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Seismology and ocean acoustics are important remote sensing tools, enabling observation

of environments that are difficult to access and directly measure. Seismic and ocean acoustic

remote sensing are data-intensive tasks, and the proliferation of remote sensing systems has

led to the generation of vast amounts of data. Meanwhile, advances in machine learning (ML)

techniques and computational capacity have yielded state-of-the-art methodologies for processing

and analyzing large seismic and acoustic data sets. This dissertation presents two ML-based

paradigms for the characterization of environments using seismic and acoustic data.

First, unsupervised ML is demonstrated for automatically identifying dominant types

xx



of seismicity present data recorded from a 34-station broadband seismic array deployed on the

Ross Ice Shelf (RIS), Antarctica from 2014 to 2017. The data set contains signals generated by

glaciological processes that have been used to monitor the integrity and dynamics of ice shelves.

Deep clustering automatically groups these signals into classes without the need for manual

labeling, enabling comparison of potential source mechanisms with not only the spatial and

temporal distributions of the signals but also their characteristics. The method learns the salient

features of spectrograms and encodes them into a lower-dimensional latent representation using

an autoencoder, a type of deep neural network. Two clustering methods are applied to the latent

data and compared: a Gaussian mixture model (GMM) and deep-embedded clustering (DEC).

Dominant types of seismic signals are identified and compared with environmental data such as

temperature, wind speed, tides, and sea ice concentration. The highest seismicity occurred at the

RIS front during the 2016 El Niño summer, and diurnally near grounding zones throughout the

deployment.

The second paradigm presents Bayesian optimization (BO) as a method for efficiently

estimating geoacoustic parameters within a fixed computational budget. An objective function is

defined using the Bartlett processor, whose output measures the match between a received and

predicted pressure field on a vertical line array. BO is a sequential framework that iteratively fits

a Gaussian process surrogate model to the objective function and then uses a heuristic acquisition

function to select the next point to evaluate. After each evaluation, the GP surrogate model is

re-fit, and the optimization proceeds until the budget is expended. BO is demonstrated using

both simulations and real data collected during an ocean acoustics experiment. Results indicate

BO rapidly estimates the correct parameters and achieves better correlations between observed

and predicted data.
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Chapter 1

Introduction

Seismology and ocean acoustics have revealed insights and driven understanding of the

interior structures and processes of the earth [1, 2], ocean [3, 4, 5, 6], and cryosphere [7, 8].

Seismic and acoustic waves are inextricably shaped by the environments and media through

which they propagate. Signal processing, combined with physical theory and intuition made

possible by computational models, enables the recovery of information and properties about

the environments and media through which propagation occurs. Seismic and acoustic remote

sensing are therefore important tools for characterizing environments, particularly those that are

difficult to access and measure, such as polar regions, oceans, and seabeds.

Seismic and acoustic sensing are inherently data-intensive tasks. Arrays may contain

dozens or hundreds of channels, recording continuously for hours, months, or years at high

sampling rates. As these data sets grow larger and more prevalent, labor-intensive, manual

analyses performed with conventional signal processing techniques are becoming inadequate

for timely and comprehensive analyses of data sets. Furthermore, an increasing demand for

autonomous systems to venture into challenging and dynamic environments, such as navigating

and communicating beneath sea ice, has led to a need for automated environmental character-

ization methods. Meanwhile, advances in computing capabilities and machine learning (ML)

algorithms have enabled more efficient, data-driven approaches for studying natural processes

and phenomena [9, 10, 11, 12, 13, 14, 15].
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The objective of this dissertation is to present two ML-based environmental characteriza-

tion paradigms using seismic and underwater acoustic data:

1. Unsupervised ML for pattern discovery relies on clustering of data to assess the frequency

of occurrence of certain types of signals. This dissertation specifically explores the

association of certain kinds of seismicity with potential environmental source mechanisms

[16], but clustering has numerous other applications, such as identifying and classifying

unlabeled biological sounds [17]. The technique presented here involves deep clustering,

which reduces the dimensionality of the input data with a neural network to improve

clustering algorithm performance [18, 19, 20, 21, 17]. This paradigm is best suited for

the exploration of large data sets, where the priority is to identify dominant or anomalous

patterns within the data for further investigation.

2. Geoacoustic inversion seeks to estimate the environmental parameters that explain ob-

served acoustic data. Whereas geoacoustic inversion is generally a computationally

expensive endeavor requiring thousands of simulations to estimate parameters [22, 6],

Bayesian optimization [23, 24, 25, 26] is a global optimization framework that attempts to

find the optimal parameters as efficiently as possible. To demonstrate the viability and char-

acteristics of Bayesian optimization, two acoustic source localization parameterizations

are demonstrated [27, 28] before a more challenging, higher-dimensional optimization is

demonstrated for both source localization and geoacoustic inversion.

1.1 Basic concepts

1.1.1 Clustering

Unsupervised machine learning involves algorithms and models that learn patterns and

structures from data without explicit supervision or labeled target outputs [14, 15]. Specifically,

clustering algorithms seek to discover similar examples within the data [14, 15] and are useful for

data mining and exploratory data analysis. While there is a diverse set of paradigms for clustering
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algorithms [15, ch. 21], Chapter 2 makes use of algorithms that utilize the distances between

data examples to determine similarity and groupings. Consider a data set D = {xxxn : n = 1 : N},

where xxxn is the nth vector representation of a D-dimensional data sample xxx = [x1, . . . ,xD]
T ∈ RD

and superscript T denotes the transpose operator. The Euclidean distance between any two points

in D is given by:

d(xxx1,xxx2) = ∥xxx2− xxx1∥2. (1.1)

One of the most widely used clustering methods is the k-means algorithm [29, 30, 31],

which partitions the data D into K sets S = {Sk : k = 1 : K}, each described by a prototypical

example of the data assigned to the cluster. The following derivation closely follows that of [14,

sec. 9.1]. The prototype µµµk ∈ RD is taken as the mean of all data assigned to the cluster; in a

geometric sense, it is the center, or centroid, of the cluster:

µµµk =
1
|Sk| ∑

xxx∈Sk

xxx. (1.2)

The goal of k-means clustering is to optimize the assignment of data to clusters and to find the

set of centroids {µµµk} that minimize the sum of the squares of the distances of each data point to

its closest centroid µµµk. This is accomplished through the minimization of a cost function called

the distortion:

J =
N

∑
n=1

K

∑
k=1

rnk∥xxxn−µµµk∥2, (1.3)

where rnk ∈ {0,1} is a binary variable indicating whether a data point xxxn is assigned to cluster k

according to:

rnk =


1 if k = argmin j ∥xxxn−µµµ j∥2

0 otherwise.
(1.4)

Minimization of Eq. (1.3) proceeds using alternating minimization with the goal of finding

minimizing values for {rnk} and {µµµk}. First, initial values for µµµk are chosen from a random dis-

tribution and fixed, and Eq. (1.3) is minimized with respect to rnk. This first step is accomplished
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by assigning data points xxxn to the nearest centroid. Next, rnk is fixed and Eq. (1.3) minimized by

setting the derivative of J with respect to µµµk to zero:

2
N

∑
n=1

rnk(xxxn−µµµk) = 0, (1.5)

whose solution is:

µµµk =
∑

N
n=1 rnkxxxn

∑
N
n=1 rnk

. (1.6)

Alternating minimization is repeated until a maximum number of iterations is reached, or until

changes in cluster assignments cease.

Though the k-means clustering algorithm is guaranteed to converge, it may do so at a

local optimum as Eq. (1.3) is non-convex [14, 15]. Various approaches have been proposed that

mitigate the risk of local convergence, including random restarts and picking centroids that cover

the data space more thoroughly [14, 32]. Further limitations of k-means relate to assumptions

about the cluster model, which favors well-separated clusters with spherical shapes and balanced

populations. Real data rarely have these qualities, in which case k-means may be ill-suited for

clustering.

A more robust algorithm that accounts for overlapping and anisotropic distributions of

clusters is Gaussian mixture model (GMM) clustering [14, p. 430]. GMM clustering seeks to fit

K linearly superimposed multivariate Gaussian distributions to the data using an expectation-

maximization (EM) algorithm. Each Gaussian model has its own centroid µµµk and covariance

ΣΣΣk:

p(xxx) =
K

∑
k=1

πkN (xxx | µµµk,ΣΣΣk), (1.7)

where πk are mixing coefficients that satisfy 0≤ πk ≤ 1 and ∑
K
k=1 πk = 1. Similar to alternating

minimization, the EM algorithm iteratively updates the Gaussian mixtures by estimating the

likelihood that a sample belongs to each of the clusters and then updating centroid locations.

Of note, k-means is a special case of GMM clustering, under the assumptions that ΣΣΣk = I and
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Figure 1.1. Two-dimensional data with three distinct clusters with (top) anisotropic covariances
and (bottom) isotropic covariances with differing length scales. (left) True, (middle) k-means,
and (right) Gaussian mixture model label assignments.

πk = 1/K [15, p. 728].

Figure 1.1 illustrates k-means and GMM clustering for two data sets in an example

adopted from [33]. Each data set contains two dimensions and three clusters. In the top row,

data with anisotropic covariance are shown. Due to the anisotropic covariance, k-means fails

to properly assign labels to the data. The GMM is a better cluster model for this data, as the

covariance of the clusters is one of the estimated parameters. In the bottom row of Fig. 1.1, data

with isotropic but differing covariance length scales are shown. Here, too, k-means is unable to

correctly label the smallest cluster, whereas GMM succeeds in estimating each of the clusters.

The most important and often most challenging parameter to choose for k-means and

GMM clustering is the number of clusters K. The consequences of picking the wrong value for

K are illustrated in Fig. 1.2, where data with three distinct groupings are forced into two clusters

with k-means. Statistical approaches to selecting the optimal value for K include the gap statistic

[34], silhouette coefficient [35], and Bayesian information criteria [15, p. 724]. While these
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Figure 1.2. Two-dimensional data in three distinct clusters with (left) true label assignments and
(right) k-means label assignments with an incorrect number of clusters chosen.

techniques can be useful tools for evaluating potential values for K, Chapter 2 [16] demonstrates

how careful empirical analysis of clustering results is equally important to selecting the optimal

value for K.

1.1.2 Dimensionality reduction with autoencoders

Seismic and acoustic data represented as time series, spectrograms, scalograms, or energy

envelopes can contain thousands of features (e.g., discrete samples in a time series, or bins in

a spectrogram). Directly clustering these high-dimensional data is vulnerable to the “curse of

dimensionality” [36, 14, 15, 37], i.e., as the dimensionality of the input data increases, the number

of data points required to maintain sufficient sampling density increases exponentially. A further

consideration is that clustering error metrics can give less meaningful results as dimensionality

increases, making clustering in high dimensions challenging and unreliable [38, 39]. Figure 1.3

is adapted from [15, sec. 16.1.2] and illustrates the relationship between dimensionality and

distance for a hypercube. As dimensionality increases, to reach an equivalent volume of the

hypercube, greater distances are required. As a result, most data appear to reside near the edge

of the hypercube, making distinctions in distance between points more challenging.
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Figure 1.3. Hypercube edge lengths required to cover the fraction of the unit hypercube volume
for various dimensions D.

In Chapter 2 [16], a supervised machine learning model known as an autoencoder reduces

the dimensionality of seismic spectrograms by learning and embedding the salient information

contained within the data into a latent feature space. The autoencoder model is a type of neural

network and consists of three components: an encoder, a bottleneck, and a decoder [40, 15, 41].

The encoder fθ provides a nonlinear mapping of data from a data space X to the bottleneck,

where the latent space is contained, by fθ : X → Z; θ are autoencoder parameters that are learned

through training. The decoder reverses the encoder operation by attempting to reconstruct X

from Z by gθ : Z→ X ′, where X ′ is the reconstructed version of X . The error between X and X ′

is then used to update the parameters θ , and the process repeats until the autoencoder is trained.

The overall mapping of the autoencoder is summarized as:

Fθ : X → Z→ X ′, Fθ = gθ ◦ fθ . (1.8)

For this dissertation, the nonlinear mappings of Eq. (1.8) are implemented as a deep neural

network consisting of convolutional layers in the encoder and convolutional transpose layers in
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Figure 1.4. Convolutional autoencoder architecture; dimensions of each layer are shown in
brackets.

the decoder. An example of a convolutional autoencoder architecture is given in Fig. 1.4.

Once trained, the embeddings contained within the bottleneck Z represent the salient

features of the data set. Clustering algorithms are then applied to the lower-dimensional latent

space Z, where they perform more effectively than if they were applied to the original data

space X .

1.1.3 Gaussian processes

Gaussian process (GP) regression, also known as kriging, is a computationally tractable

method for quantifying uncertainty and has been extensively utilized in geophysical applications

[42] and recently for sound field reconstruction and prediction [43, 44, 45, 46]. The following

derivations follow [47] and [15, ch. 17]. Given a distribution over functions which have the

form f : X → R, where X D is a D-dimensional parameter domain, a Gaussian process (GP) is

8



defined as a collection of jointly Gaussian function values f evaluated at a set of M > 0 inputs

[x1, . . . ,xM] with mean µµµ and covariance ΣΣΣi j:

f = [ f (x1), . . . , f (xM)] = GP(µµµ,ΣΣΣi j) (1.9)

µµµ = E[f] = [µ(x1), . . . ,µ(xM)] (1.10)

ΣΣΣi j = K (xi,x j) = σ
2I. (1.11)

By definition, the GP holds for unseen data, such as when M includes N training points and

N∗ unseen test points, i.e., M = N +N∗. Thus, fitting a GP is a type of regression; moreover,

a fitted GP model provides both expected values and uncertainty quantification at unseen test

points [15, sec. 17.2], [47, ch. 2]. For simplicity and illustration, consider a set of noise-free

observations D = {(xn,yn) : 1 : N}= {X, fX}, where yn = f (xn). A GP either returns f (x) with

no uncertainty if the point is within D or interpolates data not contained in D . Expected values

and uncertainty at a test set X∗ = {xn : n = 1 : N∗} of unseen points are obtained from the joint

distribution of the GP:

p(f, f∗|X,X∗) =

fX

f∗

= N


µµµX

µµµ∗

 ,
KX ,X KX ,∗

KT
X ,∗ K∗,∗


 , (1.12)

where µµµX and µµµ∗ are the mean functions at X and X∗; and

KX ,X = K (X,X)N×N (1.13)

KX ,∗ = K (X,X∗)N×N∗ (1.14)

K∗,∗ = K (X∗,X∗)N∗×N∗ , (1.15)
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uncertainty (blue shaded) and the true underlying function (red dotted line) are also shown. (left)
A zero-mean, unity-variance prior; (middle) function samples from a GP fit with two function
evaluations (black dots) and (right) five function evaluations.

where K is a kernel function that measures the similarity between two points. The posterior of

the GP is:

p(f∗|D ,X∗) = N (f∗|µµµ∗|X ,ΣΣΣ∗|X) (1.16)

µµµ∗|X = µµµ∗+KT
X ,∗K̂

−1
X ,X(y−µµµX) (1.17)

ΣΣΣ∗|X = K∗,∗−KT
X ,∗K̂

−1
X ,X KX ,∗. (1.18)

Figure 1.5 illustrates several functions sampled from p( f ) using a radial basis function

(RBF) kernel and zero mean. The true underlying function is shown in red. As the true function

is evaluated and observations are added to D , the set of possible functions drawn from the

GP posterior, p( f |D), are increasingly constrained. Points that have been evaluated have no

uncertainty, whereas regions farthest from observed data have the greatest uncertainty. This is

illustrated in Fig. 1.6, which shows slices of the GP at three different points in X .

Equations (1.13)-(1.15) refer to a kernel function K that measures the similarity between

two points in X . The selection of a kernel function is an important choice when using GPs,

10



−4 −2 0 2 4
x

−2

−1

0

1

2

y

−2 −1 0 1 2
f

0.00

0.05

0.10

0.15

p(
f

)

x = −3.0 x = −1.4 x = 4.0

Mean function µ(x) Uncertainty ±2σ(x) Data PDF

Figure 1.6. (top) A Gaussian process fit with an RBF kernel; (bottom) Slices of the GP mean
and covariance functions at three points.

0 2 4
r

−1.0

−0.5

0.0

0.5

1.0

k
(r

)

RBF (l = 1) RBF (l = 10) Matern (ν = 5/2, l = 1) Cosine (p = 3)

−5.0 −2.5 0.0 2.5 5.0
x

−2

−1

0

1

2

y

Figure 1.7. (top) Kernel functions and (bottom) associated functions drawn from p( f ).

