ 0 such that

∑
i, j

U j−Ui=k

Pr0(i, j) = δk =


1, k = 0,

0, k = 1, . . . ,N−1
(3.27)
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Figure 3.3: DOA extraction through the dual polynomial. An ULA with Nm = 12 sensors, and
spacing d = c/2 f0 is used. N f = 5. θ = [80.79◦,88.85◦,92.29◦], and w = [0.08,0.01,−0.02].
(a) ∥ψψψ(w)∥2 versus w; (b) P(w) versus w; (c) Roots for P(w); (d) Amplitude estimation for each
frequency.

and such that  Pr0 Hr

HH
r IN f

⪰ 0, (3.28)

where Hr is defined in (3.26).

The proof is in the Appendix 3.7.3. □

We therefore propose fast alternatives to (3.20) and (3.21) by incorporating the reduced

dimension SDP constraint. Note that in Proposition 3.3.1, we theoretically guaranteed the

equivalence between (3.20) and (3.8). However, we only guarantee the “if” part in Proposition

3.3.3. Nevertheless, it turns out that the fast algorithm achieves promising performance in the

empirical experiments while greatly reducing the computational complexity. The empirical

improvement in computational complexity is up to a factor of 30 (see Fig. 3.4 (b)). We apply the

fast algorithms throughout Sec. 3.5.
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3.3.7 Dual SDP Problem

Based on [45, (16)], we consider the dual problem of (3.20). The dual problem of (3.20)

is also an SDP, and it can be expressed as

min
W,u,Ỹ

[Tr(W)+Tr(Toep(u))]

s.t.

 Toep(u) Ỹ

ỸH W

⪰ 0,Y = R (Ỹ),

(3.29)

where W ∈ CN f×N f , u ∈ CN , Ỹ ∈ CN×N f , and Toep(u) is a N×N Toeplitz matrix with the first

column u.

The derivation of the dual problem is provided in App. 3.7.4. After solving (3.29), the

DOAs are retrieved using the Vandermonde decomposition of Toep(u) [45] and the root-MUSIC

procedure. Since both (3.20) and (3.29) are strictly feasible, strong duality holds. Therefore, the

optimal values for (3.20) and (3.29) must be the same. Note the matrix associated with the PSD
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constraint for both problems are (N +N f )× (N +N f ). We can solve either one of them for DOA

estimation.

3.4 Dual Polynomial Construction

In Theorem 3.3.2, a sufficient condition for optimal atomic decomposition was given.

In this section, for certain scenarios, we show that it is possible to construct a dual certificate

satisfying (3.22). This implies the success of the DOA estimation algorithm in the noise-free

setting.

Following from [20], we consider an alternative, symmetric index set {−2M, ...,2M}

(modified from {0, ...,Nm−1}), where M = Nm−1
4 . Constructing a dual certificate satisfying the

requisite properties (3.22) using the original index set is equivalent to constructing a “modulated”

dual polynomial ψψψ(w) (note that ψψψ(w) is different from the ψψψ(Q,w) defined in Sec. III ) on the

symmetric index set satisfying


ψψψ(w) = sign(c∗w)xw ∀w ∈W

∥ψψψ(w)∥2 < 1 ∀w /∈W ,

(3.30)

where xw(i) := xw(i) ·e− j2πwi Nm−1
2 , ∀i∈{1, . . . ,N f }. Note |xw(i)|= |xw(i) ·e− j2πwi Nm−1

2 |= |xw(i)|,

and |ψψψ(w)(i) ·e j2πwi Nm−1
2 |= |ψψψ(w)(i)|. Therefore, as long as ψψψ(w) (associated with the new index

set {−2M, . . . ,2M}) satisfies (3.30), ψψψ(w) := ψψψ(w)⊙ [e j2πw Nm−1
2 . . .e j2πwN f

Nm−1
2 ]T (associated

with the original index set) must satisfy (3.22). Indeed, ∥ψψψ(w)∥2 = ∥ψψψ(w)∥2 and ψψψ(w) =

sign(c∗w)xw for ∀w ∈W . In this section, we will construct ψψψ(w) that satisfies (3.30).

In addition, w ∈ [0,1) is assumed in this section. Due to the periodicity of the kernel, it

is equivalent to consider w ∈ [−1/2,1/2] as w ∈ [0,1). This assumption indicates that d = c
2 f0

needs to be assumed for the following analysis.
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3.4.1 Interpolation Kernel

Inspired by [20], we leverage the i-th order squared Fejér kernel Ki(w) for the dual

polynomial construction:

Ki(w) :=
1

iM

2M

∑
k=−2M

gM(k)e− j2πkw·i

=
1
i

[
sin(π(M+1)wi)
(M+1)sin(πwi)

]4

,

(3.31)

where

gM(k) =
1
M

min{k+M,M}

∑
t=max{k−M,−M}

(
1− |t|

M

)(
1− |k− t|

M

)
. (3.32)

Ki(w), i ∈ {1,2,3,4} is shown in Fig. 3.5. When i = 1, Ki(w) corresponds to the classical kernel

used for the dual polynomial construction in [20, 21, 23, 26, 30]. When i increases, the period of

the kernel reduces to 1/i. Therefore, the periodic copies appears in the visible region [0,1), and

will potentially bring about aliasing for the localization. In addition, note that the amplitude of

Ki(w) shrinks to 1/i, which will cancel the scaling factor i of K′i (w).

We summarize some useful facts for Ki(w)

Ki(w) =
1
i
K1(iw) K′i (w) = K′1(iw) K′′i (w) = iK′′1 (iw). (3.33)

3.4.2 Dual Polynomial Construction by Interpolation Kernel

We construct the dual polynomial vector ψψψ(w) ∈ CN f as follows

ψψψ(w):=


∑wk∈W [αk,1K1(w−wk)+βk,1K′1(w−wk)]

...

∑wk∈W [αk,N f KN f (w−wk)+βk,N f K
′
N f
(w−wk)]

, (3.34)

where K′i (w−wk) is the first order derivative for Ki(w−wk).

The constructed dual polynomial in (3.34) is valid if there exists αk,i and βk,i (i = 1, ...,N f )
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that satisfy (3.22). To satisfy (3.22), for each frequency, we must have [20]

Di,0 Di,1

Di,1 Di,2





α1i

...

αKi

β1i

...

βKi


=



sign(c∗w)xw1(i)
...

sign(c∗w)xwK(i)

0
...

0


=

 ci

0K

 , (3.35)

where (K(l)
i is the l-th order derivative of Ki)

[Di,l]mn := K(l)
i (wm−wn), m,n ∈ {1, ...,K}, l ∈ {0,1,2}, (3.36)

and ci := [sign(c∗w)xw1(i) . . .sign(c∗w)xwK(i)]
T ∈ CK . ψψψ(w) can be expressed as

ψψψ(w) = [
K

∑
k=1

c1(k) · · ·
K

∑
k=1

cN f (k)]
T . (3.37)

One sufficient condition to ensure the existence for αk,i and βk,i (i = {1, ...,N f }) is that

Ki :=

Di,0 Di,1

Di,1 Di,2

 ∈ C2K×2K (3.38)

is invertible for any i ∈ {1, ...,N f }, which means rank(Ki) = 2K. Then, the solution to (3.35) is

uniquely determined by inverting Ki. Unfortunately, the invertibility of Ki may not be guaranteed

in general.
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3.4.3 Single Source Analysis

We begin with single source analysis (K = 1). For one source, there is no separation

condition or risk of collision to consider in the analysis. The constructed Ki(w) is guaranteed to

satisfy (3.22) as stated in the theorem.

Theorem 3.4.1 Suppose K = 1 (DOA is w1), and xw1(i) ̸= 0 for ∀i ∈ {1, ...,N f }. We then have


ψψψ(w) = sign(c∗w)xw w = w1

∥ψψψ(w)∥2 < 1 ∀w ̸= w1.

(3.39)

Proof Since K = 1, (3.35) reduces to

Ki(0) K′i (0)

K′i (0) K′′i (0)


α1i

β1i

=

 1/i 0

0 K′′i (0)


α1i

β1i


=

sign(c∗w)xw1(i)

0

 .

(3.40)

Hence α1i = i · sign(c∗w)xw1(i) and β1i = 0. Furthermore,

∥ψψψ(w)∥2
2 =

N f

∑
i=1
|α1iKi(w−w1)|2. (3.41)

When w = w1, ψψψ(w) = [α11K1(0) . . .α1N f KN f (0)]
T = sign(c∗w)[xw1(1) . . .xw1(N f )]

T =

sign(c∗w)xw and ∥ψψψ(w)∥2
2 = ∥xw1∥2

2 = 1.

For w ̸= w1, suppose α1i = i · sign(c∗w)xw1(i) ̸= 0 for ∀i ∈ {1, ...,N f }, and notice that

Ki(w−w1)< Ki(0) = 1/i. Therefore

∥ψψψ(w)∥2
2 =

N f

∑
i=1
|α1iKi(w−w1)|2 <

N f

∑
i=1
|α1iKi(0)|2 = 1. (3.42)

71



Therefore, (3.39) must hold. □

3.4.4 Multiple Source Analysis

The analysis is now extended to multiple source cases. For the existing ANM based

methods, if there is more than one source, a minimum separation condition is assumed [20, 21, 23,

26]. However, in our signal model, we have to consider the potential for aliasing and collisions

(see Sec. 3.4.4).

We first define the separation of W for the i-th frequency ∆(W i) as the closest wrap-

around distance between two distinct DOAs wm,wn

∆(W i) := inf
wm,wn∈W

min{i|wm−wn| mod 1,

1− (i|wm−wn| mod 1)}.
(3.43)

Note that although |wm−wn| ∈ [0,1), for i ≥ 2, i|wm−wn| can be greater than 1. Due to the

periodicity of the interpolation kernel, we keep only the fractional part of i|wm−wn| in the

definition of the separation. We first introduce the concepts of aliasing and collision before our

analysis.

Aliasing and Collision

Aliasing. Because of the wrap-around nature of a(i,w), when d >
λN f

2 there will be

aliasing peaks in the higher frequencies. Aliasing can happen even for the single source case.

Specifically, based on [1], if the temporal frequency f · f0 satisfies

f · f0 ≥
c
d

1
1+ |cos(θ)|

, (3.44)
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then aliasing peaks enter into the visible region [−1/2,1/2] and that frequency experiences

aliasing. When d = c/(2 f0) and θ ∈ [0◦,180◦], aliasing happens for all f ≥ 2. In addition

to the peak associated with the ground-truth DOA w, there are aliasing peaks with DOAs

w̄ = w± k
f ,(k < f ,k ∈ N+). It can be shown that

a( f ,w) = a( f , w̄). (3.45)

Aliasing happens for the single frequency beamforming [1] provided that the temporal

frequency is high enough. In [17], the authors demonstrate that multiple frequencies can overcome

aliasing for conventional beamforming (CBF) and sparse Bayesian learning (SBL) methods.

Collision. One consequence of aliasing is the possibility of collision of multiple DOAs.

Collision occurs when one DOA lies exactly in the positions of the aliasing peaks of another

source. Formally, suppose there are K = 2 distinct DOAs w1 and w2 (w1,w2 ∈ [−1/2,1/2]). w1

and w2 are said to have collision in the i-th frequency if

a(i,w1) = a(i,w2). (3.46)

Such collision occurs whenever w1 and w2 satisfy

|w1−w2|=
k
i

(i ∈ {2, . . . ,N f },k < i,k ∈ N+). (3.47)

When collision occurs in the i-th frequency bin, it is verified that the pi-th (p ≥ 2, p ∈ N+)

frequency bins also have collision.

For CBF and SBL, collision may bring about ambiguities in the source power (and

amplitude) estimation as these two sources share the same array manifold vector.

As an example, let N f = 5, f0 = 100 Hz, w1 = 1/2, and w2 = 1/6. Then a(3,w1) =

a(3,w2) and so these two sources collide in the third frequency bin. As Fig. 3.6 (a)-(b) illustrate,
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the spatial samples obtained from all sensors are the same at that frequency. In addition, collision

can be interpreted as the intersection of the true DOA of one source and the aliasing peaks of

another source. In Fig. 3.6 (c), it is clear the collision exists in the third frequency (300 Hz).

For our ANM problem, if (3.47) is satisfied, based on (3.46), we must have

qH
i a(i,w1) = qH

i a(i,w2). (3.48)

Based on the definition of the dual polynomial in (3.13), the i-th entry of ψψψ(Q,w1) and ψψψ(Q,w2)

must therefore be equal. This serves as an additional constraint for the dual polynomial. We refer

to (3.47) as the exact collision case. Collisions complicate the construction of a dual polynomial

that satisfies the optimality condition (see (3.48)). However, we observe that in the numerical

experiments, the method still works in the presence of exact collisions (See Fig. 3.8 (a)).

Case Classification

With multiple sources, depending on the true DOAs, we have three possible cases:

• Case 1: There exists an exact collision. An exact collision in the i-th frequency is defined as

|wm−wn|=
k
i

(i ∈ {1, . . . ,N f },k < i). (3.49)

for some DOAs wm,wn. For example, suppose w1 = 1/2, w2 = 1/6, N f = 6. Since

|w1−w2|= 1/3, the third frequency has collision. Indeed, as shown in Fig. 3.6, the spatial

samples obtained from all sensors are the same in the third frequency. Notice also that

|w1−w2|= 2/6 = 1/3, so the sixth frequency also has collision.

• Case 2: There exists a near collision. A near collision in the i-th frequency is defined as

|wm−wn|=
k
i
± ε (i ∈ {1, . . . ,N f },k < i), (3.50)

74



Frequency 3 for source 1 Frequency 3 for source 2 

Figure 3.6: Collision demonstration. K = 2,N f = 5,w1 = 1/2,w2 = 1/6. (a–b) are the same as
Fig. 3.1. (c) Red lines indicate w1 and blue lines indicate w2 for the true sources (solid), and the
aliased signal (dashed). Collision occurs at 300 Hz.

for some wm,wn for sufficiently small ε > 0. The upper bound of ε is proportional to

1/Nm. For example, suppose w1 = 1/4, w2 = 0.001, N f = 6, and the minimum separation

condition ∆min = 0.01. Then |w1−w2| = 1/4− 0.001 = 1/4− ε with ε = 0.001 < ∆min.

Therefore, the fourth frequency has a near collision.