11



as it controls the shape of the mean and covariance functions. Moreover, kernel functions

contain hyperparameters θθθ that must be optimized to properly reflect the observed data and

provide suitable predictions in unobserved regions of X . Figure 1.7 illustrates four kernel

function implementations and associated functions drawn from p( f ). Using the one-dimensional

illustrations as an example and defining the distance between two points in X as r = ∥x−x′∥,

the depicted kernel functions are [15, sec. 17.1]:

1. Radial basis function (RBF) kernel:

K (r; l,σ2
y ) = σ

2
y exp

(−r2

2l2

)
, (1.19)

where σ2
y is the observational noise variance and l is the length scale.

2. Matern kernel:

K (r;ν , l,σ2
y ) = σ

2
y

21−ν

Γ(ν)

(√
2νr
l

)ν

Jν

(√
2νr
l

)
, (1.20)

where ν is a roughness parameter and J is the modified Bessel function.

3. Cosine kernel:

K (r; p,σ2
y ) = σ

2
y exp

(
2π

r
p

)
, (1.21)

where p is the period.

Kernel hyperparameters like length scale l control how rapidly functions vary with changes in r.

For example, in Fig. 1.7, RBF kernels with l = 1 and l = 10 are shown; functions drawn from the

former vary more rapidly than those from the latter. Observational noise variance, i.e., allowing

for noise in function evaluations such that yn = f (xn)+ ε , ε ∼N (0,σ2
y ), determines how much

uncertainty is present, including at points that belong to D . The choice of kernel function can

also be considered a hyperparameter [47, ch. 5]: the Matern kernel permits functions with both

slowly and rapidly varying features, and the cosine kernel results in periodic functions.
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eters; GP regressions resulting from (middle) optimal and (right) suboptimal hyperparameter
estimates.

Estimation of the kernel function hyperparameters is the critical step in GP regression.

Gradient-based methods offer fast estimation by adopting an empirical Bayesian approach, which

maximizes the marginal likelihood of the observations [47, ch. 5], [15, sec. 17.2.6]:

p(y|X,θθθ) =
∫

p(y|f,X)p(f|X,θθθ)df. (1.22)

In this dissertation, two gradient-based optimization methods are implemented. Chapters 4 and 5

use L-BFGS-B, a quasi-Newtonian algorithm which emulates gradient descent with momentum

[48, 49], and Chapter 6 uses AdamW, an algorithm related to stochastic gradient descent [50, 51].

Figure 1.8 is adopted from [15, Fig. 17.9] and illustrates hyperparameter estimation using

gradient descent optimization on the negative marginal log-likelihood surface for an RBF kernel

with θθθ = [l,σn]. Two local minima are present, and depending on the initialization of the gradient

descent algorithm, the optimization can result in an optimal fit (middle panel) or suboptimal

(right panel).
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1.1.4 Bayesian optimization

Bayesian optimization (BO) is a global optimization strategy that seeks to maximize an

expensive-to-evaluate function about which little or nothing may be known [23, 24, 25, 26]. The

objective is to find the D-dimensional parameters x̂ ∈X D that maximize f : X → R:

x̂ = argmax
x∈X D

f (x). (1.23)

BO consists of the following steps:

1. Generate a data set of observations D = {(xn,yn) : n = 1 : N} by evaluating y = f (x) with

N points drawn from X .

2. Fit a GP surrogate model to the observed data D (Sec. 1.1.3).

3. Optimize an acquisition function to suggest and evaluate a new point x; append the

observation to D .

4. Repeat steps 2 and 3 until a fixed budget of function evaluations has been expended.

To minimize the number of evaluations of f required to satisfy Eq. 1.23, a heuristic

function called an acquisition function probabilistically guides the search by taking the GP

surrogate model as its input and returning a candidate point x that will be evaluated upon the

next iteration of BO. The candidate point is determined through optimization of the acquisition

function, which is typically defined to balance exploration of the parameter space (sampling

in regions with high uncertainty) with exploitation (sampling in regions of good performance)

[23, 24]. Consider, for example, the upper confidence bound acquisition function [24, 52]:

αUCB( f (x)) = µ(x)+κσ(x), (1.24)

where µ and σ are the mean and covariance functions of the GP surrogate model, respectively, and

κ is a hyperparameter that controls the contributions of each term. Regions of high performance
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(large values of the objective function f ) compete against regions of high uncertainty; in this

way, the algorithm is attempting to prioritize between exploiting regions of high performance

and exploring regions with few observations and high uncertainty. The degree to which UCB

favors exploitation vs. exploration is controlled by κ . The study and development of acquisition

functions, as well as their behavior and convergence proofs, remain active areas of research.

Due to its ability to incorporate observations of the objective function f in its decision-

making about where to sample next, BO can efficiently find regions of optimal performance,

providing an advantage over exhaustive and random search. However, like all optimization

algorithms, BO is susceptible to converging on local optima, though various techniques have been

implemented to make BO more robust in the optimization of multi-modal objective functions.

1.2 Dissertation overview

Chapter 2 [16] investigates the application of deep clustering for exploratory data analysis

of continuous seismic data collected on the Ross Ice Shelf, Antarctica from 2014-2016 [53]. The

large, two-dimensional array spanning the ice shelf consisted of 34 seismic stations recording at

high sampling rates (100 and 200 Hz). A detection algorithm [54] detected more than 530,000

seismic events, whose spectrograms were reduced to a low-dimensional latent space using a

convolutional autoencoder. Next, clustering was performed on the data in the latent space

using GMM clustering [40, 15] and DEC [18]. GMM yielded satisfactory results with high

computational efficiency, while DEC was computationally expensive to implement and difficult

to interpret due to distortions in the latent space. Clustering results for the two years of data

were analyzed and diurnal, seasonal, and interannual patterns were identified and correlated with

potential source mechanisms such as ocean wave impacts at the shelf terminus, tidal activity near

grounding lines, and high melting rates due to El Niño.

Chapter 3 [55] investigates acoustic data collected during an oceanographic training

cruise conducted in sea ice north of Svalbard, Norway in June 2021. Acoustic data collected
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during the cruise revealed a high amount of biological activity, including various fish and

marine mammals. A hydrophone at an ice station recorded the detonation of expired explosives,

providing an opportunity to measure the depth of the ocean using the impulsive signal. Multiple

arrivals and the modal structure of the sound are visible in the spectrogram of the recording.

Chapter 4 [27] investigates acoustic source localization using Bayesian optimization with

Gaussian processes [26]. Under this construct, the objective is to estimate source location in range

and depth as accurately and with as few objective function evaluations as possible. Using the

matched field processing (MFP) localization framework [4], the objective function is the Bartlett

power ambiguity surface, which is modeled as a GP surrogate model [47]. Bayesian optimization

is performed with two different acquisition functions—expected improvement (EI) [24] and

quasi-Monte Carlo EI [42, 56, 57, 58]—which are evaluated and compared against conventional

grid search, quasi-random search [59], and sparse Bayesian learning (SBL) [60, 61, 62, 63].

Chapter 5 [28] extends the method demonstrated in Chapter 4 by adding receiver array

tilt to the parameter search space. Vertical line arrays (VLA) often tilt due to currents, which

leads to model mismatch in MFP. Various studies have confirmed that array tilt is a sensitive

parameter in acoustic source localization and geoacoustic inversion [64, 65, 62, 63, 66, 67, 11,

68]. By allowing BO to jointly estimate source localization and array tilt, better correlations

between predicted and observed data are obtained, leading to more accurate estimates of source

localization and array tilt.

Chapter 6 demonstrates Bayesian optimization in a higher-dimensional setting, jointly

estimating source localization and geoacoustic parameters. Similar performance characteristics

observed in chapters 4 and 5 are observed for geoacoustic inversion, with the quality of parameter

estimates consistent with forward model sensitivity.
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[39] M. Steinbach, L. Ertöz, and V. Kumar, “The Challenges of Clustering High Dimensional
Data,” in New Directions in Statistical Physics: Econophysics, Bioinformatics, and Pattern
Recognition (L. T. Wille, ed.), pp. 273–309, Berlin, Heidelberg: Springer Berlin Heidelberg,
2004.

[40] G. E. Hinton, “Reducing the Dimensionality of Data with Neural Networks,” Science,
vol. 313, pp. 504–507, July 2006.

[41] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA: MIT Press,
2016.

19



[42] D. Ginsbourger, R. Le Riche, and L. Carraro, “Kriging Is Well-Suited to Parallelize
Optimization,” in Computational Intelligence in Expensive Optimization Problems, vol. 2,
pp. 131–162, Berlin, Heidelberg: Springer, 2010.

[43] D. Caviedes-Nozal, N. A. B. Riis, F. M. Heuchel, J. Brunskog, P. Gerstoft, and E. Fernandez-
Grande, “Gaussian processes for sound field reconstruction,” J. Acoust. Soc. Am., vol. 149,
pp. 1107–1119, Feb. 2021.

[44] Z.-H. Michalopoulou, P. Gerstoft, and D. Caviedes-Nozal, “Matched field source localiza-
tion with Gaussian processes,” JASA Express Lett., vol. 1, p. 064801, June 2021.

[45] Z.-H. Michalopoulou and P. Gerstoft, “Inversion in an uncertain ocean using Gaussian
processes,” J. Acoust. Soc. Am., vol. 153, pp. 1600–1611, Mar. 2023.

[46] I. D. Khurjekar, P. Gerstoft, C. F. Mecklenbräuker, and Z.-H. Michalopoulou, “Direction-of-
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Chapter 2

Unsupervised Deep Clustering of Seis-
mic Data: Monitoring the Ross Ice Shelf,
Antarctica

Advances in machine learning (ML) techniques and computational capacity have yielded

state-of-the-art methodologies for processing, sorting, and analyzing large seismic data sets.

In this work, we consider an application of ML for automatically identifying dominant types

of impulsive seismicity contained in observations from a 34-station broadband seismic array

deployed on the Ross Ice Shelf (RIS), Antarctica from 2014 to 2017. The RIS seismic data

contain signals and noise generated by many glaciological processes that are useful for monitoring

the integrity and dynamics of ice shelves. Deep clustering was employed to efficiently investigate

these signals. Deep clustering automatically groups signals into hypothetical classes without

the need for manual labeling, allowing for comparison of their signal characteristics and spatial

and temporal distribution with potential source mechanisms. The method uses spectrograms as

input and encodes their salient features into a lower-dimensional latent representation using an

autoencoder, a type of deep neural network. For comparison, two clustering methods are applied

to the latent data: a Gaussian mixture model (GMM) and deep embedded clustering (DEC).

Eight classes of dominant seismic signals were identified and compared with environmental data

such as temperature, wind speed, tides, and sea ice concentration. The greatest seismicity levels

occurred at the RIS front during the 2016 El Niño summer, and near grounding zones near the
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front throughout the deployment. We demonstrate the spatial and temporal association of certain

classes of seismicity with seasonal changes at the RIS front, and with tidally driven seismicity at

Roosevelt Island.

2.1 Introduction

Ice sheets and ice shelves in West Antarctica are experiencing rapid change. Between

2003 and 2019, the West Antarctic Ice Sheet (WAIS) experienced a net ice loss of 169 billion

tons per year, contributing 7.5 mm to sea level rise [6]. Warming oceans are enhancing basal

melting of ice shelves that reduces the buttressing of grounded ice sheets [7, 8, 9, 10], leading

to increased discharge of ice into the ocean and raising sea level [11, 12, 13, 14]. With West

Antarctica alone containing a sea level rise potential of 5.6 m [6], monitoring the loss of ice

shelves plays a critical role in anticipating future sea level rise and associated societal impacts

on coastlines and the environment. Increased seismic activity, such as icequakes resulting from

fracturing, can give indications of changes in iceberg calving rates and the integrity of ice

shelves and are observable using glacial seismology methods [15]. However, the prevalence of

extensive, continuously recording seismic observing systems has led to an abundance of data

which is becoming increasingly difficult to analyze using conventional signal processing. At the

same time, advances in computing capabilities and machine learning algorithms have enabled

more efficient, data-driven approaches to study natural processes and phenomena. To analyze

large seismic data sets more efficiently, we adapt contemporary machine learning techniques to

augment existing signal processing and data analysis techniques.

Seismology is a data-intensive field with well-developed signal processing and analytical

methods. The recent introduction of machine learning techniques has led to the development of

complementary tools that give seismologists novel approaches to traditional analyses, such as

earthquake detection and early warning, phase picking, ground-motion prediction, tomography,

and geodesy [16, 17, 18, 19]. In this study we present an implementation of clustering, a form
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of unsupervised machine learning used to discover classes of similar signals within a data set

[20, 21, 22], and which is commonly used as an exploratory tool for large, unlabeled data sets.

To test the applicability of clustering groups of similar signals for monitoring ice shelves,

we focus specifically on the Ross Ice Shelf (RIS), Antarctica, where a 34-station passive seismic

array was deployed from November 2014 to January 2017 to observe the response of the RIS

to ocean gravity wave impacts and investigate the structural dynamics of the ice shelf [1]. The

array, shown in Figure 2.1, continuously recorded long- and short-period seismic signals that

exhibited seasonal and spatial variations related to the shelf’s coupling to the ocean, atmosphere,

and crust [23]. Signals and ambient noise of interest on the RIS include tidally-driven stick-slip

seismicity at Whillans Ice Stream [24, 25, 26]; basal micro-earthquakes and tremor [27]; tidally

and thermally driven rift fractures [28]; diurnal seismicity associated with subsurface melting

[29]; wind-generated resonance in the ice [30]; flexural and plate waves generated by ocean

swell, infragravity waves, and tsunami [31, 32, 33]; regional and teleseismic earthquakes [34];

and icequakes generated by ocean gravity waves [35]. Ambient seismic noise, which can be

used to estimate the RIS structure [36], also contains spectra from ocean gravity waves, whose

dispersion can be used to identify their source distance and origin [1, 37].

The seismic data recorded on the RIS are diverse and encompass numerous source

mechanisms with a wide range of spatiotemporal variability. In this study, we apply two

unsupervised clustering methodologies to the RIS array seismic data to identify classes of seismic

events with similar temporal and spectral characteristics. The occurrences and distributions of

these signal classes provide information on glaciological processes affecting ice shelf evolution.

2.2 Background

Grouping seismic signals with similar characteristics (clustering) allows investigation of

spatiotemporal variability associated with glaciological processes that result from environmental

forcing.
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Figure 2.1. The passive broadband seismic array deployed from November 2014 to January
2017 consisted of 34 seismic stations and was deployed as part of the Ross Ice Shelf Dynamic
Response to Wave-Induced Vibrations Project [1]. RIS surface elevation, ice and water layer
thicknesses, and grounding and coast lines were obtained from Bedmachine [2, 3].
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2.2.1 Clustering

There are numerous methods to cluster data [38], many of which have been adapted

for use in seismology and geophysics [16]. A related approach based on sparse modeling,

called dictionary learning, has been applied to regularizing seismic inverse problems [17, 18].

Hierarchical clustering has been used by [39] to automatically discriminate between shallow

and deep earthquakes, and by [40] to more precisely localize earthquakes. Graphical clustering

has been used to localize sources in a dense seismic array by [41], and by [42] to cluster

seismic events in time. Distance-based clustering, like the popular k-means algorithm [43, 44],

has been used by [45] to cluster seismicity based on features extracted from seismic data.

[46] used k-means to define probabilistic earthquake locations as part of their convolutional

neural network (CNN) detection and localization technique. [47] used Gaussian mixture model

(GMM) clustering, which assumes clusters in the data exist that can be represented as linearly

superimposed Gaussian distributions, enabling identification of seismic facies. [48] detected and

clustered seismic signals and background noise with the use of a deep scattering neural network

and GMM.

Not all clustering methods involve machine learning. Template matching, in which a

matched filter is constructed from a template waveform, is used to scan through continuous

recordings to locate similar signals [49, 50, 51]. [52] and [53] presented computationally

efficient techniques in which locality-sensitive hashing is used to map seismic signals into a hash

table, allowing similar signals to be identified by table entry. [54] developed an approach that

uses correlation-based similarity search to automatically detect and cluster repeating volcanic

seismicity in continuous data. [55] adopted the method of [54] to cluster RIS array data at

stations RS09, RS10, and RS11 in order to characterize tidal forcing of seismicity at these

stations.
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2.2.2 Dimensionality

Data are considered high-dimensional when many features are required to represent or

describe the data. Seismic data represented as time series, spectrograms, scalograms, or energy

envelopes can contain thousands of features (e.g., discrete samples in a time series, or bins in a

spectrogram). Clustering performed directly on such input data is vulnerable to the “curse of

dimensionality” [56, 20, 57, 38], i.e., as the dimensionality of the input data increases, the number

of data points required to maintain sufficient sampling density increases exponentially. A further

consideration is that clustering error metrics can give less meaningful results as dimensionality

increases.

As high-dimensional data are difficult to cluster [58, 59], dimensionality reduction

remains a major focus of development [60]. It is often desirable to transform the input data to a

lower-dimensional representation described by fewer, more salient features. A popular approach

is to use principal component analysis (PCA), which projects higher dimensional data into lower

dimensional space [61] and was used by [62] to compress seismic data to maximize feature

variance.

The approach to reducing dimensionality in this study employs an autoencoder, a model

whose output aims to reproduce its input via a series of non-linear transformations employing

a deep neural network (DNN) [63, 57, 60]. These non-linear transformations provide greater

capacity in dimension reduction, and can better model data with low-dimensional representations

than, for example, PCA. The autoencoder first encodes input data such as an image—in our case,

a spectrogram—into a latent feature vector. Next, the autoencoder decodes the latent features

and reconstructs the original image. Since the autoencoder provides a non-linear transformation

of the data, it must be trained using gradient descent. In this iterative training, the error between

the input and output is minimized. In doing so, the salient features of the data are learned by the

network weights. With the dimensionality of the input data reduced in the latent feature space,

clustering algorithms can be applied to the data’s latent feature space.
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2.2.3 Deep Embedded Clustering

In deep clustering, a DNN such as an autoencoder is used to reduce the dimensionality

of the data. A recent deep clustering method that has shown improvement over traditional

clustering techniques was developed by [64], whose deep embedded clustering (DEC) consists

of two processes: (1) An autoencoder is trained to represent the data’s salient features; and (2)

the encoding layers and clustering layer are jointly optimized. [60] extended the approach in

DEC by jointly optimizing the clustering step with training the entire autoencoder, not just the

encoder layers. Additional variations of DEC have been proposed: [64] used a stacked denoising

autoencoder [65] in their original implementation, but [66] employed autoencoders composed of

CNN layers and other architectures. More recently, [67] developed an approach in which joint

clustering is performed with a mixture of autoencoders, each representing a cluster, and [68]

demonstrated improved performance using a clustering algorithm that is jointly optimized with

the embeddings of the autoencoder.

[69] used DEC to predict whether seismic detections were local or teleseismic, and [70]

demonstrated the ability of DEC to cluster anthropogenically generated seismic noise. In a

similar signal processing and clustering workflow to ours, [71] compared DEC and GMM on

spectrograms of acoustic data collected on a coral reef, but in their case found GMM performed

better than DEC.

In this study, we implement GMM clustering in the latent feature space and compare its

performance with DEC. Using RIS seismic data from December 2014 to November 2016, we

identify several different classes of signals, and further demonstrate the utility of deep clustering

as an exploratory tool for large, real-world seismic data sets by associating the clustering results

with observed environmental factors.
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2.3 Ross Ice Shelf (RIS) Seismic Array and Data

Each station in the RIS seismic array consisted of 3-component Nanometrics Trillium

120 PHQ seismometers emplaced 1 m below the surface of the ice, powered by solar panels

during the austral summers, and lithium-ion batteries during the austral winters. Two subarrays

comprised the array. The larger subarray consisted of 18 stations spaced approximately 80

km apart (prefix RS), primarily oriented parallel to the RIS front. The RS stations sampled

short-period orthogonal components of ground velocity at a sampling rate of 100 Hz, except

for two stations that sampled at 200 Hz. The smaller subarray consisted of 16 stations (prefix

DR) arranged approximately orthogonal to the ice shelf front along the international date line,

sampling ground velocity with a sampling rate of 200 Hz. For this study, we were primarily

interested in the detection and classification of icequakes and local/regional earthquakes, using

only vertical component observations with frequencies of interest occurring between 3 and

20 Hz. This passband was selected to preserve impulsive signals, eliminate high-energy noise

prevalent at low frequencies, and exclude resonances generated by wind at frequencies above 20

Hz. Representative types of signals detected are shown in Figure 2.2.

Seismic data from each station were processed in 24-hour segments as follows: 1) Data

were linearly de-trended and tapered with a Hann window. 2) Instrument responses for all

stations were removed, giving acceleration in m/s2. 3) Since the bandwidth of interest was from

3 to 20 Hz, data were decimated to 50 Hz, using low-pass filtering followed-by downsampling.

4) A band-pass filter with cutoff frequencies at 3 and 20 Hz was applied to remove long-period

signals originating from tides, tsunamis, infragravity waves, ocean swell, and teleseisms. 5) A

short-term average/long-term average (STA/LTA) detection algorithm [72] was used to detect

impulsive signals, particularly icequakes and local earthquakes, employing an STA window of

0.5 s, LTA window of 30 s, trigger threshold of 15, and de-trigger threshold of 10. The detector

was applied to data from each station from 3 December 2014 to 21 November 2016 for a total of

719 days of array data, yielding 531,407 detections.
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Figure 2.2. Seismic signals detected on the Ross Ice Shelf exhibited diverse characteristics with
variation in time, space, and source mechanism. Shown are examples of acceleration response
seismograms and their respective normalized spectrograms spanning the 3-20 Hz band that were
typical for the data set. The normalized spectrograms were used as input to the deep clustering
analysis.
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Upon detection, a 4 s trace centered on the spectral peak of each triggered event was

saved for processing. Centering the trace at the spectral peak yielded more unique clusters by

preventing the clustering algorithm from labeling similar signals as different classes based only

on their relation to the trigger time. For each seismic trace saved, a spectrogram was computed

using the short-time Fourier transform with a 0.4 s Kaiser window, NFFT=256, and 90% overlap.

Spectrograms (samples) contained one channel of amplitude information, 87 frequency bins,

and 100 time bins for a total of 8,700 features per spectrogram. To improve DNN learning,

sample-wise normalization was performed by dividing each spectrogram by its vector norm [73].

2.4 Deep Clustering Implementation

The objective of deep clustering models is to first encode the input data—in this case,

spectrograms of seismic signals—into a layer containing latent (lower-dimensional) features,

called the embedded layer, and to then apply a clustering algorithm in this latent feature space.

In the implementation that follows, the 8,700 features of an input spectrogram are reduced to a

latent feature space of just 9 embedded features with the use of a convolutional autoencoder, a

type of DNN composed of convolutional and transposed convolutional layers. We then describe

the GMM and DEC clustering algorithms that are used in the clustering analysis.

2.4.1 Dimensionality Reduction with a Convolutional Autoencoder

Autoencoders provide a useful means of data approximation using a lower-dimensional

representation via a sequence of non-linear transformations. The autoencoder model consists of

three components: an encoder, a bottleneck, and a decoder [57]. First, the encoder maps input

data from a data space X into a latent feature space Z, which is contained within the bottleneck

of the model. Next, the decoder attempts to reconstruct X from Z. This process is performed

iteratively with the objective of minimizing the error between X and the decoder output, X ′. In

minimizing the error, the autoencoder learns the salient features of X and accurately encodes

them in Z, thus reducing the dimensionality of the clustering task.

31



P
Q

Z

[11
52

]

[8,
 44

, 5
0]

[16
, 2

2, 
25

]

[32
, 1

1, 
13

]

[64
, 6

, 7
]

[9]

Co
nv

Co
nv

Co
nv

Co
nv

D
en
seX

[1, 87, 100]

X′
[1, 87, 100]

[11
52

]

[64
, 5

, 7
]

[32
, 1

1, 
13

]

[16
, 2

3, 
25

]

[8,
 47

, 5
1]

Re
sh
ap
e

Co
nv
T

Co
nv
T

Co
nv
T

Co
nv
T

D
en
se

Encoder

Decoder

Co
nv [12

8, 
3, 

3]

Fl
at
te
n

Bottleneck
Co
nv
T[12

8, 
3, 

3]

Clustering Layer

DEC:

GMM:

Labels = argmax(Q)

Labels = argmax(!)

Figure 2.3. The deep clustering framework in this study uses a convolutional autoencoder that
encodes the data space X into the latent feature space Z, and a decoder that recovers the original
input X from Z. The mean squared error (MSE) between the input X and the reconstruction
X ′ is used as the autoencoder loss function. The latent feature space Z lies at the bottleneck
between the encoder and decoder, providing the input to the clustering layer. Gaussian mixture
model (GMM) clustering labels each data sample according to its most likely cluster membership
using an expectation-maximization algorithm. Deep embedded clustering (DEC) provides label
assignments, and also outputs a clustering loss function that is combined with the MSE to further
train the parameters that map X → Z→ X ′.
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Consider a data set of spectrograms D = {xxxn ∈ XM}N
n=1, where xxxn is a vector representa-

tion of the nth spectrogram in a data set containing N spectrograms, and the number of features

in xxxn, M, is the spectrogram size (the product of the number of frequency bins and time bins). In

the encoder stage, the mapping of X to Z is described by fθ : X → Z, where θ are parameters

that are learned through iterative model training. The decoder stage is a mirror operation of the

encoder and seeks to map the latent feature space Z to the reconstruction X ′ by gθ : Z→ X ′. The

overall mapping of the autoencoder can be described as Fθ : X → Z→ X ′, where Fθ = gθ ◦ fθ .

Input spectrograms xxxn map to their corresponding latent feature vectors by zzzn = fθ (xxxn) ∈ ZD,

where D is the number of embedded features, and to their reconstructions by xxx′′′n = Fθ (xxxn) ∈ X ′.

As the autoencoder is composed of convolutional and transposed convolutional layers,

Fθ is a nonlinear mapping that must be appropriately parameterized. This is accomplished

by iteratively learning the parameters θ in order to minimize the error between the input and

reconstructed data. The mean squared error (MSE) between an input spectrogram with M

features and its reconstruction, defined as

ℓ(xxx,xxx′′′) =
1
M

M

∑
m=1

(xm− x′m)
2, (2.1)

is averaged over the N samples in the data set to obtain the autoencoder loss function:

LAEC =
1
N

N

∑
n=1

ℓ(xxxn,xxx′′′n). (2.2)

Performing this calculation over the entire data set at once is computationally expensive, memory

intensive, and can lead to poor convergence. Instead, the loss is calculated in mini-batch subsets

of the data space. For each mini-batch loss, stochastic gradient descent [61] is used to update

the weights. When all mini-batches have been processed, the next training epoch begins and

the process is repeated. After each epoch, a subset of the data separate from the training data is

used to validate the model’s performance without updating the weights, yielding a validation
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Table 2.1. Convolutional Autoencoder Architecture

Layer
Name Type Input

Shape Filters Activation Output
Shape

Trainable
Parameters

Input - - - - [1, 87, 100] -
Conv1 Convolution [1, 87, 100] 8 ReLU [8, 44, 50] 80
Conv2 Convolution [8, 44, 50] 16 ReLU [16, 22, 25] 1,168
Conv3 Convolution [16, 22, 25] 32 ReLU [32, 11, 13] 4,640
Conv4 Convolution [32, 11, 13] 64 ReLU [64, 6, 7] 18,496
Conv5 Convolution [64, 6, 7] 128 ReLU [128, 3, 3] 73,856

Flat Flatten [128, 3, 3] - - [1152] 0
Encoded Fully Connected [1152] - ReLU [9] 10,377

FC Fully Connected [9] - ReLU [1152] 11,520
Reshape Reshape [1,152] - - [128, 3, 3] 0
ConvT1 Transposed Conv [128, 3, 3] 64 ReLU [64, 5, 7] 73,792
ConvT2 Transposed Conv [64, 5, 7] 32 ReLU [32, 11, 13] 18,464
ConvT3 Transposed Conv [32, 11, 13] 16 ReLU [16, 23, 25] 4,624
ConvT4 Transposed Conv [16, 23, 25] 8 ReLU [8, 47, 51] 1,160
Decoded Transposed Conv [8, 47, 51] 1 Linear [1, 95, 101] 73
Output Crop [1, 95, 101] - - [1, 87, 100] -

Total 218,250

Table 2.2. Sample Sizes and Hyperparameters used to Train the Autoencoder and Deep Embed-
ded Clustering Model

Samples Hyperparameters

Total
(N)

Training
(Ntrain)

Validation
(Nval)

Initial
learning rate

Mini-batch
size

Classes
(K)

Clustering loss
factor (λ )

Updates
per epoch

531,407 40,000 10,000 10−3 64 8 10−4 10

MSE. Training is performed until a specified maximum number of epochs is reached, or stopped

early if the validation MSE fails to decrease below its minimum value after ten epochs. The early

stopping criterion prevents the autoencoder from overfitting the training data.

The design choice of autoencoder architecture can be informed by prior knowledge of

a data set and its features, as well as practical considerations such as computational resources

available. Our DNN architecture, detailed in Table 2.1, is designed to be computationally

efficient, simple to construct, and robust enough to learn salient features from a noisy seismic

data set. In total, θ contains 218,250 trainable parameters under this DNN architecture.

Autoencoder training is implemented using 50,000 spectrograms randomly selected
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Figure 2.4. (a) Training and validation losses during autoencoder training. To avoid over-fitting
the model, training is stopped when the early stopping criterion is met (in this case, at 48 epochs).
(b) In the upper plot, loss curves are shown for deep embedded clustering (DEC). In the lower
plot, the percentage of samples which undergo class reassignment at each update interval is
shown; training is stopped once the change is less than 0.4%
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without replacement from the 531,407 detections. Of the selected spectrograms, 80% are

used for training and 20% for validation. The trainable parameters are optimized using the

Adaptive Moment Estimation (Adam) algorithm [74]. In training, there are two principal

hyperparameters to address. First is the initial learning rate, which controls the initial step size

used by Adam to step down the gradient of the loss. The second hyperparameter is the mini-batch

size, which sets the number of spectrograms to be passed through the model at one time. The

optimal configuration is found through a grid search of the hyperparameters. A summary of

the optimal hyperparameters and the number of spectrograms used are listed in Table 2.2. As

seen in Figure 2.4a, training and validation losses fall off exponentially with each training

epoch until the early stopping criterion is met; in this case, at 48 epochs. The effectiveness

of the autoencoder’s ability to reconstruct the input spectrogram is illustrated in Figure 2.5.

Though some loss of resolution in time and frequency is expected due to the convolutional and

transposed convolutional layers, the structure of the spectrogram is largely preserved, with the

salient information of the input encoded to the latent feature space. To test that the autoencoder

adequately generalized the entire data set, all spectrograms were fed through the model, yielding

an average MSE of 5.9381× 10−6, which is consistent with the validation MSE at the early

stopping point.

2.4.2 Clustering Methodologies

In our deep clustering framework, clustering is performed in the latent feature space, Z,

to find K distinct classes of signals within the data. We assume that the data form clusters which

are separable in Z space, and that these clusters coalesce around unique locations {µµµk ∈ Z}K
k=1,

i.e., centroids around which other similar signals may be found. We use Euclidean distance

between a centroid and a latent feature vector to measure similarity:

dn,k = ∥zzzn−µµµk∥2. (2.3)
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Figure 2.5. A trained autoencoder takes an input spectrogram xxx, encodes it to a 9-dimensional
latent feature vector zzz, then reconstructs the input as xxx′. The autoencoder preserves features
correlated within a given cluster and discards the remaining signal, which can help with signal
identification.

dn,k is a measure of the similarity between features indexed by n and k.