• Case 3: There are no collisions or near collisions across all N f frequencies. For example,

suppose w1 = 1/4, w2 = 1/10, N f = 6, and ∆min = 0.01. It can be easily shown that there

is no collision or near collision for any i ∈ {1, . . . ,N f }.
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Case 1 and 2 Study

For Case 1 and 2, an analytical guarantee is hard to obtain due to the singularity of Ki. We

list some properties for Case 1 in the Appendix 3.7.5. Although an analytical guarantee is hard to

obtain, we find the method (3.20) can perform well in Case 1 (See Fig. 3.8 (a)). However, directly

solving (3.20) for Case 2 does not give a satisfactory performance (See Fig. 3.7). To resolve the

near collision issue in (3.21), we proposed a robust solution in (3.21). The robust solution applies

ℓ1,2 regularization to nullify the contribution from the near collision frequencies. The numerical

examples (see Fig. 3.7) demonstrate the effectiveness of the ℓ1,2 regularization in suppressing

near collisions.

Case 3 Analysis

For Case 3, there is no collision and therefore the theoretical analysis becomes tractable.

Under a uniform amplitude assumption, we draw analytical conclusions on ∥ψψψ(w)∥2 in Theorem

3.4.2.

Theorem 3.4.2 If the amplitude is uniform across frequencies for each source (i.e. |xw(1)| =

· · ·= |xw(N f )|= 1/
√

N f for all w∈W ), ∆(W i)≥ 4/(Nm−1) and Nm≥ 257, then ∥ψψψ(w)∥2 < 1

for w /∈W .

Remark The assumptions on the uniform amplitudes and the number of sensors are made to

facilitate the proof and may not be necessary in practice. Intuitively, the uniform amplitude

assumption prevents certain frequency bins from dominating the source amplitudes, which in

the extreme case could transform the multi-frequency model into the single-frequency model.

The assumption on the number of sensors is used to bound the Fejér kernel. Note also that the

separation assumption implicitly implies an upper bound for the source number K.

Proof See Appendix 3.7.8 and the following paragraphs.

With the first K constraints in (3.35), the constructed ψψψ(w) automatically satisfies the

76



first equality condition in (3.22) as ψψψ(w) satisfies (3.37). However, we also need to show that

with the last K equality constraints in (3.35), the constructed ψψψ(w) satisfies the second inequality

condition in (3.22) (i.e. ∥ψψψ(w)∥2 < 1), and we prove Theorem 3.4.2 to guarantee that. Inspired

by [20], to bound ∥ψψψ(w)∥2, α and β in (3.35) need to be bounded first. To simplify the derivation,

we prove the case when K = 2 in the following sections. The result can be generalized to K > 2

with the same reasoning.

Supposing that K = 2, (3.35) is simplified as a 4 × 4 system of equations. Note that i = 1

is the classical case [20, 21]. Since collision is absent in this case, the matrix Ki defined in (3.38)

is invertible (for detailed reasoning, see Appendix 3.7.7). Therefore, the solution for (3.35) is

uniquely identified as



α1i

α2i

β1i

β2i


=

Di,0 Di,1

Di,1 Di,2


−1



sign(c∗w)xw1(i)

sign(c∗w)xw2(i)

0

0


=

 S−1
i

−D−1
i,2 Di,1S−1

i


sign(c∗w)xw1(i)

sign(c∗w)xw2(i)

 .

(3.51)

where the Schur complement Si := Di,0−Di,1D−1
i,2 Di,1.

Define αi := [α1i α2i]
T and βi := [β1i β2i]

T . The following lemma gives upper bounds

for ∥αi∥∞ and ∥βi∥∞.

Lemma 3.4.3 If ∆(W i)≥ 4/(Nm−1) = 1/M and Nm ≥ 257 (or fc := 2M ≥ 128), then

(1)∥αi∥∞ ≤ i ·1.008824 and ∥βi∥∞ ≤
3.294×10−2

fc
. (3.52)

(2) If the amplitude is uniform across frequencies for each source (i.e. |xw(1)|= · · ·= |xw(N f )|=
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1/
√

N f for all w ∈ {w1,w2}), we further have

∥αi∥∞ ≤
i ·1.008824√

N f
,∥βi∥∞ ≤

3.294×10−2

fc
√

N f
. (3.53)

Proof See Appendix 3.7.6 for (1). The proof for (2) is similar to that of Lemma 4.3 with the

additional condition
∥∥∥∥
sign(c∗w)xw1(i)

sign(c∗w)xw2(i)

∥∥∥∥
∞

= 1√
N f

. □

Now that the upper bounds for ∥αi∥∞ and ∥βi∥∞ have been obtained, ∥ψψψ(w)∥2 can be

further bounded. The remaining steps for bounding ∥ψψψ(w)∥2 are available in Appendix 3.7.8.

3.5 Numerical Results

3.5.1 Case Studies

We evaluate our method for the 3 cases mentioned in Sec. 3.4.4. The noisy case is also

evaluated.

The simulation setup for the following examples is K incoherent sources have DOAs

θ = {θ1, . . .θK} (90◦ is considered broadside). Assume c = 340 m/s, f0 = 100 Hz, a uniform

linear array with Nm sensors and spacing d = c
2 f0

. The temporal frequencies of the sources are

{1, . . . ,N f } · f0 Hz. The amplitude vectors xw of the 3 sources are randomly generated with

standard complex normal distribution CN (0,1) and then normalized so that ∥xw∥2 = 1. In Fig.

3.8, 100 realizations are evaluated and in each realization, xw will be different. We plot the

distribution of the DOA estimation of these realizations in the histogram. All cw = 1. The noise

for each frequency w f is randomly generated from the distribution CN (0,σ2) and then scaled to

fit the desired signal-to-noise ratio (SNR) defined as

SNR = 20log10
∥X∥F

∥W∥F
. (3.54)
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This setup is applied in all of the examples in the Sec. 3.5.1 unless otherwise specified.

The Dual Polynomial for Case 2

For Case 2, if d = c
2 f0

, then all of the frequencies other than the first frequency will have

the risk of near collision. To overcome this issue, robust ANM (see (3.21)) needs to be employed

to suppress the near collision. An alternative way to suppress the collision is to choose a smaller

spacing d = c
2N f f0

so that the collision can be completely avoided for all frequencies. These two

collision suppression methods will be examined. Suppose there are K = 2 incoherent sources. In

this case, if N f ≥ 2, then the 2n-th (n is any positive integer) frequency will have the near collision.

The dual polynomial for different N f , λ, d, and θ (λ is the regularization hyper-parameter in

(3.21)) can be seen in Fig. 3.7. For the regularization parameter λ, we empirically choose it

proportional to N f (i.e. λ = k ·N f , with k = 0.125 in particular for Fig. 3.7). The intuition behind

is that for more frequencies, the near collision is more likely to happen. However, since the

regularization can bring bias, a smaller λ is more favorable in practice.

From Fig. 3.7 (a), if we only solve (3.20) without regularization, numerous spurious peaks

are an obstacle for identifying source positions. However, with regularization, the dual polynomial

peaks become precise indicators for the source positions (See Fig. 3.7(b–c)). When N f = 6, the

near collision frequencies are the 2nd, 4th, and 6th frequencies. Fig. 3.7 (d) demonstrates the

success of choosing a smaller spacing d = c
2N f f0

in collision suppression without regularization.

However, there are potential limitations for smaller spacing. Comparing Fig. 3.7 (e) and (f), the

smaller aperture cannot resolve the close sources while the larger aperture can. Thus, although the

smaller aperture can avoid the collision, it has lower spatial resolution. We leave the theoretical

analysis for choosing the regularization hyperparameter λ as future work.
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Case 1, 3, and Noisy cases

The histograms for these cases are plotted in Fig. 3.8. Since |w1−w2|= |w2−w3|= 0.25

and |w1−w3| = 0.5, there are collisions in both the second and fourth frequencies. From Fig.

3.8 (a), all of the instances in the histogram are nevertheless concentrated in the ground-truth

positions, which shows the proposed method can capture the ground-truth positions accurately

and has the robustness to the exact collisions. The robustness to the exact collisions is attributed

to the combination of multiple frequencies. For the collision frequencies, these two sources are

essentially one source since they share the same array manifolds for these frequencies (see (3.46))

and they are mixed coherently, which makes it difficult to separate them. For the non-collision

frequencies, the two sources are well-separated. Therefore, if we combine all N f frequencies,

the two peaks associated with the DOAs still stand out as long as there exists non-collision

frequencies. To demonstrate Case 3, we compare the single-frequency (N f = 1, see Fig. 3.8 (b))

and multi-frequency (N f = 5, see Fig. 3.8 (c)) scenarios. When N f = 1, there are many bins

that lie in the undesired positions. In contrast, when N f = 5, the bins are mostly concentrated in

the ground-truth positions. This example demonstrates the potential benefits of multi-frequency

ANM. In Fig. 3.8 (d), the setup is identical to that in Fig. 3.8 (c) except the noise is present. For

the noisy case, the empirical value of η is chosen as [25]

η = σ/2 ·
√

NmN f +2
√

NmN f .

From Fig. 3.8 (d), the proposed method captures the source positions accurately in the noisy

cases.

3.5.2 DOA Estimation Performance Evaluation

To comprehensively evaluate the performance of the proposed method, we conduct Monte

Carlo experiments. In all of the experiments in this section, each point represents MC = 100
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Figure 3.7: ∥ψψψ(Q,w)∥2 versus DOA θ for Case 2. Nm = 12, f0 = 100 Hz, d = c
2 f0

, and
xw ∼ CN (0,1), K = 2. “×” indicates the peak, and the dashed lines indicate the ground-truth
DOAs.

trials, and the root mean square error (RMSE) and mean absolute error (MAE) are computed as

RMSE =

√√√√ 1
MC

MC

∑
m=1

[
1
K

K

∑
k=1

(θ̂mk−θmk)2
]
. (3.55)

MAE =
1

MC

MC

∑
m=1

(
1
K

K

∑
k=1
|θ̂mk−θmk|

)
, (3.56)

where θ̂mk, and θmk are (sorted) estimated DOAs, and (sorted) ground-truth DOAs for the k-th

source and m-th trial. A maximum threshold of 10◦ was used to penalize the incorrect DOA

estimates (see below). c, f0,d, and the temporal frequencies are the same as those in Sec. 3.5.1.

We also compare the proposed method (ANM) with the multi-frequency sparse Bayesian learning

(SBL) [17] and Cramér-Rao bound (CRB) [49, Eq. (119)]. For SBL, the spatial angle is discretized

into grids with 0.5◦ between the adjacent grid points. Although there are many DOA estimation

methods, very few of them have been developed for the multiple-frequency model. Therefore,

only SBL and CRB are included for reference.
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Figure 3.8: Histogram of the estimated DOA θ̂ for 100 realizations with true DOAs (×).
Nm = 12, f0 = 100 Hz, d = c

2 f0
, and xw ∼ CN (0,1), K = 3. For each realization, xw will be

different. No noise is present except for (d) where SNR is 15 dB.

DOA Estimation under Varying SNR

We first examine the robustness of ANM to noise. The performance of each algorithm

under d =
λNf

2 is detailed in Fig. 3.9. Notice that in this setup, there will be no aliasing or

collision. Therefore, we can turn off the ℓ1,2 regularization in (3.21). The proposed algorith

outperforms SBL in the high SNR cases. At low SNRs, SBL achieves a better performance since

it can estimate the noise power. Note for the SBL with limited 0.5◦ separation, the achievable

accuracy for RMSE is 0.125◦. In addition, it turns out that SBL has no failure trials (RMSE > 10◦

is defined as failure) starting from SNR = 0,−5,−5, and −10 dB for N f = 1,2,4, and 8. For

ANM, the same happens for SNR = 0,0,−5, and −5 dB. Therefore, for both SBL and ANM, the

performance improves in the low SNR region, which demonstrates the enhanced robustness to

noise for the multi-frequency processing.

We then change the spacing to d = λ1
2 (See Fig. 3.10). In this case, aliasing and possible

collisions will be present when N f ≥ 2. However, if more frequencies are available, such

ambiguities can be potentially suppressed [17]. For that reason, we only consider the case with 8

frequencies from 100, . . . ,800 Hz. In Fig. 3.9 the frequencies were 12.5, . . . ,100 Hz, the aperture

is here a factor 8 larger in Fig. 3.10. Although the error stops to decrease for ANM in the high
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SNR region due to the bias from the regularization, the performance still improves in the low SNR

region if more frequencies are available. In addition, compared with Fig. 3.9 (d), the performance

of ANM improves when SNR is between 0 to 20 dB, and that demonstrates the benefits of larger

apertures.

DOA Estimation under Varying K

We examine the DOA estimation performance under varying numbers of sources (K) in

this section. Both the real flat (Fig. 3.11 (a)) and complex random amplitude source (Fig. 3.11

(b)) are tested under noise-free conditions. DOA is an integer randomly generated from a uniform

distribution between [0◦, 180◦]. Therefore, there is no grid mismatch issue for SBL. For the

real and flat amplitude case (xw = 1/
√

N f · 1N f ), ANM will be immune to collisions (or near

collisions) since the fundamental constraint (3.48) and the dual certificate condition (3.22) can be

satisfied simultaneously. Therefore, the optimality is guaranteed and perfect DOA estimation is

expected. In the complex random amplitude case, since near collisions affect the performance

of ANM, robust ANM (see (3.21)) is applied. From Fig. 3.11 (b), the DOA estimation error

increases when the complex amplitude is applied for both methods. ANM (and robust ANM) still

outperforms SBL for both real and complex amplitudes even if there is no grid mismatch for SBL.

Fig. 3.11 (b) also demonstrates the effectiveness of robust ANM for suppressing near collisions.

Because of the presence of near collisions in the complex amplitude case, more frequencies do

not necessarily bring about better performance for ANM.

DOA estimation under Varying DOA separation

Finally, we study the DOA estimation performance under different DOA separations.

Since the amplitude is real and flat, ANM is immune to near collisions. From Fig. 3.11 (c), SBL

has the same estimation error for all DOA separations and N f . That error is entirely from the grid

mismatch. However, the proposed gridless approach overcomes this issue and achieves exact
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Figure 3.9: RMSE (◦) vs. SNR for d =
λN f

2 = c
2N f f0

. Nm = 15, K = 3, f0 = 100 Hz, and
the frequency set is {1, . . . ,N f } · f0 Hz. λ = 0 for all plots. Each point represents 100 trials.
The DOAs for each trial are randomly generated between [10◦,170◦] with a minimum angular
separation 4/Nm. xw ∼ CN (0,1).

DOA estimation.