Gaussian Mixture Model (GMM)

In GMM clustering, the latent feature vectors zzz are described by a mixture of K Gaussian

distributions that are linearly superimposed in the latent space Z, where each Gaussian model

has its own centroid µµµk and covariance ΣΣΣk. We follow the methods of [20, p. 430] and [57,

p. 339]. The overall distribution of the mixture model is given by the convex combination of

their distributions,

p(zzz) =
K

∑
k=1

πkN (zzz | µµµk,ΣΣΣk). (2.4)

Consider the latent feature vectors zzzn as rows of a matrix Z ∈ RN×D with N samples and D

features. To estimate the parameters of each Gaussian distribution, an expectation-maximization

(EM) algorithm is used to maximize the Gaussian mixture model’s likelihood function of Z with

respect to the parameters µµµk, ΣΣΣk, and πk [20, p. 433]:

ln p(Z | {µµµ1, ...,µµµK},{ΣΣΣ1, ...,ΣΣΣK},{π1, ...,πK}) =
N

∑
n=1

ln
[ K

∑
k=1

πkN (zzzn | µµµk,ΣΣΣk)

]
. (2.5)
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For every sample zzzn, a binary K-dimensional random variable ξk ∈ {0,1} is introduced

that has one element equal to one and all others to zero. The marginal distribution over ξξξ is

p(ξk = 1) = πk, where the mixing coefficients πk satisfy 0≤ πk ≤ 1 and ∑
K
k=1 πk = 1 in order to

be valid probabilities. Since ξξξ is a 1-of-K (categorical) representation, this distribution is written

as

p(ξξξ ) =
K

∏
k=1

π
ξk
k , (2.6)

and the conditional distribution of zzzn given ξξξ as

p(zzzn | ξξξ ) =
K

∏
k=1

N (zzzn | µµµk,ΣΣΣk)
ξk . (2.7)

Equation (2.4) is then rewritten in terms of the factored joint distribution

p(zzzn,ξξξ ) = p(ξξξ )p(zzzn | ξξξ ):

p(zzzn) =
K

∑
k=1

πkN (zzzn | µµµk,ΣΣΣk) = ∑
ξξξ

p(ξξξ )p(zzzn | ξξξ ). (2.8)

Using Bayes’ theorem and equations (2.4) and (2.8), the conditional probability of ξξξ given zzzn is:

γ(ξk)≡ p(ξk = 1 | zzzn) =
p(ξk = 1)p(zzzn | ξk = 1)

∑
K
j=1 p(ξ j = 1)p(zzzn | ξ j = 1)

=
πkN (zzzn | µµµk,ΣΣΣk)

∑
K
j=1 π jN (zzzn | µµµ j,ΣΣΣ j)

, (2.9)

where πk is the prior probability of ξk = 1, and γ(ξk) is the posterior probability having observed

zzzn. As with Z, we construct a matrix ΞΞΞ ∈ RN×K whose rows consist of the binary random

variables ξξξ n for each sample zzzn. Thus indexed, γ(ξnk) is defined as the responsibility that

distribution k has for explaining sample zzzn, and is analogous to soft clustering, where the

probability that sample zzzn belongs to distribution k is determined for each of the K distributions.

In practice, each latent feature vector zzzn is assigned to one of K Gaussian distributions by

argmax
ξ

[γ(ξnk)].

Using superscript t to denote the iteration index, the EM algorithm for a Gaussian mixture
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is:

1. Initialization of parameters µµµ
t−1
k , ΣΣΣ

t−1
k , and π

t−1
k .

2. Expectation step. This step encodes the samples’ probability of assignment to each Gaussian

distribution by evaluating responsibilities γ(ξnk) using µµµ
t−1
k , ΣΣΣ

t−1
k , and π

t−1
k (equation (2.9)).

3. Maximization step. Using the responsibilities γ(ξnk), this step updates the centroid location

(µµµ t
k), shape (ΣΣΣt

k), and normalization (πt
k) of each distribution in the latent space Z by:

µµµ
t
k =

1
Nk

N

∑
n=1

γ(ξnk)zzzn

ΣΣΣ
t
k =

1
Nk

N

∑
n=1

γ(ξnk)(zzzn−µµµ
t
k)(zzzn−µµµ

t
k)

T

π
t
k =

Nk

N

where

Nk =
N

∑
n=1

γ(ξnk).

(2.10)

4. Convergence check. The log likelihood of Z is evaluated with respect to the parameters µµµ t
k,

ΣΣΣ
t
k, and πt

k (equation 2.5). If convergence occurs in the log likelihood or in the parameters µµµ t
k, ΣΣΣ

t
k,

and πt
k, the EM algorithm has reached a local maximum and terminates; otherwise, the algorithm

returns to step 2.

To accelerate EM convergence, k-means clustering is used to initialize the GMM cluster-

ing algorithm [20, p. 438]. EM stops after 1,000 iterations have elapsed or when the change in

log likelihood from equation (2.5) is less than 0.001. To avoid converging on local maxima, the

initialization is run 100 times and the initialization with the best log likelihood is retained.

Deep Embedded Clustering (DEC)

In DEC, clustering is performed in conjunction with continued training of the autoencoder,

with the clustering layer attached to the bottleneck providing an additional loss function that is

backpropagated through the autoencoder layers (Figure 2.3). The DEC model DNN parameters
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are initialized using the parameters of the trained autoencoder, and clustering layer parameters

are initialized using the centroids from GMM clustering. DEC seeks to improve the GMM

clustering by using the Euclidean distance between embedded spectrograms and cluster centroids

(equation (2.3)) as an additional loss function for updating model parameters. Because the input

data is unlabeled, a self-supervised method is required. We implement the method developed

by [64], who, drawing from the t-distributed stochastic neighbor embedding (t-SNE) algorithm

[75], propose measuring the difference between a Student’s t-distribution kernel of the latent

feature vectors zzz and an auxiliary target distribution. A simplified Student’s t-distribution is used

to measure the similarity between embedded spectrograms zzzn and the cluster centroids µµµk:

qnk =
(1+ ∥ zzzn−µµµk ∥2)−1

∑k(1+ ∥ zzzn−µµµk ∥2)−1 . (2.11)

Equation (2.11) results in a set of soft class assignments, i.e., the probability that embedded

spectrogram n will be assigned to class k. Latent feature vectors zzzn are assigned to one of K

classes by argmax
q

[qnk]. The soft class assignments qnk are then used to compute the auxiliary

target distribution, p, whose form is designed to improve clustering performance, emphasize

embeddings with high-confidence assignments, and normalize each cluster centroid’s contribution

to the loss function so that large clusters minimally distort Z [64]:

pnk =
q2

nk/∑n qnk

∑k(q2
nk/∑n qnk)

. (2.12)

The dissimilarity between the distributions given by equations (2.11) and (2.12) is measured

using the Kullback-Leibler divergence [76]. From the divergence the clustering layer’s loss

function is obtained:

LC = DKL(P ∥ Q) = ∑
n

∑
k

pnk log
pnk

qnk
. (2.13)

In DEC, the clustering layer is attached to the trained autoencoder’s bottleneck. During

training of the DEC model, the loss functions from equations (2.2) and (2.13) are combined into
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a total loss function,

L = LAEC +λLC, (2.14)

where λ is a hyperparameter that balances the contributions of the two losses, since they are of

differing magnitudes. λ must be tuned: if it is too large, the clustering loss will cause model

instability and lead to distortion of the latent space, in which case the latent space will no longer

represent the salient features of the data. If λ is too small, the effect on clustering performance

will be minimal. We found that λ = 10−4 yielded optimal performance for model training and

clustering.

Two constituent processes occur simultaneously during DEC model training. First, the

full loss from equation (2.14) is backpropagated through the DEC model parameters, which

include the autoencoder as well as the cluster centroids. Second, to account for the cluster

centroids changing as training progresses, the distributions qnk and pnk are updated at intervals.

The update interval is a hyperparameter that must be tuned. Through hyperparameter tuning,

an update interval of 10 per training epoch was found to be optimal for clustering performance,

minimizing DEC loss, and training within a reasonable time frame. Training is stopped after

the number of samples changing assignments after every update interval reaches less than 0.4%

of the total number of training samples. The same mini-batch size and initial learning rate are

used to train both the autoencoder and DEC model (Table 2.2). Figure 2.4b shows how losses

decrease over time and the percent change in label assignments for every mini-batch training

iteration. Though the overall trends in the loss curves show exponential decay, periodic spikes

occur at every update interval, when qnk and pnk are recalculated, and are visible since the losses

are recorded after every mini-batch rather than every epoch.

2.4.3 Selecting Optimal Number of Clusters

Determining the optimal number of clusters, K, is a major challenge in unsupervised

machine learning. In this study we treat K as a hyperparameter, iterating the deep clustering
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workflow over a range of values for K and evaluating the results to choose the best value. Results

are evaluated both quantitatively and qualitatively. Quantitative evaluation is performed for

each class by examining cumulative distribution functions and probability density functions

as functions of distance to each class centroid, dn,k (equation (2.3)). Additionally, traditional

statistical methods for choosing the optimal number of clusters, such as the gap statistic [77]

and silhouette score [78], are consulted. The qualitative approach is to visually inspect the

similarity of the latent feature vectors zzzn to their respective class centroids µµµk, and to see if the

spectrograms and seismograms assigned to each class likewise exhibit similarity. In general, the

formation of two or more similar classes may indicate that too many classes were initialized,

and the data in those classes can be grouped into a single class in post-processing. Too much

variance among the spectrograms within a class may indicate the need for one or more additional

classes. We found that K = 8 was the optimal number of classes for the RIS data set.

2.5 Results

The following analysis of GMM and DEC performance focuses on how the clustering

algorithms affect the latent space Z and whether the methods yield meaningful results in the

data space X . Since the samples in the data set are unlabeled and there is no “ground truth”

against which to compare results, measurements of intra-class similarity among spectrograms

and latent feature vectors are examined. We conclude that neither GMM nor DEC provides

a clear advantage in clustering performance. Accordingly, we recommend implementation of

GMM for deep clustering of RIS seismic data. The statistical and mathematical underpinnings

of GMM are well understood, and the complexity of implementation and interpretation of DEC

is difficult to justify in the absence of compelling performance improvement. Furthermore, in

practice GMM clustering on a graphics processing unit takes approximately one minute to cluster

the entire data set, whereas one DEC hyperparameter tuning run can take several hours.

In the analyses that follow, results are presented for the entire data set of 531,407
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spectrograms, including the training and validation data subsets. We mitigate the risk of the DNN

in the DEC model overfitting on the training data [57, p. 23] by using less than 10% of the data

set for training and validation, and by drawing training samples randomly without replacement

to achieve a training subset representative of the entire data set.

2.5.1 Clustering Performance

Deep clustering performance is qualitatively checked by comparing centroids to their

respective assigned latent data samples. Results for GMM are shown in Figure 2.6. Each class

k is represented by the columns in Figure 2.6, with each centroid µµµk and its reconstruction

gθ (µµµk) plotted along the top row. Although the centroid is not a member of the data set,

because the centroid represents the salient features of its class, its reconstruction is expected

to resemble the spectrograms xxxn assigned to its class. Subsequent rows show the latent feature

vectors zzzn, spectrograms xxxn, and associated seismograms of the data samples assigned to the

respective classes. To inspect whether intra-class similarity holds with increasing distance from

the centroid, samples zzzn and xxxn are shown for n = {1,1000,5000,10000,15000,20000,25000}.

Near the centroid, latent feature vectors zzzn generally exhibit similar values to their class centroid

µµµk, indicating that GMM has successfully grouped similar latent data samples into the class,

and that the centroid is representative of the data in its class. The spectrograms in each class

are likewise similar to each other and to the centroid reconstruction gθ (µµµk), confirming that

the latent features embedded in the centroids are representative of the spectrograms in the class.

Finally, the similarity in the latent space and time-frequency domain extends to the time domain,

where seismograms in each class are similar to one another. As distance increases (i.e., with

increasing n), cases of dissimilarity begin to arise as samples overlap with adjacent clusters.

In addition to checking the efficacy of the clustering, visual examination of the results

in Figure 2.6 gives indication of whether or not an appropriate number of clusters was chosen.

For example, classes 4 and 8 exhibit similar characteristics in time and frequency, distinct from

each other primarily in peak amplitude characteristics. If such distinctions are not useful or if
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Figure 2.6. Gaussian mixture model (GMM) clustering results are shown, with samples zzzn and
xxxn the nth closest to their respective centroids. Within a given class k, the cluster centroids µµµk are
similar to the latent feature vectors zzzn, whose nine elements are shown above each spectrogram.
Though the centroids are not members of the data set, their reconstructions gθ (µµµk) exhibit similar
characteristics to the spectrograms xxxn assigned to each class. Seismograms plotted below each
spectrogram also exhibit similarity within each class. With increasing distance from the centroid
(i.e., as n increases), dissimilarity and potential cases of mis-assignment are visible in latent
feature vectors, spectrograms, and seismograms, e.g for k = 7, n = 15000.
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similarities are redundant, classes can be combined in post-processing. If too few clusters are

selected, classes may contain widely differing signals, indicating the need to increase the number

of clusters.

Clustering with DEC involves two steps: first, the GMM clustering algorithm initializes

the centroids, but the latent data are left unmodified. Second, during DEC, centroids are further

refined while the latent data are moved much closer to their respective centroids, with some data

reassigned to different classes altogether. To determine to what extent this occurs, t-SNE is used

to visualize the 9-dimensional latent space in two dimensions [75]. t-SNE can illuminate possible

clusters within data in an unsupervised manner by displaying data in geometrically separated

clusters. In Figure 2.7a, t-SNE results of the latent feature space clustered with GMM show

that the data are largely contiguous with few exceptions. Applying the labels assigned by GMM

clustering to the data points shows that, while there is some geometric separation between the

clusters, the embedding is characterized by overlapping and dispersed class members, indicating

poor separation in the latent space. Contrast this with Figure 2.7b, in which t-SNE results at

the conclusion of DEC show both geometric separation as well as nearly homogeneous class

assignments.

While t-SNE offers an intuitively visual way to look for clusters in data, results are

sometimes difficult to interpret and are impossible to reproduce exactly due to the inherent

randomness of the algorithm. Running t-SNE iteratively and with the same random seed can

mitigate these limitations, but examination of the effects of deep clustering on the densities of

the clusters provides a more concrete visualization. Of interest to the ability for the clustering

algorithms to identify clusters is the distance of each cluster to the others. In Figure 2.7c, the

probability density functions (PDF) of all clusters are shown as functions of distance to each

centroid. Before DEC, though GMM clustering usually results in the PDF of each class being

closest to its centroid, there is significant overlap with other clusters, and the clusters themselves

are not particularly dense. With DEC, the PDF of each class is closer to its centroid, denser, and

farther removed from the other clusters. Thus, DEC effectively separates each cluster from the
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Figure 2.7. (a) Visualization of the 9-dimensional latent data space is shown in two dimensions
using the t-distributed stochastic neighbor embedding (t-SNE) plot for Gaussian mixture model
(GMM) clustering. GMM exhibits limited separation within the data and overlapping classes.
(b) t-SNE plot for deep embedded clustering (DEC), whose clusters are well separated and
contain nearly homogeneous class members. (c) The effects of DEC in the latent feature space
are evident for each class probability density function (PDF) with respect to the distance from
the centroids. In addition to moving the assigned class members closer to the centroid, DEC
increases the distance between the other class centroids and PDFs.
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others, allowing for better distinction between clusters in the latent space.

The effects of DEC become readily apparent when the latent feature vectors are stacked

and sorted according to their distance from each centroid, as shown in Figure 2.8. By sorting

the latent space by sample index n such that dn+1,k > dn,k, cluster separation can be visualized

directly in the latent space. Before DEC, centroids are initialized with the GMM clustering

algorithm without modification to the latent data. Closest to each class centroid, the latent feature

vectors are similar in appearance to the centroid, but transition continuously to different patterns

as the sorted index n increases. The contrast with the latent feature space after DEC is stark:

because DEC moves latent data assigned to a particular class closer to the centroid, the effect is

that the latent feature vectors take on similar values, and therefore appearance, to the centroid.

The result is that the latent space appears more sharply segmented after DEC, with the samples

closest to the centroid of nearly uniform appearance to the centroid itself. For reference, the

relative location of the other class centroids are marked with white vertical lines. With GMM, the

latent feature vectors belonging to the other classes are not readily apparent, whereas after DEC,

most of the other centroid locations are associated with their distinctive latent feature vectors.

While DEC effectively transforms the latent feature space Z by moving latent feature

vectors closer to their centroids, less clear is whether this transformation causes a corresponding

improvement in clustering quality in the data space X . To evaluate intra-class similarity among

spectrograms, four pairwise metrics are used to compare the clustering assignments obtained

from GMM and DEC.

The first metric used is the silhouette coefficient, which uses the mean intra-cluster and

nearest-cluster distances to express whether a sample belongs in its assigned cluster or if it is

more similar to another cluster [78]. The silhouette coefficient exists on the interval [−1,1], with

positive values indicating a sample has likely been correctly assigned, values near 0 indicating

overlapping clusters, and negative values indicating a sample may have been placed in the wrong

cluster. Coefficients are calculated for every sample, and the silhouette score is defined as the

mean of all the coefficients. A summary of class and total silhouette scores is given in Table 2.3.
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Figure 2.8. For each class k, latent data samples zzzn are shown stacked according to their distance
∥zzzn−µµµk∥ from the centroid µµµk (shown to the left). Distance of the other cluster centroids
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In Figure 2.9, silhouette analyses are shown stacked by cluster assignment for the latent feature

data in Z for GMM (Figure 2.9a) and DEC (Figure 2.9b), and for the spectrograms in the data

space X for GMM (Figure 2.9c) and DEC (Figure 2.9d). In Figure 2.9a, classes 1-3 and 5 are

decently clustered, classes 4, 6, and 7 are likely in a region of overlap, and class 8 is not well

clustered; the silhouette score for this data is 0.08. In contrast, every class in Figure 2.9b is well

clustered with a silhouette score of 0.90, results which are consistent with those presented in

Figures 2.7 and 2.8. To determine whether these analyses correspond to meaningful results in

the data space, we examine the correlation between the silhouette analyses of the latent space Z

and data space X . The silhouette analysis for GMM in the data space is shown in Figure 2.9c

with a silhouette score of 0.05. These results are consistent with the GMM latent space results

in Figure 2.9a and indicate a proper mapping from the data space into the latent space with the

autoencoder. The silhouette analysis for DEC in the data space is shown in Figure 2.9d with a

silhouette score of 0.13, which is inconsistent with its corresponding latent space analysis in

Figure 2.9b. Comparison between Figures 2.9c and Figures 2.9d might lead us to conclude that

DEC provides superior clustering performance, and this may be true. However, the inconsistency

observed for DEC between the latent space and the data space require that additional metrics be

examined.

For the remaining metrics, spectrograms xxxn are vectorized and divided by their vector

norm, resulting in unit vectors projected onto an n-sphere. The second metric is obtained by

taking the inner product between two such unit vectors, which provides a measure of the angle

between them and thus a proxy for similarity. The third metric is MSE, but to mitigate its tendency

to exaggerate the effects of outliers by squaring the error, the mean absolute error (MAE) is used

as a fourth metric. For each of these metrics, an intra-class mean vector is calculated against

which all other vectors in the class are measured. The class and total mean values for each metric

for GMM and DEC are given in Table 2.3, with better scores in bold. While Figures 2.7, 2.8,

and 2.9b,d may lead us to favor DEC performance, the data space metrics in Table 2.3 offer a

more nuanced understanding. On average, DEC slightly outperforms GMM in the mean inner
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Table 2.3. Comparison of Clustering Metrics for Gaussian Mixture Model (GMM) Clustering
and Deep Embedded Clustering (DEC)

Class N Data Space Latent Space

Mean Inner
Product

Mean MSE
(×10−5)

Mean MAE
(×10−3)

Silhouette
Score

Silhouette
Score

1 66817 / 85789 0.82 / 0.80 0.26 / 0.28 0.20 / 0.23 0.19 / 0.20 0.11 / 0.89
2 27568 / 45607 0.88 / 0.81 0.44 / 0.55 0.36 / 0.44 0.31 / 0.20 0.39 / 0.93
3 59131 / 63725 0.86 / 0.87 0.64 / 0.74 0.53 / 0.61 0.27 / 0.26 0.30 / 0.90
4 95323 / 68521 0.61 / 0.73 1.21 / 1.13 0.90 / 0.90 -0.08 / 0.11 0.00 / 0.92
5 57318 / 64235 0.91 / 0.85 1.33 / 1.35 1.01 / 1.05 0.41 / 0.30 0.41 / 0.93
6 63326 / 59925 0.49 / 0.64 2.06 / 1.87 1.48 / 1.43 -0.10 / -0.03 -0.08 / 0.85
7 61430 / 55699 0.48 / 0.57 2.81 / 2.49 1.88 / 1.82 -0.09 / -0.08 -0.08 / 0.89
8 98494 / 87906 0.67 / 0.76 3.29 / 2.84 2.16 / 2.10 -0.14 / -0.01 -0.08 / 0.87

Overall Mean: 0.71* / 0.75* 1.50* / 1.41* 1.06* / 1.07* 0.05 / 0.13 0.08 / 0.90
All table values read as GMM / DEC. *Weighted mean.
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Figure 2.9. Silhouette analyses for (a,c) Gaussian mixture model (GMM) clustering and (b,d)
deep embedded clustering (DEC) for the (a, b) latent feature space Z and (c,d) data space X .
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product, MSE, and silhouette score. Importantly, however, the inconsistencies among the metrics

within each class preclude a definitive decision regarding which clustering method is better. Of

particular concern is the disparity in latent space and data space results for DEC. The latent

space transformation in DEC is substantial and does lead to sharp, distinct clusters in the latent

space. However, it appears these results do not map into the data space so readily. We assess that

this disparity arises when the DEC model is training: as the model parameters are updated, the

latent space is continually manipulated to conform to the class centroids, effectively distorting

the latent space. Even through hyperparameter tuning, we were unable to obtain results that

provided a compelling reason to justify the complexity of DEC, especially within the context of

initial data exploration, in which GMM is more efficient. Consequently, results shown in the

subsequent sections are from the GMM deep clustering workflow.

2.5.2 Deep Clustering Methodology Considerations

One of the key strengths of the deep clustering implementation in this study is the employ-

ment of an autoencoder to reduce the dimensionality of the input data to obtain more effective

clustering performance. By reducing the dimensionality of the data space, the complexity of the

clustering problem is similarly decreased and the distance metrics gain relevance. The ability of

the autoencoder to quickly learn the salient features of the data and embed them into the latent

space makes the technique adaptable to new data sets. While the autoencoder design choice for

this study was sufficiently robust, autoencoder design presents opportunities for further exper-

imentation and improvement. Design variables that could be altered in the DNN architecture

include the number and types of layers, dimensions of the latent feature space, activation function

types, incorporation of max-pooling and drop-out layers, and filter size, depth, and stride.

The selection of an appropriate algorithm for the clustering layer largely depends on the

type and properties of the data set. Though in this study we use GMM and DEC, as described

in Section 2, there are numerous clustering algorithms of which some may be applicable to a

deep clustering workflow. Regardless of the choice of clustering algorithm, careful consideration
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must be given towards understanding whether clustering in the latent space maps to meaningful

results in the data space.

The flexibility afforded by deep clustering extends not only to model design, but also

to data pre- and post-processing. Whereas model design is largely concerned with how the

salient features are learned, data pre-processing is concerned with what is supplied to the

model. This information is dependent on the choice of signal processing parameters, particularly

signal duration, filter cutoff frequencies, and seismic event detection algorithm. Additionally,

various data transforms commonly used to characterize seismic waveforms can be used as input

to deep clustering workflows [39]. In our case, we used spectrograms, but other transforms,

such as continuous wavelet transform scalograms, could just as easily be used as inputs. In

post-processing, redundant or similar results can be combined.

2.6 Discussion: Glaciological Implications

The spatial and temporal distribution of signals from the eight classes identified gives

information on the response of the RIS to various climatological forcings, including from oceano-

graphic and atmospheric variability. Importantly, two years of continuous seismic monitoring

allows identification of seasonal and interannual patterns of variability, particularly allowing

examination of the effects of the strong 2016 El Niño on RIS seismicity by comparisons with

2015 levels.

The two-year RIS array data set contains 531,407 seismic detections. A summary of the

data set statistics and class characteristics (Table 2.4) shows the total number of detections for

each class, as well as the percentage of detections occurring in the austral summers (January,

February, and March) versus the austral winters (June, July and August). Classes 2, 4, 5, 6, and

8 have pronounced differences (more than 10%) between the number of detections occurring in

the summers versus the winters, while differences for classes 1, 3, and 7 are less pronounced

(between 5% and 10%). Interannual comparisons for each season show that classes 5, 6, and 7
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Table 2.4. Austral Summer (January-February-March) and Winter (June-July-August) Detection
Statistics, Average Peak Frequencies, and Amplitude Characteristics for Each Signal Class over
the Entire Seismic Array

Class Detections Freq (Hz) Amplitude (accel., nm/s2)

N %N Summer (JFM)
Total | 2015 | 2016

%N Winter (JJA)
Total | 2015 | 2016

Mean
peak Mean Median Std.

dev. Max.

1 66,817 27 | 13 | 13 22 | 11 | 11 7.3 46 37 45 3,242
2 27,568 1 | 0 | 1 27 | 0 | 27 16.7 60 27 95 2,222
3 59,131 30 | 16 | 14 21 | 11 | 10 5.9 61 37 130 12,825
4 95,323 37 | 17 | 20 23 | 10 | 13 5.4 112 32 488 41,924
5 57,318 13 | 0 | 12 29 | 1 | 28 16.6 124 42 368 33,623
6 63,326 39 | 16 | 23 19 | 8 | 11 8.1 155 34 6,533 1,632,100
7 61,430 24 | 6 | 18 19 | 3 | 16 13.7 169 30 3,277 461,205
8 98,494 46 | 22 | 24 16 | 7 | 9 6.3 210 46 1,388 268,633

experienced an increase in activity in the 2016 austral summer over the 2015 austral summer,

with classes 5 and 7 exhibiting the largest changes.

The seasonal changes are investigated in more detail in Figure 2.10a, where detection

occurrences shown as a function of station and month exhibit spatiotemporal patterns that reveal

associations between environmental forcing and seismicity. Clustering enables these patterns to

be further explored by class and month (Figure 2.10b), and by class and station (Figure 2.10c).

From Figure 2.10a, certain patterns are readily apparent, such as increased seismic

detections during the austral summer months at stations DR01, DR02, and DR03. These three

stations were located approximately 2 km from the ice front (Figure 2.1) and detected seismicity

associated with ocean gravity waves impacting the shelf front that cause fracturing (icequakes)

and calving [35]. Seismicity at these stations during the 2016 austral summer was higher than

the same period in 2015, and across the array, a substantial increase in seismicity was observed

in the months immediately following the 2016 austral summer, indicative of the impact of El

Niño on Antarctic ice shelf fronts [79].

Some of the most seismically active stations were located near grounding zones: station

RS09 (118,105 detections) on the eastern flank of Roosevelt Island; station RS11 (81,138

detections) on the Shirase Coast; station RS17 (50,385 detections) on Steershead Ice Rise; and
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Figure 2.10. (a) The frequency of detections comprising the Ross Ice Shelf data set is shown
by station and month. Clustering provides a further breakdown by (b) class and month for all
stations, and (c) class and station.

station RS08 (25,500 detections) on the western flank of Roosevelt Island. These stations were

on either fully or partially grounded ice, suggesting that the seismicity results from interactions

of basal ice with the solid earth. Increases in seismicity during the 2016 winter at floating stations

RS10 (between Roosevelt Island and the Shirase Coast) and RS15 (over a bathymetric high) may

result from El Niño related changes in water layer thickness that affect flexural gravity wave

amplitudes [32]. The RIS front stations DR01 (64,311 detections), DR02 (39,822 detections),

and DR03 (39,176 detections) were also active. All of these active stations exhibited persistent

seismicity throughout the two deployment years, with the exception of station RS17, which was

offline for several weeks from August to September 2016.

Some classes of signal detections exhibit temporal patterns that are visible in Figure 2.10b.

Classes 2 and 5 have increased detection frequencies in the austral winter of 2015 when local

storms are more intense, suggesting meteorological forcing. The remaining classes have increased

detections in the austral summers. The clustering results reveal that the large increase in seismicity
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in classes 2 and 5 occurs following the 2016 austral summer. A further dimension to the analysis

is shown in Figure 2.10c, which shows the distribution of classes by station. Classes 1, 4, 5, and

8 are prominent signal types at stations near grounding zones (RS08, RS09, RS11, and RS17),

and classes 1, 4, 6, 7, and 8 are prominent at the RIS front (DR01, DR02, DR03).

An important caveat for the detection statistics shown in Table 2.4 and Figure 2.10 arises

from the physics governing seismic propagation. For a given amplitude, low frequency seismic

energy propagates farther than high frequency seismic energy. We thus expect the seismometers

in the RIS array to detect low-frequency signals originating farther away than high-frequency

signals. For example, from Figure 2.6, class 1 is similar to class 3, with the notable difference

in that class 1 contains more energy at frequencies slightly higher than class 3 and has lower

amplitude. Thus, class 3 may be generated by a similar source mechanism as class 1 but have a

longer propagation path.

Factoring in signal amplitude also affects the range at which seismic energy is detected.

From Table 2.4, class 2 has an average spectral peak at 16.7 Hz, the highest of the classes, with a

total of 27,568 detections, the lowest of the classes. Similarly, class 5 has the second-highest

average spectral peak at 16.6 Hz, with the second lowest amount of detections among the classes.

These two classes are nevertheless distinct from each other in amplitude and waveform type:

from Table 2.4, class 2 has a mean amplitude of 46 nm/s2, while class 5 has a mean amplitude of

124 nm/s2. From Figure 2.6, class 2 consists of high frequency signals experiencing dispersion,

while class 5 signals are more impulsive; both likely result from fracturing.

Detection statistics are affected by signal-to-noise ratios at the seismometers and by

limitations of the automated seismic event detector, such as the inability to separate signals

from different classes that are received nearly simultaneously. Consideration should also be

given to determining if classes are duplicates of the same seismic source mechanism. Seismic

surface waves in the ice undergo dispersion as they propagate, which DEC may interpret as

separate signal classes. This may be be the case with classes 2 and 5. The longer wave train

for class 5 signals is consistent with Rayleigh wave propagation of class 2 signals. Propagation
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modeling can be used to calculate expected dispersion relations to confirm if this is the case.

Such distinctions could be useful in identifying common propagation paths or providing source

range discrimination.

Though the sources of uncertainty in the detection statistics are nontrivial, with a proper

understanding of these limitations and when paired with environmental data, the clustering results

can nevertheless be used to analyze the association of potential seismic source mechanisms that

may be related to ice shelf dynamics. In the following sections, we provide vignettes using

stations DR02 and RS09 to demonstrate the utility of deep clustering in exploring data and

identifying potential causes of seismicity when examined in conjunction with environmental

data.

2.6.1 Seasonal seismicity at the RIS front

Approximately 2 km from the RIS front on Nascent Iceberg, station DR02 exhibits a

seasonal pattern of seismicity associated with changes in air temperature and sea ice concentration

in the Ross Sea. During the austral winter, sea ice coverage (Figure 2.11a) reaches nearly

100%, damping ocean swell. During the austral summer, sea ice concentration decreases to

approximately 25%, permitting ocean gravity waves to directly impact the ice shelf front and

cause iceberg calving. Additionally, warmer air temperatures (Figure 2.11b) may promote

calving with associated increased icequake activity [35].

Increased levels of seismicity at DR02 are observed for all classes except 2 and 5 at

DR02 (Figure 2.11d,f,g,i-k) during the austral summers. Classes 4, 6, and 8 are especially active

during the 2016 austral summer, when strong El Niño conditions led to anomalously persistent

high temperatures across West Antarctica [79] and ocean-ice shelf interactions were enhanced.

Patterns similar to the seismicity at DR02 were observed at stations DR01 and DR03, also located

near the RIS front, and can be seen in the total detections by station and month in Figure 2.10a.

Widespread surface melt on the RIS was observed between 10-21 January 2016 [79, 30], which

affects firn layer properties and seismicity through freeze/thaw cycles [29].
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Figure 2.11. Two years of (a) sea ice coverage on the Ross Sea, (b) temperature and (c) wind
speed observations at Gill automated weather station (approximately 223 km south of DR02,
Figure 2.1), and (d-k) icequake detection statistics for each signal class. Classes 4, 6, 7, and
8 exhibit increased seismicity during the austral summers. Sea ice concentration data were
obtained from NSIDC [4]; weather station data from AMRC, SSEC, UW–Madison.
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Although class 6 has elevated activity during the summers, it maintains activity through-

out the winter months, suggesting that gravity wave activity is not the dominant forcing. The

persistence of class 1 signals, which often consist of impulse trains, suggests they may be caused

by icequakes resulting from the motion of the ice shelf itself [80], as the ice flow velocity in the

vicinity of station DR02 is among the highest observed on the RIS. Class 5 (Figure 2.11h) is more

active during the coldest periods of the year (April-September), suggesting that these signals may

be associated with extremely cold temperatures or strong wind events. Cold-weather enhanced

seismicity occurs at a rift approximately 140 km south of the ice front [28]. Alternatively, from

Table 2.4, these classes are lower amplitude than those most active during the austral summer,

which suggests that these detections may be masked by higher amplitude signals associated

with the other classes. Across all classes, discrete instances of high seismicity occur that do not

correspond to environmental forcing. Such instances may indicate the occurrence of fracturing

ice (icequakes) or events associated with crevasse expansion.