3.6 Conclusions

The ANM framework is extended to support continuous parameter estimation across

multiple frequencies. ANM is initially formulated as an equivalent SDP problem based on the

bounded real lemma so that the ANM becomes computationally tractable. In addition, the dual

certificate condition is derived. With the help of the dual certificate condition, the optimality can

be certified, and the DOAs are identified by finding the roots of a polynomial. We also construct

the dual certificate and show that a valid construction exists when the source amplitude has a

uniform magnitude. Based on our signal model, the higher frequencies may have the risk of

collision or near collision. These two cases are extensively studied and a robust ANM method

with regularization is proposed for near collision suppression. The numerical results demonstrate

the effectiveness of the proposed method.
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Figure 3.10: RMSE (◦) vs. SNR for d = λ1
2 = c

2 f0
. Nm = 15, K = 3, f0 = 100 Hz, and the

frequency set is {1, . . . ,N f } · f0 Hz. λ = 0.6 for (b). Each point represents 100 trials. The
DOAs for each trial are randomly generated between [10◦,170◦] with with a minimum angular
separation 4/Nm. xw ∼ CN (0,1).
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Figure 3.11: MAE (◦) vs. K (a–b) and DOA separation (c). Nm = 15. No noise is present. For
(a–b), N f = {2,4}. For (b), robust ANM is used. For (c), N f = 2, K = 2, and xw = 1/

√
N f ·1N f .

The first DOA is 90◦− DOA separation, and the second DOA is 90◦+ DOA separation. The
grid resolution for SBL is 0.1◦.
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3.7 Appendix

3.7.1 Proof for Proposition 3.1

Construct the Hermitian trigonometric polynomial

R(w) := 1−∥HHz∥2
2 = 1− zHHHHz. (3.57)

From (3.17), we know that ∥Q∥∗A ≤ 1 holds if and only if R(w)≥ 0 for all w ∈ [−1/2,1/2].

First, suppose there exists a matrix P0 ∈ CN×N ⪰ 0 such that (3.18) and (3.19) hold. We

must argue that R(w)≥ 0 for all w. Consider the expression zHP0z and note that

zHP0z = Tr(zHP0z) = Tr(zzHP0) =
N−1

∑
k=−(N−1)

rkz−k,

where rk = ∑
N−k
i=1 P0(i, i+ k) for k ≥ 0 and rk = r∗−k for k < 0. From (3.18), we conclude that

zHP0z = z0 = 1. Substituting this into R(w) and defining P1 := HHH gives

R(w) = zHP0z− zHP1z = zH(P0−P1)z.

Since the matrix in (3.19) is PSD, its Schur complement P0−HI−1
N f

HH = P0−P1 ⪰ 0, and so

R(w)≥ 0 for all w ∈ [−1/2,1/2].

Next, suppose R(w)≥ 0 for all w ∈ [−1/2,1/2]. We must argue that there exists a matrix

P0 ∈ CN×N ⪰ 0 such that (3.18) and (3.19) hold. Since R(w) ≥ 0, 1 ≥ zHP1z, where we have

again defined P1 := HHH ⪰ 0. From [44, Lemma 4.25] and the fact that 1 and zHP1z are

univariate trigonometric polynomials, it follows that there exists P0 ⪰ P1 such that 1 = zHP0z

and (3.18) hold. The matrix in (3.19) has Schur complement P0−HI−1
N f

HH = P0−P1 ⪰ 0, and

therefore (3.19) holds. □
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3.7.2 Proof for Theorem 3.2

First, notice that if (3.22) is satisfied, based on (3.17), we have ∥Q∥∗A ≤ 1. Then,

∥X∥A ≥ ∥X∥A · ∥Q∥∗A
(a)
≥ ⟨Q,X⟩R = Re[Tr(QHX)]

= ∑
w∈W

Re[Tr(cwQHA(w)�xT
w)]

= ∑
w∈W

N f

∑
f=1

Re[cwqH
f xw( f )a( f ,w)] =∑

w∈W
Re[cwxH

w ψψψ(Q,w)]

(b)
= ∑

w∈W
Re[cwsign(c∗w)∥xw∥2

2] = ∑
w∈W
|cw|

(c)
≥ ∥X∥A , (3.58)

where (a) is based on Hölder’s inequality, (b) follows because if w ∈ W , then ψψψ(Q,w) =

sign(c∗w)xw based on (3.22), and (c) follows from the definition of the atomic norm (3.9) as the

infimum of the combination coefficients. Hence, ∥X∥A = ⟨Q,X⟩R = ∑w∈W |cw|.

For uniqueness, suppose there exists another decomposition X=∑w′ cw′A(w′)�xT
w′ which

satisfies ∥X∥A = ∑w′ |cw′|. There must exist w′ /∈W contributing to X due to the mutual linear

independence of the atoms. Therefore, we have the contradiction:

∑
w′
|cw′|= ∥X∥A = ⟨Q,X⟩R = ∑

w′
Re[cw′⟨xw′,ψψψ(Q,w′)⟩]

= ∑
w′∈W

Re[cw′xH
w′ψψψ(Q,w′)]+ ∑

w′ /∈W
Re[cw′xH

w′ψψψ(Q,w′)]

(a)
< ∑

w′∈W
|cw′|+ ∑

w′ /∈W
|cw′|= ∑

w′
|cw′|, (3.59)

where (a) is because of (3.22). Therefore, the atomic decomposition which satisfies ∥X∥A =

∑w∈W |cw| must be unique. □
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3.7.3 Proof for Proposition 3.3.3

Construct the Hermitian trigonometric polynomial

R(w) := 1−∥HH
r zr∥2

2 = 1− zH
r HrHH

r zr. (3.60)

From (3.17), we know that ∥Q∥∗A ≤ 1 holds if and only if R(w)≥ 0 for all w.

First, suppose there exists a matrix Pr0 ∈ CNu×Nu ⪰ 0 such that (3.27) and (3.28) hold.

We must argue that R(w)≥ 0 for all w. Consider the expression zH
r Pr0zr and note that

zH
r Pr0zr = Tr(zH

r Pr0zr) = Tr(zrzH
r Pr0) =

N−1

∑
k=−(N−1)

rkz−k

rk = ∑
i, j,U j−Ui=k

Pr0(i, j) (3.61)

for k ≥ 0 and rk = r∗−k for k < 0. From (3.27), we then conclude that zH
r Pr0zr = z0 = 1. Substi-

tuting this fact into R(w) and defining Pr1 := HrHH
r , we have

R(w) = zH
r Pr0zr− zH

r Pr1zr = zH
r (Pr0−Pr1)zr. (3.62)

Since the matrix in (3.28) is PSD, its Schur complement Pr0−HrI−1
N f

HH
r = Pr0−Pr1 ⪰ 0,

and so R(w)≥ 0 for all w. □
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3.7.4 The Derivation of the Dual Problem of (20)

Consider the Lagrangian of (3.20) given by

L(Q,P0,H,ΛΛΛ1,ΛΛΛ2,ΛΛΛ3,ΛΛΛQ,v) =

⟨Q,Y⟩R−
〈 ΛΛΛ1 ΛΛΛ2

ΛΛΛ
H
2 ΛΛΛ3

 ,

 P0 H

HH IN f

〉
R

−
N−1

∑
k=0

vk(δk− ∑
j−i=k

P0(i, j))−⟨ΛΛΛQ,H−R ∗(Q)⟩R

=⟨Q,Y⟩R+⟨ΛΛΛQ,R ∗(Q)⟩R−[⟨P0,ΛΛΛ1⟩R+2⟨ΛΛΛ2,H⟩R+Tr(ΛΛΛ3)]

−v0 + ⟨P0,Toep(v)⟩R−⟨ΛΛΛQ,H⟩R. (3.63)

The derivation uses: ∑
N−1
k=0 vk ∑ j−i=k P0(i, j)= ⟨P0,Toep(v)⟩R. Further, the dual matrix

 ΛΛΛ1 ΛΛΛ2

ΛΛΛ
H
2 ΛΛΛ3


associated with the inequality constraint

 P0 H

HH IN f

⪰ 0 is an PSD matrix to ensure the inner

product between these two matrices is non-negative, whereby the optimal value for the dual

problem gives a lower bound for the primal problem.

The dual function is

g(ΛΛΛ1,ΛΛΛ2,ΛΛΛ3,ΛΛΛQ,v)= inf
Q,P0,H

L(Q,P0,H,ΛΛΛ1,ΛΛΛ2,ΛΛΛ3,ΛΛΛQ,v)

s.t.

 ΛΛΛ1 ΛΛΛ2

ΛΛΛ
H
2 ΛΛΛ3

⪰ 0. (3.64)

The infimum of L over Q is thereby infQ J(Q) := [⟨Q,Y⟩R+⟨ΛΛΛQ,R ∗(Q)⟩R] = [⟨Y,Q⟩R+

⟨R (ΛΛΛQ),Q⟩R] = ⟨Y+R (ΛΛΛQ),Q⟩R. The infimum of J(Q) is bounded only if Y = −R (ΛΛΛQ).

Similarly, the infimum of L over P0 is bounded only if Toep(v) = ΛΛΛ1 ⪰ 0. The infimum of L
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over H is bounded only if ΛΛΛQ =−2ΛΛΛ2. Consider 2ΛΛΛ2 = Ỹ, then we must have Y =−R (ΛΛΛQ) =

R (2ΛΛΛ2) = R (Ỹ).

Consider ΛΛΛ3 =
1
2W, and v = 1

2u, the dual function becomes −1
2Tr(W)− 1

2Tr(Toep(u)).

The dual problem is

max
W,u,Ỹ
− 1

2
[Tr(W)+Tr(Toep(u))]

s.t.

Toep(u) Ỹ

ỸH W

⪰ 0,Y=R (Ỹ), (3.65)

which is equivalent to (3.29). □

3.7.5 Properties for Exact Collision

Ki is Singular

First observe that Ki in (3.38) is singular. We also recognize the periodicity of Ki(w).

Since Ki(w) = Ki(w+ k/i)(k < i, i ∈ {1, . . . ,N f }), k/i is the period for Ki(w). In addition, k/i is

also the period for K′i (w) and K′′i (w). Without loss of generality, we assume there exists collision

between w1 and w2 (i.e. |w1−w2|= k
i ), then

Ki(0) = Ki(w1−w2) = Ki(w2−w1) = 1,

K′i (0) = K′i (w1−w2) = K′i (w2−w1) = 0, and

K′′i (0) = K′′i (w1−w2) = K′′i (w2−w1).

(3.66)

The first and second row of Ki are

[Ki(w1−w1) . . .Ki(w1−wK) . . .K′i (w1−w1) . . .K′i (w1−wK)]

[Ki(w2−w1) . . .Ki(w2−wK) . . .K′i (w2−w1) . . .K′i (w2−wK)]. (3.67)
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Note that Ki(w2−w j) = Ki(w1−w j− (w1−w2)) = Ki(w1−w j) and K′i (w2−w j) = K′i (w1−

w j− (w1−w2)) = K′i (w1−w j) for any j. Thus, the first two rows are identical. Ki is hence

rank-deficient and singular.

However, the singularity of Ki does not imply that the solution to the system of equations

(3.35) does not exist. If
[

sign(c∗w)xw1(i) . . . sign(c∗w)xwK(i) 0 . . . 0

]T

:= x̂i lies in the range space

of Ki, the solution of (3.35) exists but non-unique. Among the infinite number of solutions, we

choose the Moore-Penrose pseudoinverse solution K†
i x̂i.

Recovery for the Coefficients not Possible

Here, we discuss the possibility of recovering the coefficients under the collision condition.

Although it is possible to localize the sources, the recovery of the coefficients ĉkx̂k is not possible

due to the fundamental limit in (3.46).

The DOAs are localized by finding the peak of the dual polynomial vector under the

collision condition. For the estimated DOAs (ŵ1, ..., ŵK), (3.2) gives

X =
K

∑
k=1

ĉkA(ŵk)� x̂T
k =

K

∑
k=1

A(ŵk)� x̃T
k , (3.68)

where x̃k := ĉkx̂k. Since Y = X = [y1...yN f ], the entries in x̃k are recovered by solving y f =

∑
K
k=1 a( f , ŵk)x̃k = [a( f , ŵ1)...a( f , ŵK)][x̃1( f )...x̃K( f )]T ( f = 1, . . . ,N f ).

However, when f = i, a(i, ŵ1)= a(i, ŵ2) from (3.46). Then, a(i, ŵ1)x̃1(i)+a(i, ŵ2)x̃2(i)=

a(i, ŵ1)[x̃1(i)+ x̃2(i)]. Therefore, we have to decouple x̃1(i) and x̃2(i) based on their sum, which

is impossible.
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3.7.6 Proof for Lemma 3.4.3

From below (3.30), |xw(i)|= |xw2(i)|, we have

∥αi∥∞ =

∥∥∥∥S−1
i

sign(c∗w)xw1(i)

sign(c∗w)xw2(i)

∥∥∥∥
∞

≤ ∥S−1
i ∥∞

∥∥∥∥
sign(c∗w)xw1(i)

sign(c∗w)xw2(i)

∥∥∥∥
∞

≤ ∥S−1
i ∥∞, (3.69)

∥βi∥∞≤
∥∥∥∥D−1

i,2 Di,1S−1
i

sign(c∗w)xw1(i)

sign(c∗w)xw2(i)

∥∥∥∥
∞

≤ ∥D−1
i,2 Di,1S−1

i ∥∞ ≤∥D−1
i,2 ∥∞∥Di,1∥∞∥S−1

i ∥∞. (3.70)

∥S−1
i ∥∞ is bounded as

∥S−1
i ∥∞ = ∥(Di,0−Di,1D−1

i,2 Di,1)
−1∥∞

≤ 1/(1−∥I− (Di,0−Di,1D−1
i,2 Di,1)∥∞)

≤ 1/[1− (∥I−Di,0∥∞ +∥Di,1∥2
∞∥D−1

i,2 ∥∞)]. (3.71)

Inspired by the proof of [20, Lemma 2.2], the bounds for ∥I−Di,0∥∞, ∥Di,1∥∞, and

∥K′′i (0)I−Di,2∥∞ are established (define d0 := 6.253×10−3,d1 := 7.639×10−2,d2 := 1.053,d3 :=
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11/32π2, where d0,d1, and d2 are empirical [20] and d3 is analytical):

∥I−Di,0∥∞ ≤
∥∥∥I−1

i
I
∥∥∥

∞

+
∥∥∥1

i
I−Di,0

∥∥∥
∞

=1−1
i
+|Ki(w1−w2)|

= 1−1
i
+

1
i
|K1(i(w1−w2))| ≤ 1+

d0−1
i

,

∥Di,1∥∞ = |K′i (w1−w2)|= |K′1(i(w1−w2))| ≤ d1 fc,

∥K′′i (0)I−Di,2∥∞=|K′′i (w1−w2)|=i|K′′1 (i(w1−w2))| ≤ id2 f 2
c ,

|K′′i (0)|=
iπ2 fc( fc +4)

3
≥ iπ2 f 2

c
3

+
4iπ2 f 2

c
3 ·128

= i ·d3 f 2
c . (3.72)

Therefore, ∥D−1
i,2 ∥∞ is bounded as follows (d4 := 1/(d3−d2) = 0.4275)

∥D−1
i,2 ∥∞ ≤

1
|K′′i (0)|−∥K′′i (0)I−Di,2∥∞

≤ 1
i(d3−d2) f 2

c
=

d4

i f 2
c
. (3.73)

Then, following (3.69) and (3.70), the bounds for ∥αi∥∞ and ∥βi∥∞ are (define cα :=

1.008824, and cβ := 3.294×10−2):

∥αi∥∞ ≤ ∥S−1
i ∥∞ ≤

i
1−d0−d2

1d4
:= i · cα, (3.74)

∥βi∥∞ ≤ ∥D−1
i,2 ∥∞∥Di,1∥∞∥S−1

i ∥∞≤
d1d4

fc(1−d0−d2
1d4)

:=
cβ

fc
.