2.6.2 Diurnal seismicity on Roosevelt Island

Station RS09 on the eastern flank of Roosevelt Island experienced the most detections

across the array, comprising 22% of detections in the full data set. In Figure 2.12, potential

environmental sources of seismicity are compared to the seismicity of each class. Temperature

and wind speed (Figure 2.12a,b) were recorded at a nearby automated weather station, Margaret,

122 km southwest of RS09. Tides (Figure 2.12c) were realized from the CATS2008 model

[5] at station RS10, which is on floating ice and approximates the tidal signal in the basin

between Roosevelt Island and the Shirase Coast. Seismicity for class 1 (Figure 2.12d) dominates

the detections at RS09 and is active throughout the year, comprising 52.8% of the detections.

Classes 3, 4, 6, and 8 (Figure 2.12f,g,i,k) are also active throughout the year. Classes 5 and 7

(Figure 2.12h,j) are comparatively sparse, with seismicity limited to what appear to be discrete

signals that could be associated with large fracture or crevasse events. No class 2 (Figure 2.12e)

signals were recorded at RS09, even though elevated class 5 seismicity occurred during the 2016
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Figure 2.12. Two years of (a) temperature and (b) wind speed observations at Margaret automated
weather station (MGT, approximately 122 km southwest of RS09, Figure 2.1), c) model-derived
tides calculated at station RS10, and (d-k) icequake detection statistics for each signal class.
Interannual timescale is shown at left with vertical red lines indicating the subset weekly time-
scale at right. The diurnal tidal signal correlates with seismicity for classes 1, 3, 4, 6, and 8.
Tidal model from [5]; weather station data from AMRC, SSEC, UW–Madison.

winter.

Of particular interest at station RS09 is evidence of seismicity associated with the diurnal

tide (Figure 2.12). On an interannual timescale, classes 4 and 8 exhibit a periodic modulation of

seismicity which tends to correlate with spring tides. Variability over fortnight tidal cycles is

shown between 15 March 2016 and 15 April 2016. This weekly timescale shows that classes 1

and 3 correlate with diurnal tides. Even some relatively non-active classes (4, 6, and 8) show

signs of diurnal seismicity. These results are consistent with a previous study that found more

than 95% of detections at RS09 were from tidally induced swarms of icequakes that occur

throughout the year [55]. The weekly timescale also reveals the sudden onset and termination of

winter seismicity in classes 5 and 7, suggesting association with discrete ice shelf events such as

crevasse expansion or major ice fracture. This onset is consistent with the substantial increase in

seismicity detected across the RIS array visible in Figure 2.10 beginning in March 2016.

Other stations located at grounding zones exhibit similar patterns of seismicity, though
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to a lesser extent than RS09. Station RS11, located east of RS09 on the Shirase Coast, exhibits

patterns of seismicity similar to RS09. These similarities indicate that ice shelf seismicity at

grounding zones is associated with similar ice shelf processes. RS08, on the western flank of

Roosevelt Island, and RS17, at Steershead Ice Rise, also exhibit diurnal seismicity, suggesting a

dynamic diurnal process common to the grounding zones. These patterns of seismicity indicate

that the interaction of the ice shelf with the solid earth at grounding zones is modulated by tides.

Among the four stations at grounding zones, classes 1, 4, and 8 are the most common signals,

with class 8 signals occurring most frequently at these stations. With a mean peak frequency

of 6.3 Hz and a mean amplitude of 210 nm/s2, class 8 signals are among the strongest detected

across the array.

2.7 Conclusions

Deep clustering of the Ross Ice Shelf (RIS) seismic array data set using a Gaussian

mixture model identified eight classes of impulsive signals, with linkage of at least two of the

classes to tidal variability near grounding zones. Additionally, compared to 2015, stations near

the RIS front showed increased icequake activity during the 2016 El Niño austral summer. A

sudden increase in seismicity was also observed across the array during the transition to the 2016

austral winter. The highest seismicity was observed at grounding zones, particularly along the

eastern flank of Roosevelt Island.

Deep clustering is an effective way to explore large seismic data sets, particularly in its

ability to identify dominant types of seismicity. The results provided by deep clustering, when

contextualized with non-seismic environmental data, can assist in the identification or correlation

of seismic source mechanisms, as demonstrated with the RIS environmental data. Additionally,

deep clustering can be readily tailored to investigate different aspects of the same or new data

sets. Combined with its effectiveness at clustering seismic detections, this flexibility suggests

that deep clustering can be incorporated into existing seismic workflows to speed up exploratory
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data analysis.

As seismic data sets grow ever larger, novel machine learning techniques will be necessary

to enable researchers to fully utilize this data. Deep clustering has the potential to become an

important tool for exploring these large data sets, and to complement other machine learning-

based tools as well as conventional signal processing approaches. The incorporation of such tools

will enable more thorough and timely geophysical data analysis, thus improving the response of

geophysical research to the needs of society in a rapidly changing earth.
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Chapter 3

Analysis of underwater acoustic data col-
lected under sea ice during the Useful Arc-
tic Knowledge 2021 cruise

Acoustical observations are presented from the Useful Arctic Knowledge (UAK) 2021

cruise, an early-career training program which took place in sea ice north of Fram Strait in June

2021 on board the Norwegian Coast Guard icebreaker KV Svalbard. Through oceanographic

sampling and three acoustics-related tasks, participants were introduced to practical applications

of underwater acoustics and observed the ocean environment and its role in acoustic propa-

gation. Propagation modeling from oceanographic sampling confirmed an upward-refracting

environment throughout the cruise. In the first task, a drifting acoustic receiver buoy with

a single hydrophone was deployed in an ice floe and left to passively record for eight days.

Various biological sounds were recorded, including bearded seals and cetaceans. In the second

task, acoustic localization using an active pinger system was used to recover an operational

oceanographic mooring from the seabed. The third task involved passive acoustic observations

beneath sea ice whenever KV Svalbard fastened herself to ice floes and measurements of the ice

were made. Through the UAK 2021 cruise, participants learned the utility and value of using

underwater acoustics for operations in the Arctic Ocean, particularly in location and retrieval of

equipment and in measuring and sensing the environment.
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3.1 Introduction

The Useful Arctic Knowledge (UAK) program is an international, interdisciplinary

program hosted by Norway’s Nansen Environmental and Remote Sensing Center (NERSC),

intended to build and maintain strong partnerships among students, early career scientists, and

experienced experts in selected Arctic topics.One of the defining features of the program is

an annual scientific cruise. In June 2021, participants from nine countries embarked on board

the Norwegian Coast Guard icebreaker KV Svalbard and conducted observations of sea ice,

acoustic measurements, conductivity-salinity-temperature (CTD) casts, mooring recovery in

sea ice, buoy deployments, remote sensing product analysis, and sea ice navigation. This paper

presents observations and discussion from tasks related to acoustic observation.

Acoustic and oceanographic observations were made over the course of eight days

utilizing CTD casts and passive and active acoustics. On 8 June, a drifting acoustic receiver buoy

with several instruments was deployed in an ice floe and left to passively record for eight days.

An acoustic localization of the buoy was demonstrated before the Svalbard continued on with

her cruise. At various points in the subsequent week, Svalbard fastened herself to ice floes where

measurements of the ice were made. At each of these ice stations, passive acoustic observations

were made. On 12 June, acoustic localization was used to successfully estimate the position of

an oceanographic mooring for recovery. On 16 June, the Svalbard located and recovered the

drifting acoustic receiver buoy.

The purpose of the acoustic tasks was to introduce participants to practical applications

of underwater acoustics, including equipment selection and preparation, mooring construction,

deck handling, and collection and handling of data. Furthermore, participants observed the ocean

environment and its role in underwater acoustic propagation. Finally, participants learned the

utility and value of using underwater acoustics for operations in the Arctic Ocean, particularly

in location and retrieval of equipment and in measuring the environment. In the sections that

follow, a description of the acoustic environment is provided, and each acoustic task is discussed
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in detail.

3.2 Environment

3.2.1 Environmental sampling

The Arctic Ocean is generally an upward refracting environment [1]. Unlike more

temperate latitudes where water at the surface is warmer than at depth, surface waters in the

Arctic are typically cooler and fresher, resulting in lower sound speeds, although intrusion of

warmer, more saline water does occur at inflows in the Fram Strait and Bering Strait [2, 3]. In

Fram Strait, a great deal of oceanographic variability occurs due to Atlantic Water transported

by the West Spitsbergen Current [2], which has been measured directly with oceanographic

measurements [4] and acoustically in various tomography experiments [5, 6]. In the Arctic, the

ambient noise field is related to transients generated by sea ice as well as biological activity and

anthropogenic sources such as seismic airgun surveys [7].

As part of an ongoing series of oceanographic measurements in Fram Strait and north of

Svalbard, eight CTD casts were performed at various points throughout the cruise. Figure 3.1a

shows sampling locations and results for each CTD cast. Casts 1 through 7 show typical sound

speed profiles (SSP) for the Arctic Ocean, with the top 100 m strongly influenced by relatively

cold, fresh water. In cast 8, the strength of the layer is substantially diminished, likely as a result

of Atlantic Water intrusion through Fram Strait.

Additional CTD data were collected using expendable bathythermographs (XBT) and

were consistent with profiles shown in Fig. 3.1a, and a continuously recording CTD instrument

was mounted to the drifting acoustic receiver buoy (Sec. 3.3).

3.2.2 Acoustic propagation modeling

CTD profiles revealed an upward refracting environment which led to a surface duct

in the upper sonic layer. A combination of relatively fresh water combined with water cooled
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by the Arctic air results in especially slow sound speeds in the upper ocean. Figure 3.1b

shows a simplified acoustic propagation model for transmission loss (TL) using environmental

data collected by an XBT during an acoustic localization exercise (Sec. 3.4). The KRAKEN

normal mode propagation model [8] was used to compute transmission loss for a 150 Hz source

positioned at a depth of 30 m, which is the approximate depth of the hydrophone on the receiver

buoy (Sec. 3.3). TL is shown out to a range of 20 km (Fig. 3.1b, upper panel) and 100 km

(Fig. 3.1b, lower panel). Surface ducting is visible in both panels, with the sonic layer depth

located at the thermocline at a depth of approximately 150 m. The SSP below the thermocline

was also positive, and in the lower panel of Fig. 3.1b there is a half channel with annuli occuring

approximately every 35 km. A 2 m layer of ice is assumed, but this modeling does not take

into account ice roughness, thus TL is underestimated as ice scatters and reflects sound into the

ocean bottom. Nevertheless, the model shows that the dominant propagation paths are direct

path (close range), surface duct (medium range due to the frequent interactions with the ice and

surface scattering), and half-channel surface bounce, especially for smaller launch angles in

deeper water.

3.3 Drifting Acoustic Receiver Buoy

3.3.1 Equipment, deployment, and recovery

The drifting acoustic receiver buoy consisted of a weighted line approximately 35 m long

suspended from a float. A Multi-électronique µAURAL recorder with an integrated HTI 96-min

hydrophone, sampling continuously at 48 kHz sampling frequency, was mounted on the line at

30 m depth. A Sea-Bird Scientific SBE37 CTD, sampling with an interval of five minutes, was

mounted at 33 m depth. A XEOS GPS receiver was fastened to the float itself, and recorded the

position of the float every hour. An Edgetech Coastal Acoustic Transponder (CAT) was mounted

for acoustic localization.

The buoy was deployed on 8 June 2021 at 17:52 CET in an ice floe located at 80◦57.855′N
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(a) (b)

Figure 3.1. (a) Conductivity/temperature/depth (CTD) instrument casts taken throughout the
cruise. (b) Transmission loss for a source at 10.5 m, 200 Hz using KRAKEN normal mode
propagation model for 20 km (top) and 100 km (bottom). The sound speed profile used for
the model is shown in the left panels and is from an XBT shot during the acoustic localization
training described in Sec. 3.4.

(a) (b)

Figure 3.2. (a) Deployment of the drifting acoustic receiver buoy on an ice floe. (Photo: William
Jenkins) (b) The track of KV Svalbard (green) and the buoy (red) are shown for the duration of
the buoy deployment.
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and 010◦09.437′E. To ensure the buoy remained fixed to the ice floe, a hole was drilled through

the ice large enough for the instruments to pass through, but small enough that the float would

remain lodged at the surface. In the event the ice floe were to melt or fail, the float ensured the

instruments would not sink. The buoy deployment is depicted in Fig. 3.2a.

The drifting buoy and hydrophone were retrieved from the ice floe on 16 June 2021 at

09:09 CET at 80◦26.045′N and 008◦59.338′E. The buoy’s GPS transceiver provided general

localization, and as the Svalbard approached, the buoy was identified visually. The buoy had

cumulatively traveled 108.7 km, and as seen in Fig. 3.2b, initially drifted southeast, then changed

directions to the southwest.

3.3.2 Data analysis

The ice floe that the drifting acoustic receiver buoy was fastened to thinned over the

course of the deployment, with a measured ice thickness of about 70 cm at the start of the

deployment and about 30 cm upon recovery. Previous studies suggest melting sea ice produces

sound underwater in the frequency range of a few hundred Hz to a few kHz [9]. To assess whether

this signal is observable in our data, we compare the sound power measured by the hydrophone in

several frequency bands to measured or modeled (ERA5 reanalysis [10]) environmental variables

which could reasonably be expected to be indicative of melting of the sea ice near the buoy.

It is apparent visually from Fig. 3.3, and from the correlations presented in Table 3.1,

that the dominant feature in the integrated sound power is an increase in the energy present at

low frequencies corresponding to times when the over-ground speed of the buoy and the ERA5

10 m wind speed. By listening to the recordings, it was determined that most of this energy is

likely a result of strum noise due to the motion of the buoy through the water. The depth of

the CTD, computed from the measured pressure, can be seen to decrease at the periods with

the highest speed over ground, suggesting that there was sufficient force being exerted on the

cable and instrumentation to cause the line to tilt away from vertical, which adds support for the

hypothesis of strum noise. It seems likely that the correlation between wind speed and sound
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Figure 3.3. Time series of various environmental variables, which were measured on the drifting
acoustic receiver buoy by the CTD (water temperature, salinity), GPS (buoy speed over ground,
range to ship), or taken from ERA5 reanalysis products (air temperature, wind speed). The
bottom panel is a spectrogram of the acoustic data recorded by the hydrophone over the duration
of the deployment, showing the distribution of energy over frequencies. Note that the sharp
vertically uniform bands of high energy are periods where the sound was sufficiently loud to
saturate the recording; these periods have accordingly been removed from the analysis presented
in Table 3.1.

power at low frequencies is at least partially a result of the causal relationship between wind

speed and the speed of the ice flows, which determines the speed of the buoy. However, the weak

but still elevated correlations between wind speed and sound power even at high frequencies,
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Table 3.1. Correlation between various environmental factors and the logarithm of sound power
integrated over different frequency bands.

Frequency (kHz)

Parameter 0-0.3 0.3-1 1-3 3-10 10-24

Water temperature 0.1004 0.0662 0.0943 0.1351 -0.0093
Buoy speed over ground 0.4707 -0.0241 0.0603 0.0828 -0.0950
ERA5 10 m wind speed 0.6358 0.1232 0.2302 0.3216 0.0169
ERA5 2 m air temperature 0.2349 -0.0900 -0.0452 -0.0272 -0.1085

where buoy speed over ground and sound power are completely uncorrelated, suggests that wind

acting on the available area of open water could be causing some increase in underwater noise.

Even outside the low-frequency band dominated by the strum noise, we find no clear

relationship between the environmental variables that might be indicative of melting and the

sound power in any frequency band. The slight rise in water temperature during the middle of

the record does not correspond to any discernible increase in sound power, and the rise in water

temperature near the end of the record unfortunately corresponds with a period of hydrophone

saturation.

3.3.3 Highlights

In this section, we highlight several signals recorded by the drifting acoustic receiver

buoy that were representative of the broader soundscape observed during the recording period.

The biologic examples that follow were excerpted from the morning of 12 June, when the record

had the lowest ambient and self noise. During this quiet period, many types of marine mammals

and fish vocalizations could be heard. The Discovery of Sound in the Sea website [11] was

used to identify animals based on vocalization characteristics; however, the audio examples

on the website are somewhat limited, and it was not possible to positively identify all of the

vocalizations.