□

3.7.7 Invertibility of Ki

Using the Schur complement, Ki is invertible if Di,2 and the Schur complement Si :=

Di,0−Di,1D−1
i,2 Di,1 are both invertible. To show that, we use the fact that a Hermitian matrix M is

invertible if ∥I−M∥∞ < 1 [20, eq. (2.12)].
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We begin with Di,2. Notice |K′′i (0)|= i|K′′1 (0)|=
iπ2 fc( fc+4)

3 . Therefore, based on (3.72),

∥∥∥I−
Di,2

K′′i (0)

∥∥∥
∞

=
∥K′′i (0)I−Di,2∥∞

|K′′i (0)|
≤ id2 f 2

c
iπ2 fc( fc +4)/3

<1, (3.75)

which implies that Di,2
K′′i (0)

is invertible. Hence, Di,2 is also invertible. We then consider the

invertibility of Si. Based on the triangle inequality,

∥I−Si∥∞ ≤ ∥I−Di,0∥∞ +∥Di,1∥2
∞∥D−1

i,2 ∥∞. (3.76)

Hence, to show ∥I−Si∥∞ < 1, ∥I−Di,0∥∞, ∥Di,1∥∞, and ∥D−1
i,2 ∥∞ need to be bounded.

Plugging in the bounds in (3.72), and (3.73), we have

∥I−Si∥∞ ≤ 1+
d0+d2

1d4−1
i

= 1+
8.747×10−3−1

i
< 1, (3.77)

which implies that Si is invertible. □

3.7.8 Proof for Theorem 3.4.2

For simplicity, we assume K = 2 in this section. But the theorem can be generalized

to K ≥ 2 if the separation condition is satisfied. Based on the assumption |xw1(i)|= |xw2(i)|=

1/
√

N f for ∀i ∈ {1, ...,N f }, as long as each entry in the constructed dual polynomial vector

satisfies |ψψψi(w;w1,w2)|< 1/
√

N f , then ∥ψψψ(w)∥2 < 1. Therefore, the bounds in Lemma 4.3 (2)
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further indicate |ψψψi(w;w1,w2)| (denote cα := 1.008824, cβ := 3.294×10−2, c := 1√
N f

)

|ψψψi(w;w1,w2)|= | ∑
k∈{1,2}

αk,iKi(w−wk)+βk,iK′i (w−wk)|

≤ ∥αi∥∞ ∑
k∈{1,2}

|Ki(w−wk)|+∥βi∥∞ ∑
k∈{1,2}

|K′i (w−wk)|

≤ c[icα ∑
k∈{1,2}

|K1(i(w−wk))|
i

+
cβ

fc
∑

k∈{1,2}
|K′1(i(w−wk))|]

= c[cα ∑
k∈{1,2}

|K1(i(w−wk))|+
cβ

fc
∑

k∈{1,2}
|K′1(i(w−wk))|]

=c[ ∑
k∈{1,2}

cα|K1(i(w−wk) mod 1)|+
cβ

fc
|K′1(i(w−wk) mod 1)|].

(3.78)

When i = 1,

|ψψψ1(w;w1,w2)|≤c[cα ∑
k∈{1,2}

|K1(w−wk)|+
cβ

fc
∑

k∈{1,2}
|K′1(w−wk)|]. (3.79)

We show c[cα ∑k∈{1,2} |K1(w−wk)|+
cβ

fc ∑k∈{1,2} |K′1(w−wk)|]< 1√
N f

by applying [20, Lemma

2.3 and 2.4]. We consider both the near and far regions. The near region Tnear and far region Tfar

are defined as Tnear := ∪2
k=1[wk−ν,wk +ν] and Tfar := [0,1]\Tnear, where ν = 0.1649

fc
.

For Tfar, based on [20, Lemma 2.4]

cα ∑
k∈{1,2}

|K1(w−wk)|+
cβ

fc
∑

k∈{1,2}
|K′1(w−wk)|

≤ 0.99992 < 1.

(3.80)

Therefore,

|ψψψ1(w;w1,w2)| ≤ c[cα ∑
k∈{1,2}

|K1(w−wk)|+
cβ

fc
∑

k∈{1,2}
|K′1(w−wk)|]<c.

If i > 1, the only difference between the last line of (3.78) and the right hand side of (3.79) is

the dilation of K1 and K′1. This indicates the i-th entry is a special case for i = 1. Therefore,
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|ψψψi(w;w1,w2)|< c = 1/
√

N f will also hold for i > 1. Hence, in Tfar, ∥ψψψ(w)∥2 < 1 for w /∈W .

For Tnear, inspired by the proof in [20, Lemma 2.3], we show the strict concavity of

|ψψψi(w;w1,w2)|. We have

ψψψ
i
R(w)ψψψ

i′′
R (w)+ |ψψψi′(w)|2 + |ψψψi

I(w)||ψψψi′′
I (w)|

≤ −9.291×10−2(i fc/
√

N f )
2 < 0

(3.81)

and
d2|ψψψi|(w)

dw2 =−(ψψψi
R(w)ψψψ

i′
R(w)+ψψψi

I(w)ψψψ
i′
I (w))

2

|ψψψi(w)|3

+
ψψψi

R(w)ψψψ
i′′
R (w)+ |ψψψi′(w)|2 + |ψψψi

I(w)||ψψψi′′
I (w)|

|ψψψi(w)|
< 0.

(3.82)

Since ψψψi′(w1) = ψψψi′(w2) = 0, local strict concavity will imply |ψψψi(w;w1,w2)|< 1/
√

N f

in Tnear. □
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Chapter 4

Non-uniform Array and Frequency Spacing

for Regularization-free Gridless DOA

Gridless direction-of-arrival (DOA) estimation with multiple frequencies can be applied

in acoustics source localization problems. We formulate this as an atomic norm minimization

(ANM) problem and derive an equivalent regularization-free semi-definite program (SDP) thereby

avoiding regularization bias. The DOA is retrieved using a Vandermonde decomposition on the

Toeplitz matrix obtained from the solution of the SDP. We also propose a fast SDP program to deal

with non-uniform array and frequency spacing. For non-uniform spacings, the Toeplitz structure

will not exist, but the DOA is retrieved via irregular Vandermonde decomposition (IVD), and we

theoretically guarantee the existence of the IVD. We extend ANM to the multiple measurement

vector (MMV) cases and derive its equivalent regularization-free SDP. Using multiple frequencies

and the MMV model, we can resolve more sources than the number of physical sensors for a

uniform linear array. Numerical results demonstrate that the regularization-free framework is

robust to noise and aliasing, and it overcomes the regularization bias.
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4.1 Introduction

Direction-of-arrival (DOA) estimation is an important topic in sensor array processing [1]

that has a broad range of applications in wireless communication [2], radar [3], remote sensing,

etc. Conventional DOA estimation methods (e.g. multiple signal classification (MUSIC) [4],

and estimation of signal parameters via rotational invariant techniques (ESPRIT) [5]) are mainly

developed for narrowband signals. In the past few decades, some wideband DOA estimation

methods have been proposed [6–16]. Recently proposed methods based on sparse recovery and

a multi-frequency model [8, 10] have demonstrated superior performance in wideband DOA

estimation problems. Before introducing the contributions of this paper, we review the relevant

prior works.

4.1.1 Related Work

Wideband DOA Estimation and Multiple Frequencies

Wideband signal DOA estimation has been studied for decades [6, 11–14]. In [6], a

subspace-based wideband DOA estimation approach, the incoherent signal subspace method

(ISSM), was proposed. The coherent signal subspace method (CSSM) [11] led to improved per-

formance compared to ISSM. A broadband spatial-spectrum estimation approach [12] overcame

the peak bias and source spectral content sensitivity from CSSM. Variants of CSSM, such as

the weighted average of signal subspaces method [13] and the test of orthogonality of projected

subspaces method [14] were also proposed. Recently, some wideband DOA estimation methods

based on sparse recovery have also been developed [7–10, 15–19]. These sparsity-based methods

have demonstrated superior performance compared to conventional methods and generally require

much fewer samples.

The multi-frequency model [7–10, 15, 16] has shown success in modeling wideband

signals. The multi-frequency model uses N f (rather than 1) temporal frequency bins in a frequency
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set {F1, . . . ,FN f } to characterize a wideband signal. All these frequencies are used for estimation,

as opposed to using a single frequency under the narrowband model. One challenge for multi-

frequency processing is aliasing [8, 10], which will be present when the receiver spacing is greater

than the half wavelength of the highest frequency. The performance of a DOA estimation method

may degrade significantly in the presence of aliasing. In [15], the authors present an aliasing-free

DOA estimation method based on sparse signal recovery. In [8, 9, 16], wideband signal DOA

estimation based on sparse Bayesian learning (SBL) with multiple frequencies is proposed [8]

and applied to matched field processing [16] and robust ocean acoustic localization [9]. A joint

localization and dereverberation method based on sparse regularization is also proposed in [7] for

room source localization and tracking.

Atomic Norm Minimization (ANM)

ANM was initially proposed in [20] as a general framework for promoting sparse signal

decompositions. The main benefit of ANM is that it overcomes the grid mismatch error that

plagues grid-based methods. The pioneering ANM paper [21] proposed an optimization-based

continuous (temporal) frequency estimation method and provided a theoretical guarantee when

full data are available. The authors in [22] studied continuous temporal frequency estimation based

on randomly sampled data for the single measurement vector (SMV) case. ANM for multiple

measurement vectors (MMVs) under the uniform (or equispaced) time samples (analogous to

a uniform linear array, or ULA) setup was studied in [23–25], and it was extended to the non-

uniform array (NUA) setting in [26]. It was also extended to multiple frequencies for wideband

DOA estimation in [10, 27]. The sample complexity of modal analysis with random temporal

compression was established in [28]. We refer readers to [29] for a comprehensive overview of

ANM and its applications.
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Non-uniform Array and More Sources than Sensors

An NUA enables the possibility to resolve more sources than the number of physical

sensors. Early works involving NUA include the minimum redundancy array (MRA) [30], and

the minimum holes array (MHA) [31]. For a given number of sources, MRA and MHA require

an extensive search through all possible sensor combinations to find the optimal design. Recently,

a new structure of NUA, known as a co-prime array [32], was developed. The co-prime array has

a closed-form expression for the sensor positions so that the exhaustive search over the sensor

combinations is avoided. The nested array [33] and co-array [34] based approaches were also

proposed to detect more sources than the number of sensors.

An alternative way to resolve more sources than sensors is to use fourth-order cumulants

[35, 36]. However, this approach is limited to non-Gaussian sources. In [37], with the help of

the Khatri-Rao (KR) product and assuming quasi-stationary sources, it was shown that one can

identify up to 2N−1 sources using an N-element ULA without computing higher-order statistics.

Unfortunately, the quasi-stationary assumption is not applicable to stationary sources.

4.1.2 Our Contributions

In previous work [10], we developed a gridless DOA estimation method for the multi-

frequency model based on ANM. This was formulated as a semi-definite program (SDP) problem

so that ANM is solved using off-the-shelf SDP solvers, e.g., CVX [38]. The DOAs are retrieved

by finding the roots of the dual polynomial. The dual polynomial served as a certificate for the

optimality and an interpolation method that constructed the dual certificate was presented.

In this work, we propose a wideband DOA estimation framework that significantly

expands the applicability from [10]. Our contribution is summarized in the following respects

(see also Table 4.1).
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Regularization-free Framework

An SDP that is equivalent to ANM is formulated in [10] based on the dual atomic norm

and the definition of the dual polynomial in the noise-free case. When noise is present, a common

strategy in ANM works is giving some tolerance to the constraints using regularization in the

SDP [22, 24, 39]. In addition to the challenges from the noise, [10] shows that for array spacing

above half a wavelength of the highest frequency and with multiple sources, the performance may

degrade remarkably due to a phenomenon termed near collision [10]. To mitigate near collisions,

an ℓ1,2 regularization term is added. Although these regularization terms prevent failures due to

noise or near collisions, they lead to bias. The performance of ANM degrades due to such bias

compared to the competing method SBL [40], especially at a low signal-to-noise ratio (SNR).

Although most ANM works promote robustness to noise by adding a regularization term,

[26] demonstrates that it is possible to deal with the noise by solving a noise-free optimization

problem. In [26], the authors propose a two-step DOA estimation approach. The first step is

to apply the alternating projection (AP) algorithm to solve a noise-free optimization problem

and obtain a matrix with an irregular Toeplitz structure. The second step computes an irregular

Vandermonde decomposition (achieved by generalized root-MUSIC) to retrieve the DOAs from

the irregular Toeplitz matrix. Although the optimization problem solved in the first step does

not have explicit robustness to the noise, the second step enables the method to work in noisy

cases. This method effectively avoids the explicit bias and the non-trivial effort required to tune

the regularization parameter.

Inspired by [26], we formulate the dual problem of the noise-free SDP in [10, eq. (20)]

without regularization. This problem is again an SDP and we deem it as the primal domain SDP

(since [10] formulates its SDP in the dual domain). Solving this SDP gives a Toeplitz matrix,

and the DOAs are further retrieved by Vandermonde decomposition of this Toeplitz matrix.

One computational method for Vandermonde decomposition is root-MUSIC [41], and it has

robustness to both noise and near collisions. Therefore, with the help of “post-SDP processing”
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(root-MUSIC), regularization is avoided and no prior knowledge of the noise is needed. At low

SNRs in simulation, the method can achieve a better performance than competing methods, and it

approaches closer to the Cramér-Rao bound (CRB) for Gaussian noise.

Non-uniform Frequencies and Irregular Vandermonde Decomposition

We also develop a fast SDP for the primal domain SDP. The fast SDP is derived based

on the dual problem of the fast algorithm in [10]. The fast algorithm can not only improve the

speed but also can extend the method to the non-uniform frequency (NUF) case. In this case,

the DOAs are encoded in a matrix with an irregular Toeplitz structure. We apply the irregular

Vandermonde decomposition (IVD) [26] to this matrix to retrieve the DOAs. Furthermore, we

provide a theoretical guarantee for the existence of the IVD which is not shown in [26]. While it

is mentioned in [10] that the fast dual algorithm proposed therein can be applied to the NUF case,

this is not tested in [10], and our experiments (see Fig. 4.5) indicate that the fast primal method is

more effective.

Multiple Snapshots and More Sources Than Sensors

The method in [10] is developed under the SMV case. Prior works show that MMVs can

give improved performance [23, 24, 42]. That motivates us to extend the framework in [10] to the

MMV case. In the MMV setting, the received signal from the sensor array is a three-dimensional

tensor (sensors × snapshots × frequencies). Based on the signal model, we formulate the

corresponding ANM problem and derive the SDP (in the dual domain) that is equivalent to the

ANM. The dual problem of the SDP is then derived to obtain the SDP in the primal domain. The

purpose of the primal SDP is to enhance the robustness to the noise and near collision without

regularization.

The multi-frequency setup also enables resolving more sources than sensors case in the

ULA setting. The maximum number of uniquely identifiable sources in an NM-element ULA
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Table 4.1: Comparison of [10] and this work.

[10] This work
Assumption ULA and uniform frequency NUA and NUF
Procedure Dual SDP→ Polynomial rooting Primal SDP→ IVD
Model SMV MMV
Noise-free SDPs Dual uniform (20) (SDP equivalent to ANM) Dual uniform (4.13) (SDP equivalent to MMV-MF ANM)

Fast dual (27)-(28) (extension of (20); nonuniform not tested) Fast dual (4.17) (extension of(4.13); accommodates NUA/NUF)
Full-dimension primal (29) (dual of (20); uniform case) Fast primal (4.19) (dual of (4.17); accommodates NUA/NUF)

Fast SMV primal (4.23) (special case of (4.19) when Nl = 1)
Full-dimension primal (4.24) (dual of (4.13); uniform case)

Noisy SDPs Dual uniform (21) (robust version of (20)) Dual uniform (4.15) (robust version of (4.13))

is NM−1 [42, Sec. 11.2.3] for the single-frequency case. Co-prime array techniques [32] can

break through such a limit with a carefully designed array structure, enabling the resolution of

more sources than the number of sensors. We show that it is possible to resolve more sources

than sensors with a ULA under the multi-frequency model. The physical intuition is that multiple

frequencies increase the diversity of the harmonics and these “new harmonics” can serve as extra

“virtual sensors” in a large virtual array. Due to this intrinsic property, it is possible to break

through such a bottleneck in the ULA setup. In many practical scenarios, the array geometry is

fixed and ULA is one of the most commonly used arrays. This result has a practical impact and

demonstrates the benefit of multi-frequency processing.

In summary, the framework proposed is superior to [10] in terms of generality, practicality,

performance, and complexity. Our work also demonstrates the possibility of resolving more

sources than sensors under the ULA setup which is an important merit of the multi-frequency

model.

4.1.3 Notation

Throughout the paper, the following notation is adopted. Boldface letters are used to

represent matrices and vectors. Conventional notations (·)T , (·)H , (·)∗, ⟨·, ·⟩R, and ⟨·, ·⟩ stand for

matrix/vector transpose, Hermitian transpose, complex conjugate, real inner product, and inner

product, respectively. Tr(·) is used to represent the trace of a matrix. ∥ · ∥p, ∥ · ∥F , and ∥ · ∥HS are
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used to express vector ℓp norm, matrix Frobenius norm, and Hilbert-Schmidt norm for the tensor

(for a 3D tensor ∥A∥HS =
√

∑i jk |ai jk|2). For a Hermitian matrix A, A⪰ 0 means A is a positive

semidefinite matrix. The imaginary unit is denoted by j =
√
−1.

4.2 Preliminaries

When multiple snapshots are available, DOA estimation methods can have improved

performance [23, 24, 42]. In this section, we extend the SMV multi-frequency ANM framework

for gridless DOA estimation from [10] to the MMV setting; we refer to the resulting framework

as the MMV-MF model. This model will help us explore the possibility of having more sources

than the sensors in Sec. 4.5.

4.2.1 Assumptions

The following assumptions are made for the array configuration and signal model:

1. The sensors comprise a linear array with positions drawn from a uniform grid {0,1, . . . ,NM−1} ·d,

where d is the sensor spacing unit. We let M ⊆ {0,1, . . . ,NM−1} denote the indices of the

actual sensors; the resulting positions are thus {m ·d|m ∈M }. We define Nm := |M | ≤ NM

as the number of sensors. When all sensors are present, Nm = NM, and we have a uniform

linear array (ULA) case. When only some sensors are present, Nm < NM, and we have a

nonuniform array (NUA) case.

2. The sources have temporal frequency components drawn from a uniform grid {1, . . . ,NF} ·F1,

where F1 is the spacing between frequencies. Let λ1 := c/F1 denote the wavelength corre-

sponding to F1, where c is the propagation speed. We assume λ1 = 2d where d is the sensor

spacing unit above; equivalently, d = c
2F1

. This spacing is for simplifying the derivation

and can be relaxed to any d ≤ λ1
2 (see [10] for details). We let F ⊆ {1, . . . ,NF} denote the
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indices of the active source frequencies; the resulting frequencies are thus { f ·F1| f ∈ F }

and the wavelengths are {λ1/ f | f ∈ F }. We define N f := |F | ≤ NF to be the number of

active source frequencies. When all frequencies are active, N f = NF , and we refer to this

as the uniform frequency case. When only some frequencies are active, N f < NF , and we

refer to this as the nonuniform frequency (NUF) case.

3. Suppose there are Nl snapshots (time samples) received by each sensor. The source

amplitude for the f -th frequency ( f ∈ F ) is xw( f ) = [x(1)w ( f ) . . . x(Nl)
w ( f )]T ∈ CNl .

4. There are K active uncorrelated sources impinging on the array from unknown directions

of arrival (DOAs) θ, or in directional cosines

w := F1d cos(θ)/c = cos(θ)/2. (4.1)

4.2.2 MMV-MF Model

We begin by considering the case of a ULA with uniform frequencies, i.e., Nm = NM and

N f = NF . (We incorporate the NUA and NUF cases in Section 4.4.) The received signals can be

arranged into a tensor Y ∈ CNM×Nl×NF (sensors × snapshots × frequencies) with the following

structure:

Y = X +N (4.2)

X = ∑
w

cw[a(1,w)xT
w(1)|...|a(NF ,w)xT

w(NF)]

= ∑
w

cwA(w)∗XT
w

(4.3)

where a( f ,w) = [1 e− j2πw f . . .e− j2πw f (NM−1)]T = [1 z f . . .z f (NM−1)]T ∈ CNM (z := e− j2πw) is

the array manifold vector for the f -th frequency. N ∈ CNM×Nl×NF denotes additive Gaus-

sian uncorrelated noise in (4.2). Denote A(w) = [a(1,w) . . .a(NF ,w)] ∈ CNM×NF and Xw =

[xw(1) . . .xw(NF)]
T ∈ CNF×Nl . A(w) ∗XT

w is the “reshaped Khatri-Rao product” defined as
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[A(w) ∗XT
w]:: f := a( f ,w)xT

w( f ) ( f = 1, ...,NF ). When Nl = 1, the above matches the SMV

model in [10].

Finally, we define

N = NF(NM−1)+1, (4.4)

noting that NF(NM−1) appears in the largest exponent of any array manifold vector used in the

MMV-MF model. Consequently, N will determine the size of certain SDP formulations such

as (4.13).

4.2.3 Collision and Near Collision

A challenge for multi-frequency processing is the risk of a phenomenon known as collision,

which occurs when, at some frequencies, the array manifold vectors for two DOAs coincide due

to aliasing. Two DOAs w1 and w2 are said to have a collision in the f -th frequency if [10, eq.

(46)]

a( f ,w1) = a( f ,w2). (4.5)

Such a collision occurs whenever w1 and w2 satisfy [10, eq. (47)]

|w1−w2|=
k
f

( f ∈ F , f > 1). (4.6)

A near collision is said to occur when [10, eq. (50)]

|w1−w2| ≈
k
f

( f ∈ F , f > 1). (4.7)

4.2.4 Irregular Vandermonde and Toeplitz Matrices

Define some real-valued vector γγγ= [γ1 . . .γNγ
]T ∈ZNγ , complex-valued vector z= [z1 . . .zNz]

T ∈

CNz , and w(γγγ,z) := [zγ1 . . .zγNγ ]T . For arbitrary dimensions Nγ and Nz, an irregular Vandermonde
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matrix of size Nγ×Nz is a matrix having the form [26, eq. (25)]

W = W(γγγ,z) = [zγ1 . . .zγNγ ]T

= [w(γγγ,z1) . . .w(γγγ,zNz)]. (4.8)

Note that when the entries of γγγ form an arithmetic progression, specifically γγγ = [0 . . .Nγ−1]T ,

W(γγγ,z) forms a regular Vandermonde matrix.

An (Nγ,Nz)-irregular Toeplitz matrix is any matrix T ∈ CNγ×Nγ that can be constructed

from an irregular Vandermonde matrix as follows [26, eq. (27)]:

T = W(γγγ,z)DW(γγγ,z)H , |z|= 1, (4.9)

where γγγ ∈ ZNγ and z ∈ CNz , and where D ∈ RNz×Nz is a diagonal matrix. We refer to (4.9) as an

irregular Vandermonde decomposition (IVD). Note that any Nγ×Nγ positive semi-definite regular

Toeplitz matrix T with rank Nz has a regular Vandermonde decomposition of the form (4.9) in

which γγγ ∈ ZNγ is an arithmetic progression.

4.3 Atomic Norm Minimization for MMV-MF

In this section, we formulate the atomic norm minimization problem for the MMV-MF

model. Then, we derive an equivalent SDP that makes the proposed framework computationally

feasible.

Define the atomic set

A = {A(w)∗XT
w | w ∈ [−1/2,1/2],∥Xw∥F = 1}. (4.10)

The atomic norm of a tensor X ∈ CNM×Nl×NF is defined as ∥X ∥A := inf{∑w |cw|
∣∣X = cwA(w)∗
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XT
w | ∥Xw∥F = 1}. The atomic norm minimization (ANM) problem for the noise-free case can be

expressed as

min
X

∥X ∥A s.t. Y = X . (4.11)

When noise is present, the optimization problem is modified to relax the equality constraint:

min
X

∥X ∥A s.t. ∥Y −X ∥HS ≤ η. (4.12)

The following proposition guarantees that (4.11) is equivalent to an SDP problem.

Proposition 4.3.1 Problem (4.11) is equivalent to the following SDP problem

max
Q ,P0
⟨Q ,Y ⟩R s.t.

 P0 Q̃

Q̃H INlNF

⪰ 0,

N−k

∑
i=1

P0(i, i+ k) = δk,Q̃ = [R (Q1) . . .R (QNF )],

(4.13)

where Q = [Q1| . . . |QNF ] ∈ CNM×Nl×NF is the dual variable, P0 ∈ CN×N , Q̃ = [Q̃1 . . .Q̃NF ] ∈

CN×NlNF , and Q̃ f = R (Q f ) : NM×Nl → N×Nl is a mapping defined as

R (Q f )(i, l) =

Q f (m, l) for (i, l)=( f (m−1)+1,l)

0 otherwise.
(4.14)

Proof See Appendix 4.9.1.

Fig. 4.1 demonstrates the mapping R . Across all frequencies, R : NM×Nl×NF → N×

NlNF is a linear mapping and can be expressed as a tall binary matrix multiply vec(Q̃)=Rvec(Q ).

The transpose of the matrix R describes the behavior of the adjoint operator R ∗ : N×NlNF →

NM×Nl×NF , which is also demonstrated in Fig. 4.1.

To provide intuition for the role of R , recall from (4.3) that the array manifold vectors
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in the MMV-MF model are frequency-dependent, and so the rows of different slices of X

correspond to different space-frequency products. After lifting the dual variable tensor Q to a

higher-dimensional space, however, every row corresponds to the same space-frequency product

f (m−1), allowing Q̃ to play a similar role in the SDP to the dual variables in more conventional

ANM formulations.

In the noisy case, the equivalent SDP of (4.12) is the regularized version of (4.13):

max
Q ,P0
⟨Q ,Y ⟩R−η∥Q ∥HS s.t.

 P0 Q̃

Q̃H INlNF

⪰ 0,

N−k

∑
i=1

P0(i, i+ k) = δk,Q̃ = [R (Q1) . . .R (QNF )],

(4.15)

where η depends on the noise level and is the same as in (4.12).

4.4 Regularization-free SDP and Fast Algorithm

In the previous section, we obtained an SDP that is equivalent to ANM. This SDP relies

on the dual norm and dual polynomial (see Appendix 4.9.1 for the dual norm (4.39) and dual

polynomial (4.40)), and so we deem the SDP in (4.13) as the dual SDP. We now derive the dual

problem of the SDP in Sec. 4.3; we deem this as the primal SDP. The benefit of the primal

SDP is that it is regularization-free and it thus avoids regularization bias in (4.15). In numerical

experiments, this primal SDP is inherently robust to noise and near collisions. Further, we derive

a fast, reduced-dimension version of the primal SDP. The fast program improves the speed, and

more importantly, it relaxes the requirements that the sensor positions and temporal frequencies

be uniform.
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4.4.1 Non-uniform Array (NUA) and Non-uniform Frequency (NUF) Set-

tings

In the previous sections, we focused on the ULA and uniform frequency case. However,

in general, the array spacing and frequency may not be uniform. Thus we generalize the proposed

framework to NUA and NUF cases.

Recall that F ⊆ {1, . . . ,NF} denotes the indices of the active source frequencies, with

N f := |F | ≤ NF denoting the number of active frequencies. The nonuniform frequency (NUF)

case corresponds to the scenario where N f < NF , i.e., only some of the frequencies are active.

Similarly, M ⊆ {0,1, . . . ,NM − 1} denotes the indices of the sensors, with Nm := |M | ≤ NM

denoting the number of sensors. The nonuniform array (NUA) case corresponds to the scenario

where Nm < NM, i.e., only some sensors are present.

Recall that every exponent in an array manifold vector from the MMV-MF model involves

a product of one temporal frequency and one sensor position. To capture all such products in the

nonuniform setting, we define a spatial-frequency index set U as follows:

U = {m · f |m ∈M , f ∈ F }. (4.16)

The cardinality of this set Nu := |U| ≤ N, with N is defined in (4.4). In many settings, Nu≪ N.

In later sections, we see that the size of the fast SDP depends on Nu, and its complexity is greatly

reduced compared to the original SDP.

4.4.2 Fast Dual SDP for the NUA and NUF Case

Proposition 4.3.1 gives the SDP for the ULA and uniform frequency case. We generalize

the SDP to the NUA and NUF cases. The SDP is not only more general but also can reduce the

complexity in the ULA and uniform frequency case. Inspired by the fast algorithm in [10, Sec.