Though the data from the morning of 12 June can be readily analyzed for biologic

sources, it is noteworthy that, in spite of the noise of the strumming buoy wire, biologic sources
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were detected throughout the entirety of the record. The most prominent and easily identifiable

sources were bearded seals. Cetaceans were also heard throughout the record and were most

likely narwhals or beluga whales. Throughout the record, broadband pops and clicks were

observed, some of which were likely associated with echolocation from marine mammals,

although species attribution based on a single impulse was not possible. In addition to biologic

sources, anthropogenic sounds such as machinery, propulsion, and icebreaking from the Svalbard

are heard in the first two days of the record.

KV Svalbard self-noise

After deploying the buoy, KV Svalbard continued to drift with the ice floe overnight with

her propulsion secured. Of course, various hotel loads and machinery continued operating. In

recordings made near the Svalbard, including those from later ice stations, a periodic clicking

noise was heard and is shown in the spectrogram in Fig. 3.4a, with a stronger click followed

by a weaker click. The period of the full cycle was 1.75 s. Owing to the regular periodicity of

this signal, it is likely generated by a rotating piece of machinery operating at approximately

34.3 RPM.

KV Svalbard was underway again on the morning of 9 June to conduct acoustic ranging

to the buoy. Fig. 3.4b shows a spectrogram of the Svalbard maneuvering through sea ice.

Below 1.5 kHz the propulsion machinery dominates the spectrum. Above 1.5 kHz, the spectrum

becomes saturated with broadband noise as the ship impinges on ice and breaks it apart. Periods

when the ship was in open water are indicated by regions of low energy above 1.5 kHz.

Bearded seals

Bearded seals were heard constantly throughout the entire record. These seals emit a

warbling sound that sweeps downward in frequency, with occasional upshifts. From Fig. 3.4c,

the duration of some of these calls was greater than one minute. As June was in the middle of

their mating season, these calls may be attempts to attract mates. Bearded seals were spotted
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4. (a) Periodic transients from KV Svalbard suggest rotating machinery as the source.
(b) KV Svalbard maneuvering through sea ice. (c) Bearded seal vocalizations. (d) Marine
mammal vocalizations, including a downsweep made by a bearded seal (below 1 kHz) and
vocalizations from narwhals or beluga whales. (e) Possible hooded seal vocalization. (f) Possible
hooded seal vocalizations appear at the beginning and end of the spectrogram, shown with an
intervening bearded seal call.
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from the Svalbard on sea ice throughout the cruise.

Narwhals or beluga whales

Figure 3.4d shows examples of vocalizations from several biologic sources. The long,

warbling downsweep of a bearded seal is visible below 1 kHz over the course of the entire

spectrogram. Fine striations above 1 kHz sweeping rapidly up and down are likely narwhals or

beluga whales, and were heard throughout the entire record. A vocalization with fundamental

frequency at approximately 1.3 kHz and harmonics at 700 Hz intervals is observed with a single

call at 2 s, followed by a repetitive train of pulses between 8 and 12 s; this, too, was likely a a

narwhal or beluga.

Possible hooded seals

One of the biologic sources was recorded on numerous occasions between 10-13 June

appears to be a call from a hooded seal. These animals would emit single vocalizations as well

as call repeatedly two to three times per minute for several minutes. The vocalization sounds

like a deep, nasal “wow,” with the beginning of the signal shifting downward in frequency, and

at the very end sweeping up. Figure 3.4e shows the vocalization in detail, and Fig. 3.4f shows its

co-occurrence with a bearded seal vocalization. While hooded seals are typically asocial, June

marks the end of their mating season and these calls may be indicative of animals seeking a mate

[12].

3.4 Acoustic Localization of Moorings

One of the primary acoustic tasks was to localize an oceanographic mooring for recovery.

This is an especially challenging activity in the Arctic that requires careful coordination between

the ship’s bridge, deck hands, and acoustic operators. First, a patch of sea ice must be cleared

over the mooring. This can be done by icebreaking or waiting for a lead to pass over the mooring.

Second, the ship must triangulate the position of the mooring using acoustic two-way travel

79



times. Finally, once the mooring is localized, an acoustic release activates and the mooring floats

to the surface for recovery. The entire procedure must occur as swiftly as possible since the sea

ice is moving with the wind and current. Thus, the validity of the localization quickly becomes

invalid, and the mooring could come up beneath the sea ice when released.

3.4.1 Equipment

An Edgetech CAT pinger worked in tandem with a shipboard transducer to perform

active acoustic localization. On board KV Svalbard, a deck unit drove a transducer that produced

an 11 kHz outbound signal. The CAT, upon receiving the 11 kHz signal, transmitted a 12 kHz

signal. On board Svalbard, the time elapsed between the transmission of the 11 kHz signal and

receipt of the 12 kHz signal constituted the two-way travel time. Assuming an average speed of

sound in water, the distance between the source and receiver could be estimated. In Fig. 3.5a, a

spectrogram of the sequence of localization signals is shown.

3.4.2 Methodology

Two-way travel times ∆t were measured as the time T elapsed between the transmission

of the 11 kHz signal and reception of the 12 kHz signal, plus a correction T ∗ to account for the

(a) (b)

Figure 3.5. (a) Acoustic localization signals. The 11 kHz tone was transmitted by KV Svalbard,
and the 12 kHz tone was the response transmitted by the transducer on the drifting acoustic
receiver buoy. (b) Active acoustic localization betwen a ship and a buoy. Rx is used to plot range
rings around the ship’s position, and the buoy is localized at the intersection of multiple range
rings.
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delay on board the CAT pinger betwen its reception of the 11 kHz signal and transmission of the

12 kHz signal. The one-way travel time is then:

∆t =
T
2
−T ∗. (3.1)

Slant range R between the ship and the CAT pinger is then:

R = cavg∆t, (3.2)

where cavg is the average sound speed between the two. Finally, the horizontal range Rx is given

by:

Rx =
√

R2−|zr− zs|2, (3.3)

where zr and zs are the depths of the CAT pinger and ship’s transducer, respectively.

Since the ship’s transducer is a single, omnidirectional element, it is impossible to resolve

bearing to the CAT pinger with a single measurement. To localize the buoy, several measurements

are taken at different positions, with circles of radius Rx plotted at each position of measurement.

Where the circles intersect indicates the estimated position of the mooring [13]. A schematic of

the localization procedure is shown in Fig. 3.5b.

3.4.3 Results

Practice localization on known position

Acoustic localization was tested on the drifting acoustic receiver buoy on 9 June 2021.

With a GPS receiver mounted on top of the buoy, the localization results could be compared

to the actual positions of the buoy and ship. Two localizations were performed at ranges of

approximately 500 m and 1000 m. For each localization, four measurements were taken at

approximately 90◦ intervals around the buoy.

At each measurement position, the shipboard acoustic transducer was lowered to zs =
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Table 3.2. Example of two-way travel time data collected during acoustic localization.

Ship Position

Time Latitude Longitude T (ms) Rx (m)

05:02 80°55.3501’N 010°13.9118’E 851 627
05:15 80°55.1844’N 010°16.5782’E 656 478
05:35 80°55.4784’N 010°18.3356’E 865 636
05:53 80°55.5761’N 010°16.4029’E 795 589

15.5 m below the surface of the water. A piece of tape was attached to the wire marking how far

the source needed to be lowered so that the depth would be consistent between measurements.

After the transponder was lowered to the correct depth, the position of the ship was recorded and

the 11 kHz signal was transmitted. Once the 12 kHz signal from the CAT arrived at the ship,

the two-way travel time T was recorded and a time delay T ∗ = 12.5 ms used to obtain ∆t. From

XBT casts performed in the area, average SSP was cavg = 1442 m/s. Using the CAT pinger depth

of zr = 33 m, horizontal range was calculated at each measurement position using Eq. 3.1–3.3.

Table 3.2 includes an example of data collected during the localization.

At this point, participants were divided into two groups to estimate the position of the

buoy for the 500 m localization and 1000 m localization. Using the horizontal ranges, each

group plotted its range circles, but exact intersections were not obtained due to measurement

errors and other factors. The most significant of these was that, because of the wind and currents,

the ship and buoy were moving at slightly different velocities which were not accounted for

in the calculations. Despite these errors, the experiment still produced areas of intersection

where the buoy had the highest probability of being located. The two groups then independently

developed ways to account for these errors and the effect of time elapsed between measurements,

incorporating a linear rate of ice drift to estimate the buoy’s position. KV Svalbard’s track, both

buoy localization estimates, and the hourly GPS positions reported by the buoy are shown in

Fig. 3.6. For the 500 m localization, there was an estimated error of 70.3 m, while for the 1000 m

localization there was an estimated error of 81.5 m. Since during recovery operations cleared sea
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Figure 3.6. Results are shown from acoustic local-
izations conducted at a range of 500 m and 1000 m.
Drifter buoy GPS positions are hourly.

Figure 3.7. Oceanographic mooring
CNRS23, shown here being recovered
by KV Svalbard, was localized us-
ing active acoustics before being re-
leased from its anchor. (Photo: Sofia
Vakhutinsky)

ice typically spans several hundred meters, these errors were within the tolerance for successfully

recovering a mooring.

Recovery of an oceanographic mooring

On the afternoon of 11 June 2021, KV Svalbard took station over oceanographic mooring

CNRS23, which was deployed in 2019 to observe Atlantic Water inflow into the Arctic Ocean

[14]. Recovery was timed to coincide with the occurrence of a large lead of open water over

the mooring. While the position of the mooring was known from its 2019 deployment, acoustic

localization was performed to confirm its location prior to recovery. Once the location was

confirmed, an acoustic release was activated and the mooring floated to the surface. A small

boat was deployed to retrieve the mooring, and the mooring with its numerous oceanographic

instruments was recovered with the ship’s crane as shown in Fig. 3.7.
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3.5 Ice Stations

Additional acoustic measurements were taken with a hydrophone lowered by hand

through a hole drilled in the sea ice during sea ice station measurements. Most of the time,

mechanical noise from the nearby ship was far louder than any environmental signals that might

have been of interest. One exception is the controlled explosion, described here.

On the evening of 14 June, KV Svalbard stationed herself on an ice floe located at

82◦05.607′N and 010◦02.179′E. Though the main purpose of this visit was to observe ice ridges

on the floe, an interesting opportunity for acoustic measurement arose when the ship’s crew was

given permission to detonate expired explosives. Using one of the many holes drilled for ice

ridge observation, a hydrophone was lowered beneath the ice to capture the explosion as heard

underwater. The explosives were emplaced in the ice approximately two hundred meters away.

Explosions create an impulsive signal, enabling an estimate of the bottom depth using

acoustic travel times. The distance traveled by an acoustic wave is d = ct, where c is the speed of

sound and t is the time elapsed. In this case, since the acoustic signal is traveling to the bottom of

the ocean and back, t is the two-way travel time and must be divided by two to give the bottom

depth zb:

zb =
ct
2

(3.4)

Because the depth of the ocean is much greater than the distance between the source and

receiver at the surface, the source and receiver are assumed to be in the same position. Figure 3.8

shows the normalized acoustic pressure and spectrogram of the recorded signal. The two-way

travel time is obtained from the time difference of arrival between the first and second impulses.

Using an estimated average sound speed of 1490 m/s and a measured time difference of arrival

of 1.293 s, the bottom depth is estimated to be 963 m at this location, which is consistent with

bathymetric data from the International Hydrographic Organization.

Figure 3.8 contains some noteworthy propagation features. The first wave packet appears
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to contain multiple sub-packets of energy. This is likely a combination of two factors. First,

several explosives were detonated, but due to latency in the detonation cord and fuses, they did

not detonate simultaneously. The asynchronous detonation was recorded on film and audio by

the observers. Second, because the explosives were emplaced within the ice, energy propagates

seismo-acoustically through elastic media (the ice) as well as through the water. The speed

of propagation for longitudinal waves in ice is approximately 3,800 m/s, and shear waves are

approximately 1,800 m/s [15]. As these waves propagate outward through the ice, energy along

this wavefront is transmitted into the water. These elastic modes of propagation are likely the

first arrivals recorded, followed by direct path propagation through water between the source and

the receiver. Since the ocean acts as an acoustic waveguide, the second packet of energy exhibits

geometric dispersion, with an interference pattern taking shape as bands of energy through time

and frequency following the arrival of the impulse. A third, weaker arrival remains impulsive,

but is further attenuated and dispersed than the second arrival.

Figure 3.8. Normalized time series and spectrogram of explosives detonation on sea ice, followed
by first and subsequent bottom bounce reflections.
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3.6 Conclusion

The 2021 UAK cruise successfully demonstrated the use of both active and passive

underwater acoustics for observation and localization in a challenging and dynamic sea ice

environment. Additionally, oceanographic and atmospheric observations were used to model the

acoustic propagation environment and to explain observations. Participants received hands-on

experience at nearly every stage of the various acoustic tasks, and gained solid insights into the

utility of underwater acoustics as both a practical tool for handling oceanographic equipment, as

well as a method for observing the environment.
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Chapter 4

Bayesian optimization with Gaussian pro-
cess surrogate model for source localiza-
tion

Source localization with a geoacoustic model requires optimizing the model over a pa-

rameter space of range and depth with the objective of matching a predicted sound field to a field

measured on an array. We propose a sample-efficient sequential Bayesian optimization strategy

that models the objective function as a Gaussian process (GP) surrogate model conditioned

on observed data. Using the mean and covariance functions of the GP, a heuristic acquisition

function proposes a candidate in parameter space to sample, balancing exploitation (sampling

around the best observed objective function value) and exploration (sampling in regions of high

variance in the GP). The candidate sample is evaluated, and the GP conditioned on the updated

data. Optimization proceeds sequentially until a fixed budget of evaluations is expended. We

demonstrate source localization for a shallow-water waveguide using Monte Carlo simulations

and experimental data from an acoustic source tow. Compared to grid search and quasi-random

sampling strategies, simulations and experimental results indicate the Bayesian optimization

strategy converges on optimal solutions rapidly.
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4.1 Introduction

Sound propagation in the ocean depends on the physical properties and geometry of the

media through which it travels. Using numerical techniques and physical theory, underwater

acoustic propagation models predict sound fields in complex environments, enabling estimation

of the ocean environment. However, since these models cannot be explicitly inverted, ocean

parameters are estimated by sampling parameter space and evaluating samples with a forward

model. Forward model predictions are then compared to observed data, with the quality of the

prediction given by the correlation—i.e., the match—between the predicted and observed data.

In this study, we present a strategy which casts the inverse problem as a sequential

Bayesian optimization problem. Rather than directly optimizing a computationally expensive

objective function which could have a complicated structure with many local minima and

maxima, a Gaussian process (GP) is fit to the observed data and acts as a surrogate model of

the objective function surface. A GP surrogate model is convenient as it provides a tractable

approach to modeling the posterior distribution of a function,[1] and has been successfully used

to predict sound fields and improve acoustic source direction of arrival estimation, localization,

and geoacoustic inversion [2, 3, 4, 5]. More broadly, GP regression is also referred to as kriging

and has been used extensively in the geosciences and other fields [6].

The GP model consists of a mean function and covariance function that describe the

uncertainty in the objective function: regions which have been sampled exhibit lower uncertainty,

while those which remain unexplored exhibit higher uncertainty [1, 7]. Once the GP is fit to the

data, a sequential Bayesian framework is applied in which a candidate sample is heuristically

proposed by an acquisition function based on the first and second moments of the GP model

[8, 9]. The candidate sample is evaluated and the GP model is updated with the new evaluation.

This sequential optimization repeats until a maximum budget of objective function evaluations,

or trials, is expended.

The design of the acquisition function determines how efficiently the sequential opti-
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mization strategy performs [10]. Key to performance of acquisition functions is their ability to

balance exploration, sampling in regions of high uncertainty in the GP model, with exploitation,

sampling near the best observed value. Conventional acquisition functions derive an analytical

function from the mean and covariance functions of the GP model posterior. For example, the

upper confidence bound acquisition function proposes a candidate sample where the uncertainty

in the GP posterior is greatest [11]. Others, such as the probability of improvement (PI) and

expected improvement (EI) acquisition functions, take into account both the uncertainty and

mean of the GP posterior, offering an enhanced balance between exploration and exploitation

[10]. Recent developments have introduced multi-point versions of conventional acquisition

functions, in which the acquisition function suggests multiple candidate samples within each

iteration of the sequential optimization [12, 13, 14, 15]. Candidates are suggested through a

quasi-Monte Carlo generation scheme or a sequential greedy optimization scheme and tend to

outperform conventional acquisition functions in synthetic experiments.