III-F], the SDP in this section is considered the fast algorithm for MMV.
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For NUA and NUF, the measurement tensor Y ∈ CNm×Nl×N f and the SDP in Proposition

4.3.1 is generalized as

max
Q ,Pr0
⟨Q ,Y ⟩R s.t.

 Pr0 Q̃r

Q̃H
r INlN f

⪰ 0,

∑
U j−Ui=k

Pr0(i, j) = δk,Q̃r = [R1(Q1) . . .R1(QN f )],

(4.17)

where Q = [Q1| . . . |QN f ] ∈ CNm×Nl×N f is the dual variable, Pr0 ∈ CNu×Nu , Q̃r = [Q̃1
r . . .Q̃

N f
r ] ∈

CNu×NlN f (Q̃ f
r = R1(Q f ) ∈ CNu×Nl ), and R1(Q f ) : Nm×Nl → Nu×Nl is a mapping that pads

zeros to the extra entries defined as

R1(Q f )(r, l) =

 Q f (m, l) for (Ur, l)=( f · (m−1), l)

0 otherwise.
(4.18)

Fig. 4.2 demonstrates the R1(·) mapping. We note that any rows of Q̃ f which would have

remained all-zero under the operator R (·) (corresponding to unused space-frequency products)

are simply omitted in R1(·).

Comparing (4.18) with (4.14), these two mappings pad zeros for the same input Q f to

obtain the output matrix with a different dimension. The R mapping defined in (4.14) maps a

matrix with NM rows into one with N rows, while R1 defined in (4.18) omits the unused products

of temporal frequency and sensor position, mapping a matrix with Nm rows into one with only

Nu rows. This not only gives a lower-dimensional formulation (the size of Pr0 decreases from

N×N to Nu×Nu), but it naturally accommodates the NUA and NUF settings. Still, (4.17) can be

applied to the ULA and uniform frequency case, where Nu will often be somewhat smaller than

N.
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𝑓 = 1 𝑓 = 2

Figure 4.1: Demonstration for the R (·) mapping and its adjoint mapping R ∗(·). Nm = NM = 4,
Nl = 3, N f = NF = 2, N = (NM−1)NF +1 = 7.
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1 = 𝑹1(𝑸1)
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𝑀 = 0, 1, 2, 3 , 𝐹 = 1, 2
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∗

𝑓 = 1 𝑓 = 2

Figure 4.2: Demonstration for the R1(·) mapping and its adjoint mapping R ∗1 (·). Nm = NM = 4,
Nl = 3, N f = NF = 2, U = {0,1,2,3,4,6}, Nu = |U|= 6.

4.4.3 Fast Primal SDP for the NUA and NUF Case

In this section, we derive the dual problem of (4.17), yielding a fast primal SDP that is

regularization-free and naturally accommodates the NUA and NUF settings.
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Proposition 4.4.1 The dual problem of (4.17) is given by

min
W,u,Ỹ

[Tr(T(u))+Tr(W)]

s.t.

 T(u) Ỹ

ỸH W

⪰ 0,Y f = R ∗1 (Ỹ f ), f ∈ F ,

(4.19)

where Ỹ ∈ CNu×NlN f , W ∈ CNlN f×NlN f , Y f ∈ CNm×Nl is the slice of the received signal tensor

Y corresponding to frequency f , and Ỹ f ∈ CNu×Nl comes from taking the Nl columns of Ỹ

corresponding to frequency f . R ∗1 (·) : Nu×Nl → Nm×Nl is the adjoint mapping of R1.

Proof Consider the Lagrangian given by

L(Q ,Pr0,Ur,ΛΛΛ1,ΛΛΛ2,ΛΛΛ3,ΛΛΛQ,v) =

⟨Q ,Y ⟩R−
〈 ΛΛΛ1 ΛΛΛ2

ΛΛΛ
H
2 ΛΛΛ3

 ,

 Pr0 Ur

UH
r INlN f

〉
R

−
N−1

∑
k=0

vk(δk− ∑
U j−Ui=k

Pr0(i, j))− ∑
f∈F
⟨ΛΛΛ f

Q,U
f
r−R1(Q f )⟩R

= ∑
f∈F

[⟨Q f ,Y f ⟩R+⟨ΛΛΛ f
Q,R1(Q f )⟩R]−[⟨Pr0,ΛΛΛ1⟩R

+2⟨ΛΛΛ2,Ur⟩R+Tr(ΛΛΛ3)]−v0+⟨Pr0,T(v)⟩R−∑
f∈F
⟨ΛΛΛ f

Q,U
f
r ⟩R.

(4.20)

Note that we use the following fact during the derivation: ∑
N−1
k=0 vk ∑U j−Ui=k Pr0(i, j)= ⟨Pr0,T(v)⟩R,

where T : N×1→ Nu×Nu is explicitly defined as (note ∗ denotes complex conjugate)

T(v)(i, j) :=

 vU j−Ui U j−Ui ≥ 0

v∗Ui−U j
U j−Ui < 0.

(4.21)

We provide an example of this mapping in Sec. 4.4.5.
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The dual matrix

 ΛΛΛ1 ΛΛΛ2

ΛΛΛ
H
2 ΛΛΛ3

 associated with the inequality constraint

 Pr0 Ur

UH
r IN f

⪰ 0

needs to be a PSD matrix to ensure that the inner product between these two matrices is non-

negative so that the optimal value for the dual problem gives a lower bound for the primal

problem.

The dual function is

g(ΛΛΛ1,ΛΛΛ2,ΛΛΛ3,ΛΛΛQ,v) = inf
Q ,Pr0,Ur

L(Q ,Pr0,Ur,ΛΛΛ1,ΛΛΛ2,ΛΛΛ3,ΛΛΛQ,v)

s.t.

 ΛΛΛ1 ΛΛΛ2

ΛΛΛ
H
2 ΛΛΛ3

⪰ 0.
(4.22)

The infimum of L in (4.20) over Q is thereby infQ J(Q ) :=∑ f∈F [⟨Q f ,Y f ⟩R+⟨ΛΛΛ f
Q,R

∗
1 (Q f )⟩R] =

∑ f∈F [⟨Q f ,Y f ⟩R + ⟨Q f ,R ∗1 (ΛΛΛ
f
Q)⟩R] = ∑ f∈F ⟨Q f ,Y f +R ∗1 (ΛΛΛ

f
Q)⟩R. The infimum of J(Q) is

bounded only if Y f =−R ∗1 (ΛΛΛ
f
Q) for any f ∈ F . Similarly, the infimum of L over Pr0 is bounded

only if T(v) = ΛΛΛ1 ⪰ 0. The infimum of L over Ur is bounded only if ΛΛΛ
f
Q =−2ΛΛΛ

f
2 . Considering

2ΛΛΛ
f
2 = Ỹ f , then we must have Y f =−R ∗1 (ΛΛΛ

f
Q) = R ∗1 (2ΛΛΛ

f
2) = R ∗1 (Ỹ f ).

Considering ΛΛΛ3 =
1
2W and v = 1

2u, the dual function becomes −1
2Tr(W)− 1

2Tr(T(u)).

Therefore, the fast program in the primal domain is given by (4.19). □

SMV Setup

The fast program (4.19) can not only improve the execution time in the uniform cases,

but it naturally accommodates the NUA and NUF cases as well. (4.19) can also be adapted to the

SMV setup (i.e. Nl = 1). In that case, the received signal Y will reduce to an Nm×N f matrix and
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(4.19) will reduce to

min
W,u,Ỹ

[Tr(T(u))+Tr(W)]

s.t.

 T(u) Ỹ

ỸH W

⪰ 0,Y f = R ∗1 (Ỹ f ), f ∈ F ,

(4.23)

where Ỹ ∈ CNu×N f , W ∈ CN f×N f , Y f ∈ CNm×1 is the column of the received signal Y corre-

sponding to frequency f , and Ỹ f ∈ CNu×1 comes from taking the column of Ỹ corresponding to

frequency f .

Comparison to full-dimension primal SDP

Recall that (4.13) is the dual SDP for the ULA and uniform frequency setting. A significant

difference between (4.13) and (4.17) lies in the dimensions of the matrices in the PSD constraint

and the equality constraint. Following the same procedure in this section, the dual SDP of (4.13)

can be obtained, yielding the following full-dimension primal SDP for the ULA and uniform

frequency case:

min
W,u,ỸN

[Tr(Toep(u))+Tr(W)]

s.t.

Toep(u) ỸN

ỸH
N W

⪰ 0,Y f = R ∗(ỸN f ), f = 1, . . . ,NF ,

(4.24)

where Toep(·) : N × 1→ N ×N is the Toeplitz operator that maps a vector to a self-adjoint

Toeplitz matrix. ỸN ∈ CN×NlNF , R ∗(·) : N ×Nl → NM ×Nl is the adjoint mapping of R (·),

and ỸN f ∈ CN×Nl is taking Nl columns from ỸN (from the ( f − 1) ·Nl + 1-th to the f ·Nl-th

column). Compared to (4.19), a main difference is that T(u) ∈ CNu×Nu in (4.19) is changed to

Toep(u) ∈ CN×N .
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4.4.4 Existence of Irregular Vandermonde Decomposition (IVD)

The full-dimension primal SDP in (4.24) has an interesting connection to the SDPs from

the ANM literature which involve trace minimization of a (regular) Toeplitz matrix [22, 24].

In ANM problems that involve trace minimization of a regular Toeplitz matrix, one typically

computes the Vandermonde decomposition of the resulting Toeplitz matrix in order to extract the

frequencies/DOAs. Indeed, as we discuss further in Section 4.6, trace minimization serves as a

convex relaxation of rank minimization, and a formal connection can be established between rank

minimization and finding the sparsest decomposition in the atomic set A .

In contrast, the fast primal SDPs (4.19) and (4.23) derived in the previous section involve

trace minimization not of a Toeplitz matrix but rather a matrix of the form T(u). (See Sec. 4.4.5

for an illustration of the structure of T(u).) However, as we establish in Theorem 4.4.2 below,

there is an important connection between T(u) and Toeplitz matrices: T(u) is guaranteed to be an

irregular Toeplitz matrix, and therefore is guaranteed to have an IVD. This inspires our proposed

method for extracting DOA information from T(u), which we outline in Section 4.4.6.

Theorem 4.4.2 For any u such that Toep(u) is PSD, T(u) ∈ CNu×Nu is an (Nu,K)-irregular

Toeplitz matrix, where K = rank(Toep(u)). Specifically, T(u) has an IVD of the form (4.9), where

γγγ = [U1, . . .UNu]
T .

Proof First, let PU : CN → CNu denote a linear restriction operator that selects only the

entries in a vector corresponding to the positions indexed by U.

Now, consider Toep(u) ∈ CN×N , and observe that T(u) ∈ CNu×Nu can be obtained by a

mapping from Toep(u) as follows: T(u) :=PUToep(u)PH
U . Since Toep(u) is PSD, it is guaranteed

to have a Vandermonde decomposition of the form [42, Theorem 11.5]:

Toep(u) = V(z)DV(z)H (4.25)

where V(z) ∈ CN×K is a Vandermonde matrix parameterized by z with |z|= 1, and D ∈ RK×K is
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a diagonal matrix with positive diagonals. Hence,

T(u) = PUToep(u)PH
U = PUV(z)DV(z)HPH

U

= (PUV(z))D(V(z)HPH
U)

= W(γγγ,z)DW(γγγ,z)H ,

(4.26)

where W(γγγ,z) := PUV(z) will be an irregular Vandermonde matrix of the form (4.8) with

γγγ = [U1 . . .UNu]
T . Therefore, T(u) is an (Nu,K)-irregular Toeplitz matrix. □

4.4.5 An Example for T(v)

We demonstrate the structure of T(v) in the following example. Consider M = {0,1,3,4}

and F = {1,3,4}. Therefore, Nm = |M |= 4, N f = |F |= 3, U = {0,1,3,4,9,12,16}, NM = 5,

NF = 4, N = (NM−1)NF +1 = 17, and Nu = |U|= 7. For v = [v0 . . .v16]
T , T(v) ∈ CNu×Nu can

be expressed as

T(v) =



v0 v1 v3 v4 v9 v12 v16

v∗1 v0 v2 v3 v8 v11 v15

v∗3 v∗2 v0 v1 v6 v9 v13

v∗4 v∗3 v∗1 v0 v5 v8 v12

v∗9 v∗8 v∗6 v∗5 v0 v3 v7

v∗12 v∗11 v∗9 v∗8 v∗3 v0 v4

v∗16 v∗15 v∗13 v∗12 v∗7 v∗4 v0



.

Note v10 and v14 do not appear in T(v). In Theorem 4.4.2, we show that for any v such that

such that Toep(v) is PSD, T(v) is guaranteed to be an irregular Toeplitz matrix. In this case,

T(v) is guaranteed to have an IVD: T(v) = W(γγγ,z)DW(γγγ,z)H , where D = diag(d1, . . . ,dK) with

K = rank(Toep(v)), and where γγγ = [0 1 3 4 9 12 16]T .
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4.4.6 DOA Extraction

After solving the fast primal SDP (4.19) by an off-the-shelf SDP solver (e.g., CVX [38])

and obtaining u, we propose to extract the DOAs by exploiting the IVD of the irregular Toeplitz

T(u) = W(γγγ,z)DW(γγγ,z)H . Although this factorization is not computed explicitly as part of

solving the SDP, its existence provides a means to estimate the entries of z, each corresponding to

a point on the unit circle whose complex angle encodes a DOA.

Let T(u) denote an (Nu,K)-irregular Toeplitz matrix that has an IVD of the form T(u) =

W(γγγ,z)DW(γγγ,z)H , where γγγ = [U1 . . .UNu]
T . Consider the eigen-decomposition of T(u):

T(u) = USΛΛΛSUH
S +UNΛΛΛNUH

N , (4.27)

where ΛΛΛS ∈CK×K is a diagonal matrix containing the K largest eigenvalues of T(u), US ∈CNu×K

contains the corresponding eigenvectors, and ΛΛΛN ∈C(Nu−K)×(Nu−K) and UN ∈CNu×(Nu−K) contain

the remaining (zero) eigenvalues and corresponding eigenvectors. US and UN are known as the

signal and noise subspaces, respectively.

For z ∈ C, define the irregular null spectrum D̃(z) of T(u) as [26, eq. (29)]

D̃(z) = w(γγγ,z)HUNUH
N w(γγγ,z) = w(γγγ,z)HGw(γγγ,z), (4.28)

where G = UNUH
N . The behavior of the irregular null spectrum is plotted in Fig. 4.3.

Since G⊥W(γγγ,z) and |z|= 1, the DOAs encoded in z are associated to the K roots of

D̃(z) on the unit circle. [26] suggests that the local minima of D̃(z) evaluated on the unit circle

give DOA estimates with similar accuracy as those given by the actual roots. Therefore, z is

estimated as [26, eq. (43)]

ẑ = arg
k

min
|z|=1

D̃(z), k = 1, . . . ,K (4.29)

where argmink
z denotes the argument, z, which produces the kth smallest local minima. The
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Figure 4.3: Null spectrum contours (dB) using NM = 16, K = 3, Nl = 5. For a) - b) NF = 1,
and for c) - d) NF = 3. The frequency set is {1, . . . ,NF} ·100 Hz and ULA is applied. DOAs are
[88,93,155]◦, marked by red x’s. a) and c): Null spectrum from noise-free measurement. b) and
d): SNR = −5 dB.

DOAs θ̂, ŵ, and ẑ are estimated by

θ̂ = cos−1
(
− ∠ẑ

π

)
, ŵ =

−∠ẑ
2π

, ẑ = e− jπcos(θ̂). (4.30)

In summary, we first solve the SDP (4.19) via an off-the-shelf SDP solver (e.g., CVX [38]).

After u is obtained, the DOAs can be retrieved by computing the irregular null spectrum D̃(z)

of T(u) and following the steps mentioned in this section. The implementation details of the
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proposed method are summarized in Algorithm 2.

Algorithm 2: Regularization-free DOA estimation
Input: Y ∈ CNm×Nl×N f , K
Initialization:

Solve (4.19) by CVX and obtain u
Obtain T(u) based on (4.21)
[U, ΛΛΛ] = eig(T(u))
UN = U(:,K +1 : Nu)
G = UNUH

N
Obtain D̃(z) based on (4.28)
ẑ = find(argmin(D̃(z)), |z|= 1)
θ̂← 180− acosd(angle(ẑ/π))

Output: θ̂

4.5 More Sources Than Sensors in the ULA Setup

Many prior works have demonstrated the possibility of resolving more sources than the

number of array sensors based on special array geometries such as MRA [30, 43], co-prime

arrays [32], and nested array [33]. However, for single-frequency ULA, the maximum number of

resolvable sources is NM−1 [42, Sec 11.2.3]. In this section, we will demonstrate the possibility

of resolving more sources than sensors under the ULA setup if multiple frequencies are available.

We primarily solve (4.24) and follow the procedures in Algorithm 1 to retrieve the DOAs. In

our multi-frequency ANM configuration, it can resolve up to N− 1 = (NM− 1)NF sources as

Toep(u) ∈ CN×N and UN exists only if K ≤ N−1. The reason for using (4.24) instead of (4.19)

is that (4.19) can resolve up to Nu−1 sources and (4.24) has the potential to resolve more sources

than (4.19) because Toep(u) in (4.24) has a higher dimension than T(u) in (4.19).

The key observation for the multi-frequency model is that these frequencies increase the

diversity of the harmonics. These extra harmonics serve as “virtual” sensors in the array, and they

bring about an enhanced degree of freedom. For example, consider a ULA with NM = 4 sensors
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Figure 4.4: Estimated and True DOAs for ANM (“×” indicates the true DOAs and the blue ver-
tical line indicates the estimated DOAs). NM = 4, NF = 5, Nl = 1, and K = 10,11,12,13,14,15.
The RMSEs of ANM under K = 10,11,12,13,14,15 are 0.005◦, 0.16◦, 0.20◦, 0.04◦, 0.27◦, and
0.27◦.

and NF = 5 uniform frequencies. Therefore, it can resolve up to (NM−1)NF = 15 sources. The

SDP problem (4.19) can be interpreted as a structured covariance matrix estimation problem

(T(u) can be interpreted as the covariance matrix). We notice this covariance matrix is in a higher

dimension, which corresponds to our intuition that there are more sensors in our “virtual” array.

As an example, suppose we have NM = 4 sensors, NF = 5 frequencies ({100, . . . , 500}Hz),

Nl = 1 noise-free snapshot, and K = 10,11,12,13,14,15 sources with uniform and deterministic

across frequencies. For K = 10,12, and 15, the DOAs are generated as the uniform distribution in

the cosine domain (i.e., the DOAs are ⌊cos−1(−1+2([1 : K]−0.5)/K)⌋). For K = 11, we pick

up the last 11 sources in the K = 12 case. For K = 13, we pick up the middle 13 sources in the

K = 15 case, and for K = 14, we pick up the middle 14 sources. We plot the estimated DOAs for

ANM. From Fig. 4.4, we can see our ANM can resolve up to (NM−1)NF = 15 sources.
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4.6 Rank Minimization and Atomic ℓ0 Norm Minimization

In this section, we highlight the connection between rank minimization and atomic ℓ0

norm minimization. More specifically, atomic ℓ0 norm minimization can be interpreted as a

covariance matrix estimation approach where low-rankness and Toeplitz structure are explicitly

enforced [22, 24]. However, atomic ℓ0 norm minimization is non-convex and may not be

computationally feasible. By considering ANM, the convex relaxation of the atomic ℓ0 norm, we

obtain (4.19) and (4.23) as trace minimization problems that are computationally feasible and

in which the low-rankness and Toeplitz structure are implicitly enforced. In this way, we can

understand the benefits of ANM compared to conventional covariance matrix estimation using

the sample covariance matrix. Before describing the equivalence, we review the definitions of the

covariance matrix and the sample covariance matrix.

We assume Nl = 1, noise-free measurement, uniform frequency and ULA setup, and full

dimensional SDP in this section, and our discussion serves as a means to interpret (4.23).

4.6.1 Covariance Matrix Estimation

Suppose Ỹ ∈ CN×NF is noise-free and defined as

Ỹ =
K

∑
k=1

zkxH
k = [z1 . . .zK][x1 . . .xK]

H = ZX (4.31)

where zk := [z0
k . . .z

N−1
k ]T ∈ CN , xk = [x(1)k . . .x(NF )

k ]T ∈ CNF , Z := [z1 . . .zK] ∈ CN×K , and X :=

[x1 . . .xK]
H ∈ CK×NF . Note that Z is a Vandermonde matrix and that Ỹ satisfies

Y = R ∗(Ỹ). (4.32)
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The sample covariance matrix R̂ỹỹ and covariance matrix Rỹỹ are defined as

R̂ỹỹ =
1

N f
ỸỸH , (4.33)

Rỹỹ = E[R̂ỹỹ] = ZΛΛΛX ZH (4.34)

where ΛΛΛX := 1
N f
E[XXH ] is a diagonal matrix due to uncorrelated sources. Note that Rỹỹ is a

Toeplitz Hermitian matrix in the noise-free case, ZΛΛΛX ZH is its Vandermonde decomposition,

and the DOAs are encoded in the Vandermonde matrix Z. The essence of some classical DOA

estimation approaches (e.g. MUSIC, and ESPRIT) lies in Vandermonde decomposition of the

estimated covariance matrix. However, Ỹ is not fully observed in our problem as only Y, the

image of the R ∗ mapping is accessible. To further obtain Ỹ, the R mapping needs to be applied.

Note if we apply R ∗ first and then R on a matrix, we may not obtain the same matrix as the

white entries in Fig. 4.1 cannot be recovered after the R ∗ mapping. Therefore, the covariance

matrix of Ỹ must be estimated by solving a convex optimization problem.

4.6.2 Connection Between Rank Minimization and Atomic ℓ0 Norm Mini-

mization

As described in Sec. 4.4.6, after solving the SDP (4.23) and obtaining u, DOAs are

extracted by computing the IVD of T(u). In light of the discussion in Section 4.6.1, then, (4.23)

can be interpreted as a covariance matrix estimation problem where T(u) serves as an estimate for

a covariance matrix that contains the DOA information. In this section, we discuss this connection

more deeply.

From (4.34), the true covariance matrix in the noise-free case Rỹỹ has three important

properties: (1) Toeplitz and Hermitian; (2) PSD; (3) low-rank (its rank is K (number of sources)

and is usually much smaller than its size Nu). A commonly used estimate for the covariance matrix
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is the sample covariance matrix R̂ỹỹ defined in (4.33), which is PSD. However, this estimate

does not promote the Toeplitz structure of the covariance matrix. This limitation is overcome

by the SDP formulation in (4.23). The irregular Toeplitz structure is obviously enforced in T(u).

Meanwhile, (4.23) also promotes low-rank structure, a fact that warrants more discussion.

The atomic ℓ0 norm of an N×NF matrix Ỹ is defined as

∥Ỹ∥A ,0 := inf

{
K

∣∣∣∣∣Ỹ =
K

∑
k=1

ckzkxH
k ,ck > 0

}
(4.35)

where zk := [z0
k . . .z

N−1
k ]T ∈ CN such that |zk| = 1 and xk = [x(1)k . . .x(NF )

k ]T ∈ CNF such that

∥xk∥2 = 1.

The following proposition establishes an equivalence between the atomic ℓ0 norm and

rank minimization.

Proposition 4.6.1 ( [42, Theorem 11.13]) For any N×NF matrix Ỹ with an atomic decomposition

of the form (4.35) (which includes any Ỹ satisfying (4.31)), ∥Ỹ∥A ,0 is equal to the optimal value

of the following rank minimization problem:

min
W,u

rank(Toep(u))

s.t.

 Toep(u) Ỹ

ỸH W

⪰ 0.
(4.36)

Remark To summarize our intuition, the proposition above indicates that (4.23), which is

essentially a reduced-dimension convex relaxation of (4.36), will promote both low-rankness and

Toeplitz structure and therefore yields a favorable covariance matrix estimation that reveals the

sparse decomposition of the DOAs and is consistent with the observed data.
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4.7 Numerical Results

We use numerical experiments to examine the performance of the method. In this section,

NF and N f are used to denote the number of frequencies for the uniform and non-uniform

frequency set, respectively. NM and Nm are used to denote the number of sensors for the uniform

and non-uniform array spacing sets, respectively. For each experiment and trial, K DOAs are

generated. The source amplitude is complex Gaussian. Nl snapshots are collected. The uniform

frequency set is defined as {1, ...,NF} ·F1 (F1 is the minimum frequency). The array spacing for

ULA is λ1
2 where λ1 is the wavelength for the minimum frequency in the frequency set. The

noise for each frequency and each snapshot is randomly generated from the complex Gaussian

distribution CN (0,σ2) and then scaled to fit the desired signal-to-noise ratio (SNR) defined as

SNR = 20log10
∥X ∥HS

∥N ∥HS
. (4.37)

In the Monte-Carlo experiments, MC = 100 trials are executed to compute the root mean

square error (RMSE) defined as

RMSE =

√√√√ 1
MC

MC

∑
m=1

[
min

(
1
K

K

∑
k=1

(θ̂mk−θmk)2,102
)]

, (4.38)

where θ̂mk, and θmk are (sorted) estimated DOAs, and (sorted) ground-truth DOAs for the kth

DOA and mth trial. A maximum threshold of 10◦ is used to penalize the incorrect DOA estimates.

We compare the proposed method with the multi-frequency sparse Bayesian learning (SBL) [8].

The Cramér-Rao bound (CRB) [44, Eq. (121)] for the multi-frequency model is computed for

reference.
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4.7.1 Robustness to Aliasing/Collision

We first examine the robustness of aliasing/collision. Suppose K = 3 sources impinge in

a ULA with NM = 16 sensors. The source amplitudes are complex Gaussian and the DOAs are

randomly generated from a uniform distribution with range [15◦,165◦] with minimum separation

4/NM in the cosine domain. We consider NF = 2 or 4 under the single-snapshot and uniform

frequency case (Nl = 1). All frequencies other than the fundamental frequency will have the risk

of aliasing/collision. We solve the SDP program (4.23) by CVX [38] and apply the root-MUSIC

(Vandermonde decomposition) to retrieve the DOAs.

From Fig. 4.5 (a)–(b), we can see the primal ANM is more robust to the aliasing than

SBL. It also overcomes the collision issues for the dual ANM [10]. Moreover, the primal ANM

does not need any hyper-parameter tuning and it therefore avoids the bias from the regularization

terms.

4.7.2 Non-uniform Frequency Cases

We examine the performance under the non-uniform frequency set. In this case, N f = 4,

and the frequency set is {100,200,300,500} Hz and {200,300,400,500} Hz. Other conditions

are the same as in Sec. 4.7.1. Fig. 4.5 (c)-(d) demonstrates the effectiveness of the proposed

method under the non-uniform frequency case. We see superior performance to the fast dual

algorithm proposed in [10].

4.7.3 MMV Case

We examine the performance of ANM under the MMV setup. We consider the case

Nl = 20, and K = 3 DOAs at [88,93,155]◦+εεε where εεε is a three dimensional random vector with

uniform distribution from [0,1]. Fig. 4.6 demonstrates the superior performance of ANM in the

high SNR region, and it follows the trend of CRB.
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Figure 4.5: RMSE (◦) versus SNR. NM = 16 ULA with d = λ100/2. Nl = 1, and K = 3.
(a): NF = 2 with frequency sets 100 · {1,2} Hz; (b) - (d) NF = 4 with frequency set (b)
100 · {1,2,3,4} Hz, (c) 100 · {1,2,3,5} Hz and (d) 100 · {2,3,4,5} Hz. “ANM P” and “ANM
D” represent the primal and dual SDP.

We then examine the performance of ANM with varying numbers of snapshots Nl for

SNR = 20 dB, and the other setup as Fig. 4.6. From Fig. 4.7, we can see ANM follows the

trend of CRB and outperforms SBL. In addition, comparing Fig. 4.7 (a) with Fig. 4.7 (b), ANM

performs better with higher NF , which demonstrates the benefits of muli-frequency processing.

4.7.4 The Effect of Multiple Frequencies

We study the performance of the method under varying NF in Fig. 4.8. From Fig. 4.8 (a),

the estimation error of ANM generally goes down with increasing NF and the only exception is

NF = 7. To understand that, the true and the aliasing DOAs are in Fig. 4.8 (b). It can be seen that

the DOAs 93◦ and 155◦ collide with each other at frequency 700 Hz. There are other intersection

points between the solid and dashed lines but none of them lie in any frequency that belongs to

the frequency set. That explains why the error significantly goes up when NF increases from 6 to

7.
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Figure 4.6: RMSE (◦) versus SNR for MMV setup. NM = 16 ULA with d = λ100/2. K =
3 DOAs at [88◦,93◦,155◦] + εεε where εεε is the random offsets from a uniform distribution
[0,1]. Nl = 20. (a): NF = 2 with frequency set {100,200} Hz; (b) NF = 8 with frequency set
{100, . . . ,800} Hz.
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Figure 4.7: RMSE (◦) versus Nl for MMV setup. NM = 16 ULA with d = λ100/2. K = 3
DOAs at [88◦,93◦,155◦]+ εεε where εεε is the random offsets from a uniform distribution [0,1].
SNR = 20 dB. (a): NF = 2 with frequency set {100,200} Hz; (b) NF = 4 with frequency set
{100,200,300,400} Hz.

4.7.5 Co-prime Array and More Sources than Sensors

We examine an Nm = 6 co-prime array, a particular example of the non-uniform array

(NUA). A co-prime array involves two ULAs with spacing M1d and M2d. M1 and M2 are co-

prime integers and their greatest common divisor is 1. The first ULA has M2 sensors and the

second ULA has 2M1 sensors. Since the first sensor is shared, there are Nm = 2M1 +M2− 1

sensors in the array. In this example, we consider M1 = 2, M2 = 3. N f = 3 and the non-uniform

frequency set is {100,300,400} Hz. d = λ100/2. The first ULA is [0,2d,4d] and the second

ULA is [0,3d,6d,9d]. The entire co-prime array is [0,2d,3d,4d,6d,9d]. Nl = 50, SNR = 20 dB,

and K = 7 DOAs with at {45,60,75,90,105,120,140}◦. Note, K > Nm in this case.

From Fig. 4.9, the proposed method resolves more DOAs than sensors in the NUA case,
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Figure 4.8: (a) RMSE (◦) versus NF and (b) aliasing pattern for MMV setup. NM = 16
ULA with d = λ100/2. Nl = 10. The frequency set is {1, . . . ,NF} · 100 Hz. K = 3 DOAs at
[88◦,93◦,155◦]+ εεε where εεε ∼U(0,1). SNR = 20 dB. In (b), the true (solid) and the aliasing
DOAs (dashed) are shown.
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Figure 4.9: Histogram for the estimated DOAs for (a) ANM, and (b) SBL under the co-prime
array with Nm= 6 (sensor locations are [0,2,3,4,6,9]), N f = 3 ([100,300,400] Hz), Nl = 50,
SNR = 20 dB, and K = 7. The RMSE for ANM is 0.2◦, and for SBL 8.6◦.

while SBL fails in this case and has a high RMSE (The maximum RMSE is 10◦ as the maximum

threshold of the RMSE for one trial is 10◦ based on (4.38)).

Further, we examine the case when there are more DOAs than sensors under the ULA

setup. We have already demonstrated that in Sec. 4.5 under a noise-free and uniform amplitude

setup. Here, we consider a more practical case when there is noise and the amplitude is random.

From Fig. 4.10, ANM can resolve 6 DOAs when only NM = 4 physical sensors are available

under the noisy and non-uniform amplitude case and it achieves lower RMSE performance than
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Figure 4.10: Histogram for the estimated DOAs for an ULA (a) ANM, and (b) SBL. NM = 4,
NF = 3 ([100,200,300] Hz), Nl = 50, SNR = 20 dB and K = 6. The RMSE for ANM is 0.90◦,
and for SBL 1.10◦.
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Figure 4.11: RMSE (◦) versus SNR for MMV setup. NM = 20 ULA with d = λ100/2. K = 3
DOAs at [88◦,93◦,155◦]+ εεε where εεε is the random offsets from a uniform distribution [0,1].
Nl = 10. (a): NF = 20 with frequency set {100, . . . ,2000} Hz.

SBL.

4.7.6 Practical Test

We consider a case with NF = 20 frequencies, Nl = 10 snapshots, and NM = 20 sensors.

In previous examples, the number of frequencies is small, but in practical cases, there may be

much more frequencies in the wideband signal. We compare the performance to the SBL with

high resolution 0.01◦. From Fig. 4.11, our method can deal with such a practical case with lower

RMSE than the high-resolution SBL.
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4.8 Conclusion

This paper proposes a gridless DOA estimation method based on regularization-free

SDP and Vandermonde decomposition. We further extend this framework to MMV, NUA, and

non-uniform frequency cases. Under the NUA and non-uniform frequency case, the Toeplitz

structure will not hold. However, we demonstrate the possibility of using IVD in these cases,

and the existence of IVD is theoretically guaranteed. With the help of multiple frequencies,

the method can resolve more sources than the number of physical sensors under the ULA

setup. Therefore, multi-frequency processing can reduce hardware complexity and increase the

maximum resolvable sources. Numerical results demonstrate the proposed framework is robust

to noise and aliasing and can achieve a superior performance under the MMV, NUA, and NUF

setup.

4.9 Appendix

4.9.1 Proof for Proposition 4.3.1

Proof The primal atomic norm ∥X ∥A is expressed in terms of the dual atomic norm ∥Q ∥∗A
as

∥X ∥A = sup
∥Q ∥∗A≤1

⟨Q ,X ⟩R = sup
∥Q ∥∗A≤1

⟨Q ,Y ⟩R, (4.39)

where the last equality is only for the noise-free case.

For any dual variable Q , we can define the dual polynomial matrix ΨΨΨ(Q ,w) ∈ CNF×Nl as

ΨΨΨ(Q ,w) := [QH
1 a(1,w) . . .QH

NF
a(NF ,w)]T . (4.40)

Note that since each frequency has different array manifold vectors, it is difficult to

express ΨΨΨ(Q ,w) as a matrix multiplication of Q and a vector. To construct a homogeneous

135



representation for ΨΨΨ(Q ,w), we will leverage z := [z0 . . .zN−1]T ∈ CN (z = z(w) := e− j2πw), an

ensemble of the array manifold, and the matrix Q̃ f ∈ CN×Nl defined as follows [10, eq. (14)]

Q̃ f (i, l) =

 Q f (m, l) for (i, l) = ( f · (m−1)+1, l)

0 otherwise,
(4.41)

or Q̃ f = R (Q f ).

With the help of Q̃ f and z, ΨΨΨ(Q ,w) has the representation

ΨΨΨ(Q ,w) = [Q̃H
1 z . . .Q̃H

NF
z]T . (4.42)

Now, we consider ∥Q ∥∗A , which appears in the constraint in (4.39). Recalling that

∥Xw∥F = 1, we have a similar derivation to [10, eq. (17)]:

∥Q ∥∗A := sup
∥X ∥A≤1

⟨Q ,X ⟩R = sup
∥X ∥A≤1

⟨Q ,A(w)∗XT
w⟩R

= sup
Xw
w

Tr[
NF

∑
f=1

QH
f a( f ,w)xT

w( f )]

= sup
Xw
w

Tr[ΨΨΨHXw] = sup
w
∥ΨΨΨ(Q ,w)∥F .

(4.43)

Using (4.43), the condition ∥Q ∥∗A ≤ 1 can be equivalently formulated as an SDP constraint.

Construct a similar polynomial as in [10, eq. (23)]:

R(w) := 1−∥ΨΨΨ(Q ,w)∥2
F = 1−Tr[ΨΨΨH(Q ,w)ΨΨΨ(Q ,w)]

= 1−Tr(
NF

∑
f=1

Q̃H
f zzHQ̃ f ) = 1−

NF

∑
f=1

zHQ̃ f Q̃H
f z.

(4.44)

Therefore, ∥Q ∥∗A ≤ 1 holds if and only if R(w)≥ 0 for all w ∈ [−1/2,1/2].

Now, suppose there exists a matrix P0 ∈ CN×N such that the constraints in (4.13) hold.
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Figure 4.12: Dual polynomial visualization. A ULA with NM = 16 sensors and spacing
d = c/2F1 (F1 = 100 Hz) is used. NF = 5, Nl = 5, θ = [87.7076◦,93.4398◦,154.1581◦], and
w = [0.02,−0.03,−0.45]. (a) ∥ψψψ(Q,w)∥F versus w; (b) R(w) versus w.

We must argue that R(w)≥ 0 and therefore ∥Q ∥∗A ≤ 1 for all w. Consider the expression zHP0z

and note that

zHP0z = Tr(zzHP0) =
N−1

∑
k=−(N−1)

rkz−k (4.45)

where rk = ∑
N−k
i=1 P0(i, i+ k) for k ≥ 0 and rk = r∗−k for k < 0. Since ∑

N−k
i=1 P0(i, i+ k) = δk holds,

we can conclude that zHP0z = z0 = 1. Define P1 := ∑
NF
f=1 Q̃ f Q̃H

f = Q̃Q̃H and substitute this fact

into R(w). We have

R(w) = zHP0z− zHP1z = zH(P0−P1)z. (4.46)

Since

 P0 Q̃

Q̃H INlNF

⪰ 0, its Schur complement P0− Q̃I−1
NF

Q̃H = P0−P1 ⪰ 0, and so R(w)≥ 0

for all w ∈ [−1/2,1/2].

Next, suppose R(w) ≥ 0 for all w ∈ [−1/2,1/2]. We need to argue that there exists a

matrix P0 ∈ CN×N ⪰ 0 such that the constraints in (4.13) hold. Since R(w) ≤ 0, 1 ≥ zHP1z,

where P1 := ∑
NF
f=1 Q̃ f Q̃H

f = Q̃Q̃H . From [45, Lemma 4.25] and the fact that 1 and zHP1z

are both univariate trigonometric polynomials, it follows that there exists P0 ⪰ P1 such that

1 = zHP0z and ∑
N−k
i=1 P0(i, i+ k) = δk hold. The matrix

 P0 Q̃

Q̃H INlNF

 has Schur complement

P0− Q̃I−1
NF

Q̃H = P0−P1 ⪰ 0, and therefore this matrix is positive semi-definite. This concludes

the proof. □

137



Acknowledgement

The text of this chapter is in part and under some rearrangements a reprint of the material

as it appears in Yifan Wu, Michael B. Wakin, and Peter Gerstoft, ”Regularization-free Gridless

DOA Estimation for Multi-frequency Signals”, IEEE Transactions on Signal Processing, to be

submitted 2023. The dissertation author was the primary researcher and author of this chapter.

The co-authors listed in these publications directed and supervised the research.

Bibliography
[1] H. L. Van Trees, Optimum array processing: Part IV of detection, estimation, and modula-

tion theory (John Wiley & Sons, 2002).

[2] Y. Chen, L. Yan, C. Han, and M. Tao, “Millidegree-level direction-of-arrival estimation
and tracking for terahertz ultra-massive mimo systems,” IEEE Trans. Wirel. Comm. 21(2),
869–883 (2021).

[3] C. Vasanelli, F. Roos, A. Durr, J. Schlichenmaier, P. Hugler, B. Meinecke, M. Steiner, and
C. Waldschmidt, “Calibration and direction-of-arrival estimation of millimeter-wave radars:
A practical introduction,” IEEE Antennas and Propag. Mag. 62(6), 34–45 (2020).

[4] R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans.
Antennas Propagat. 34(3), 276–280 (1986).

[5] R. Roy and T. Kailath, “Esprit-estimation of signal parameters via rotational invariance
techniques,” IEEE Trans. Acoust., Speech, and Signal Process. 37(7), 984–995 (1989).

[6] M. Wax, T. Shan, and T. Kailath, “Spatio-temporal spectral analysis by eigenstructure
methods,” IEEE Trans. Acoust., Speech, Signal Process. 32(4), 817–827 (1984).

[7] N. Antonello, E. De Sena, M. Moonen, P. A. Naylor, and T. van Waterschoot, “Joint
acoustic localization and dereverberation through plane wave decomposition and sparse
regularization,” IEEE/ACM Trans. Audio, Speech, Lang. Process. 27(12), 1893–1905
(2019).

[8] S. Nannuru, K. L. Gemba, P. Gerstoft, W. S. Hodgkiss, and C. F. Mecklenbräuker, “Sparse
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation, wideband source localization is studied from both data-driven and

model-based perspectives.

For the data-driven part, a novel deep learning based sound source localization method

is proposed. The method is based on multi-task learning and image translation network. The

network is designed according to the encoder-decoder structure to implement the multi-task

learning so that the network can jointly localize the sound sources and mitigate the multipath

artifacts from the reverberation. The blocks and layers are designed according to the image

translation network to enhance the generalization performance. Extensive experiments show that

the proposed network can outperform the baseline methods and can generalize to the unseen data

in the training phase.

For the model-based part, a gridless DOA estimation method is proposed under the

multi-frequency model which is used to model the wideband source. The multi-frequency DOA

estimation problem is formulated as an atomic norm minimization problem so that the method

is gridless and the grid mismatch error can be avoided. An SDP that is equivalent to atomic
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norm is derived to make the problem computationally feasible. The SDP is formulated both

in the primal and dual form and extensive analysis for both forms is given. The primal form

is regularization-free and it has the benefit of avoiding the regularization bias. The method is

studied under various setups, including the multiple measurement vector, non-uniform array,

and non-uniform frequency cases. In addition, it turns out that the proposed framework is able

to resolve more sources than the number of physical sensors under the uniform linear array

setup due the intrinsic structure of the multi-frequency model. Extensive theoretical analysis and

numerical experiments are given to demonstrate the effectiveness of the proposed method.

5.2 Future Work

5.2.1 Wideband Source Localization based on Deep Unrolling Network

Model-based and data-driven methods both have their advantages and disadvantages.

Recently, there is a new technique called deep unrolling network [1–7] aiming to incorporate

the data-driven module into the traditional model-based optimization framework to enhance

the generalization and interpretability of the method. The deep unrolling network is based on

an iterative algorithm and unrolls it to a number of layers that consist of learnable parameters.

Most hyperparameters in the original iterative algorithm become the learnable parameters in the

network. By feeding the network with training data, it can adjust these parameters properly to

perform the task better. Many works show that the deep unrolling network has a faster convergence

compared to the original iterative method, better interpretability than black box neural networks,

and satisfactory generalization performance in the data-limited case [1]. Due to these appealing

merits, there has been a surge of efforts to unroll iterative algorithms for many signal processing

problems including compressive sensing [2, 3, 7], deconvolution [4], graph signal processing [5],

and medical imaging [6]. Moreover, with the help of training data, the unrolling network can

potentially solve a more challenging task compared to the original iterative method. It will be
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interesting to apply the deep unrolling network to the wideband source localization problem and

it is likely to be both faster and more accurate than the existing data-driven and model-based

methods.

5.2.2 Sound Source Localization for Multiple Sources

In Chapter 2 of the dissertation, a deep learning based sound source localization is

developed under the single source assumption. It will be an interesting future direction to extend

the current framework to the multiple sources case. It will be a challenging problem to consider

the case when multiple sources are active simultaneously.

5.2.3 Multi-frequency DOA Estimation under the Non-integer Spacing or

Frequency Case

In Chapter 4 of the dissertation, the sensor index set and the frequency set are both

assumed to be an integer set so that the T operator and the irregular Vandermonde decomposition

are both valid. It will be interesting to study if this assumption can be relaxed so that the method

can be generalized to any real sensor index set and frequency set.
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