This study demonstrates acoustic source localization in a shallow waveguide using sequen-

tial Bayesian optimization with a GP surrogate model. Performance of two acquisition functions

is compared to conventional sampling techniques using both acoustic simulations and data from

an acoustic source tow experiment. The paper is organized as follows: Section 4.2 summarizes

alternative and previous methods; Section 4.3 describes the optimization problem and Bayesian

optimization algorithm; Section 4.4 presents simulation and experimental results for source local-

ization in a shallow-water waveguide; and Section 4.5 contains remarks on implementation con-

siderations. Code used for this study is available at https://github.com/NeptuneProjects/BOGP.

4.2 Alternative Strategies for Optimization

Numerous strategies for sampling the parameter space are available. A simple but

computationally expensive strategy is matched field processing (MFP), a well known application

of grid search typically conducted over source range, depth, and other geoacoustic parameters,
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such as ocean bottom composition [16]. A challenge with MFP is extending the parameter search

space to more parameters can make the computational cost of the optimization untenable, since

the cost of grid search scales exponentially with parameter dimension.

Randomly sampling parameter space can accumulate sufficient evaluations to estimate

the global optimum, but is vulnerable to repeatedly sampling from the same region or missing the

global optimum altogether [17]. Quasi-random techniques achieve lower discrepancies, ensuring

a more even distribution of samples over the parameter space. A popular quasi-random approach

uses a Sobol sequence to generate points in high-dimensional space with low discrepancy

[18, 19, 20] and has been used for global sensitivity analysis in geoacoustic inversion [21] and in

wind turbine noise uncertainty quantification [22].

Grid search, random sampling, and Sobol sampling make no use of the information about

the objective function after a sample is evaluated. The gradient of an objective is an example

of information that can guide the search. Cases where information about the gradient of the

objective is known are often solved with methods such as gradient descent or the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) family of optimizers [23]. However, for source localization

the ambiguity surface is non-convex and characterized by local optima due to interference

patterns. Furthermore, estimating the gradient can be computationally expensive, requiring

multiple forward model evaluations. While beamforming methods such as MUSIC [24] and

sparse Bayesian learning (SBL)[25, 26, 27, 28] improve resolution and reduce ambiguities in the

objective, such methods are still evaluated at grid points and alleviate neither computational cost

nor the challenge of non-convexity. Methods such as gradient descent and BFGS are therefore

ineffective, as their success depends on the initialization point and might converge on a local

optimum.

Recent advances in machine learning have enabled approaches to non-convex optimiza-

tion such as matrix completion [29, 30] as well as data-driven approaches to acoustic parameter

estimation using neural networks and deep learning [31, 32, 33, 34]. Traditional time-difference-

of-arrival and bearing-of-arrival localization methods continue to be enhanced through advances
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Figure 4.1. (color online) True source location (red circle) and sample locations (orange) for
144 objective function evaluations (trials) using (a) a 12×12 grid search, (b) Sobol sequence
sampling, and (c) Bayesian optimization using a Gaussian process with expected improvement
acquisition function (GP-EI). Marginal sample histograms are along the axes.

in optimization techniques [35]. In this study, we focus on Bayesian optimization strategies,

which use observed values of the objective function to guide the search for the globally optimal

solution.

Existing Bayesian approaches to geoacoustic parameter estimation largely rely on treating

the ambiguity surface as a posterior distribution over the parameter space and using Monte

Carlo sampling to directly estimate the moments of the posterior. A popular approach to

geoacoustic parameter estimation uses Markov chain Monte Carlo (MCMC) optimization through

genetic algorithms and simulated annealing, with Gibbs sampling providing unbiased moment

estimates of the posterior distribution [36, 37, 38, 39, 40]. While simulated annealing and genetic

algorithms offer practical and robust methods for global optimization, they take many iterations

to converge and require hyperparameter tuning [41, 36, 42, 43]. Numerous advancements in

MCMC techniques have since been demonstrated, including trans-dimensional techniques which

treat the number of parameters to be estimated as an unknown quantity which must be estimated

[44, 45, 46].

To leverage the benefits of local optimization techniques with the global search capa-
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bilities of MCMC, hybrid methods combining genetic algorithms with the Gauss-Newton and

simplex algorithms have been demonstrated in geoacoustic inversion problems, leading to faster

convergence and improved estimation [47, 48]. In a conceptually similar vein, our approach uses

quasi-random sampling to initialize sequential Bayesian optimization, hastening convergence

and improving optimization performance. Figure 4.1 demonstrates the advantage of sequential

Bayesian optimization over grid search and Sobol sampling in an acoustic localization parameter

space. Given 144 trials, grid search [Fig. 4.1a] and Sobol sequence sampling [Fig. 4.1b] are

unable to resolve the global optimum, whereas Bayesian optimization [Fig. 4.1c] initialized

with 128 samples of a Sobol sequence converges on the global optimum within the allotted trial

budget.

4.3 Bayesian optimization framework

4.3.1 Objective function definition

Consider an array with M hydrophones that measures an acoustic pressure field d ∈ CM

at a single frequency. In the forward problem, the field measured at the receiver array is described

by an acoustic propagation model G(x),

d = G(x), (4.1)

where the parameterization x ∈X D describes the acoustic source location and geoacoustic

properties of the propagation environment, and X D is a domain bounded by finite bounds on

each of the D parameters within x. Our task is to solve the inverse problem: given the model G,

we seek to find an estimate x̂ of the true parameters xtrue that produce an observed pressure field

dobs ∈ CM.

To find x̂, the parameter space X is sampled and each sample x is evaluated using

Eq. (4.1), producing replica acoustic pressure fields d(x) ∈ CM. Relying on the interference

patterns that occur due to acoustic propagation in an ocean waveguide, x̂ is obtained by finding
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the parameters that yield a predicted replica field which most closely matches the actual field.

On every evaluation of G(x), the coherence between the replica field d and the observed field

dobs is computed using the Bartlett power:

f (x) = |w(x)Hď|2, (4.2)

where w(x) is the normalized replica field

w(x) = d(x)/∥d(x)∥; (4.3)

and ď is the normalized observed field

ď = dobs/∥dobs∥ (4.4)

to ensure Eq. (4.2) is normalized to the interval [0,1].

In this localization study, only source range Rsrc and source depth zsrc are estimated

(x = [Rsrc,zsrc]
T); all other geoacoustic properties of the propagation environment are known.

We define a multi-frequency objective function by incoherently averaging Eq. (4.2) computed

over each frequency in Ω = {ω1,ω2, . . .} [49, 50]:

f (x) =
1
|Ω|

|Ω|
∑
i=1

f (x | ωi). (4.5)

Every evaluation of Eq. (4.5) requires an evaluation of the propagation model at |Ω| frequencies.

Evaluating Eq. (4.5) over X produces an ambiguity surface whose global maximum occurs

where the replica and received pressure fields across all frequencies are most coherent, giving:

x̂ = argmax
x∈X

[ f (x)]. (4.6)
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Using the multi-frequency ambiguity surface of Eq. (4.5) to compute Eq. (4.6) improves opti-

mization performance by averaging out frequency-dependent ambiguities, suppressing sidelobes,

and smoothing the ambiguity surface, all of which improve the likelihood of converging to the

global optimum.

4.3.2 Gaussian process surrogate model

Formally, a GP is a collection of random variables, any finite number of which have

a joint Gaussian distribution [7, 1]. Here we follow the derivations of [7]. Consider N sam-

ples from the D-dimensional parameter space X = [x1, . . . ,xN ] ∈X D×N . Given a real process

f = [ f (x1), . . . , f (xN)]
T as in Eq. (4.5), a GP is described completely by two functions: a mean

function,

µµµ = E[f] = [µ(x1), . . . ,µ(xN)]
T ∈ RN , (4.7)

where µ(xn) is the mean at xn; and a covariance function,

ΣΣΣi j = E[( f (xi)−µ(xi))( f (x j)−µ(x j))] (4.8)

= K (xi,x j) ∈ RN×N , (4.9)

where K (xi,x j) is a kernel function measuring the similarity between points xi and x j. The GP

is summarized as:

f∼ G P(µµµ,ΣΣΣ). (4.10)

A GP has observations at sampled parameters comprising the set:

D = {(xn,yn), n = 1 : N}= {X,y}, y ∈ RN (4.11)

Though observations of the ambiguity surface are deterministic (in contrast with the data d

used to generate the ambiguity surface), to improve numerical stability in subsequent matrix
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inversions, we allow for additive Gaussian noise εn ∼N (0,σ2
y ) in the observations on the order

of 10−8:

yn = f (xn)+ εn. (4.12)

Interpolation with a GP is performed by predicting a set of N∗ unobserved outputs f∗ at inputs

X∗,D×N∗ = [x∗1, . . . ,x
∗
N∗]. The joint distribution of the observed process y and the predictive

distribution f∗ is [7, Eq. (17.33)], [1, Eq. (2.21)]:

p(y, f∗|X,X∗) =

y

f∗

= N


µµµX

µµµ∗

 ,
K̂X ,X KX ,∗

KT
X ,∗ K∗,∗


 (4.13)

where µµµX and µµµ∗ are the mean functions at X and X∗; and

K̂X ,X = KX ,X +σ
2
y I = K (X,X)N×N +σ

2
y I (4.14)

KX ,∗ = K (X,X∗)N×N∗ (4.15)

K∗,∗ = K (X∗,X∗)N∗×N∗ (4.16)

where K is a kernel function defined in section 4.3.2. The posterior distribution is obtained by

conditioning the GP on the new observations [7, Eq. (17.34)], [1, Eq. (2.22)]:

p(f∗|D ,X∗) = N (f∗|µµµ∗|X ,ΣΣΣ∗|X) (4.17)

µµµ∗|X = µµµ∗+KT
X ,∗K̂

−1
X ,X(y−µµµX) (4.18)

ΣΣΣ∗|X = K∗,∗−KT
X ,∗K̂

−1
X ,X KX ,∗. (4.19)

Kernel function

An important component of the GP surrogate model is the kernel function [Eq. (4.9)],

which measures the similarity between two points so that as xi and x j become more similar, so

do their outputs f (xi) and f (x j). This relationship is critical to predicting unobserved data points
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as in Eqs. (4.13)–(6.18). We use a kernel which is (1) positive definite and (2) stationary with

real-valued inputs, i.e.,

K (xi,x j) = K (r), r = xi−x j. (4.20)

Specifically, we adopt the Matern kernel [1, 7] as it captures variability in length scales and

allows for roughness in its output, characteristics which are useful in approximating a non-convex

ambiguity surface. The Matern kernel is given in one dimension by:

K (r;ν , l) = σ
2
y

21−ν

Γ(ν)

(√
2νr
l

)ν

Kν

(√
2νr
l

)
(4.21)

where Kν is the modified Bessel function. σy ∈ R, l ∈ R, and ν ∈ {1/2,3/2,5/2, . . .} are

hyperparameters, with σ2
y estimating the noise variance of the GP, l controlling the length scale,

and ν controlling the roughness of the kernel output. Higher values of ν result in smoother

outputs, with ν → ∞ giving the squared exponential kernel; we adopt the typical choice of

ν = 5/2 [7, Eq. (17.13)], [1, Eq. (4.17)]. Using automatic relevance determination (ARD),

characteristic length scales are estimated for each dimension by modifying Eq. (4.21) to [51,

Sec. 1.2.3], [1, Sec. 5.1], [7, Eq. (17.8)]:

K

(
r;

5
2
, l
)
= σ

2
y

D

∏
d=1

(
1+

√
5rd

ld
+

5r2
d

3l2
d

)
exp

(
−
√

5rd

ld

)
, (4.22)

where rd is the distance between points x1 and x2 along dimension d, and characteristic length

scales for each dimension are given by l = [l1, l2, . . . , lD].

Kernel hyperparameter optimization

The Matern kernel function contains hyperparameters θθθ = [σ2
y , l] which must be op-

timized for the GP surrogate model to appropriately reflect the data [1, 7]. Kernel function

fitting occurs after new samples are drawn but before the predictive distribution is computed in

Eq. (4.13) and is efficiently solved with an empirical-Bayes approach [7]. To optimize θθθ , the
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marginal likelihood is maximized [7, Eq. (17.51)]:

p(y|X,θθθ) =
∫

p(y|f,X)p(f|X,θθθ)df. (4.23)

where, treating θθθ as implicit in K̂X ,X :

p(f|X) = N (f|µµµX ,K̂X ,X) (4.24)

p(y|f) =
N

∏
n=1

N (yn| fn,σ
2
y ). (4.25)

The log marginal likelihood and its derivative are then [52, Eq. (18.74)], [7, Eq. (17.52)]:

L = log p(y|X,θθθ) = logN (y|µµµX ,K̂X ,X)

=−1
2
(y−µµµX)

T K̂−1
X ,X (y−µµµX)−

1
2

log |K̂X ,X |−
N
2

log(2π) (4.26)

∂L
∂θ j

=
1
2

tr
[
(αααααα

T− K̂X ,X)
∂ K̂X ,X

∂θ j

]
, (4.27)

where ααα = K̂−1
X ,X(y− µµµX). In contrast to the ambiguity surface, since Eq. (4.26) is smoothly

varying with few optima, hyperparameter optimization is performed with the bounded Limited-

memory BFGS (L-BFGS-B) algorithm, a quasi-Newtonian method that finds a minimizing

solution given a starting point x ∈X and a smooth objective function [53, 54]. L-BFGS-B

terminates either by comparing Eq. (4.26) between iterations k and k + 1 according to the

condition:
Lk−Lk+1

max
(
|Lk|, |Lk+1|,1

) ≤ 107
ε (4.28)

where ε ∼ O(10−16) is the machine precision; or when Eq. (4.27) projected onto the feasible

parameter space X (denoted by the Proj operator) meets the condition:

max
j∈{1,...,D}

∣∣∣∣Proj
(

∂L
∂θ j

)∣∣∣∣≤ 10−5. (4.29)
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Figure 4.2. Hyperparameter optimization for Gaussian process (GP) regression on a one-
dimensional broadband ambiguity surface computed over source range. (a) Negative log-
likelihood of a Matern kernel function vs. the noise standard deviation and length scale hyper-
parameters. Labeled stars indicate the resulting GP regression for (b) the optimal fit and (c) a
suboptimal fit.

To improve convergence in hyperparameter optimization, prior distributions are placed

over the kernel hyperparameters from which starting points for L-BFGS-B are selected. For

computational stability, parameters are normalized to [0,1] and observations standardized to zero

mean and unit variance before fitting the GP. For length scales l, a Gamma distribution [7, Sec.

2.7.5] is adopted with shape a = 3 and rate b = 6, yielding a distribution with a mean of 0.5.

We find this is a reasonable choice for the transformed parameter space as the prior encourages

samples consistent with expected correlation length scales given the source frequencies and

geometry of the shallow waveguide [55]. For the noise variance σ2
y , a Gamma distribution with

shape a = 2 and rate b = 0.15 is adopted.

Examples of Matern kernel hyperparameter optimization are shown in Fig. 4.2 for a

one-dimensional GP regression on a broadband ambiguity surface computed over source range.

Figure 4.2a shows the negative log likelihood [Eq. (4.26)] over the θθθ = [σ2
y , l] hyperparameters.

The model fits indicated by the white stars correspond to the optimal GP regression in Fig. 4.2b

and a suboptimal GP regression in Fig. 4.2c whose noise variance and length scale are too large.
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4.3.3 Acquisition functions

Acquisition functions provide a heuristic which guides the sequential sampling strategy.

Since the dataset D grows with every iteration, and to differentiate from the sample index n, we

introduce a trial index t to denote sequential operations. At every trial t, a new sample is drawn,

evaluated, and appended to the previously evaluated data by:

D |t = D |t−1∪{(xt , f (xt))}. (4.30)

To select the next point in parameter space xt which will be evaluated, an acquisition function α

takes the GP predictive posterior distribution as its input and returns a proposed candidate for the

next trial by:

xt = argmax
x

α( f (x)). (4.31)

Numerous algorithmic implementations are available to compute α; here we evaluate

two heuristics defined by the expected improvement over previous observations. Given a set

of observations D , let f ′ be the largest observed value of f and the improvement over f ′ at any

point x be defined as[10]:

I(x) = max( f (x)− f ′,0), (4.32)

noting that I ≥ 0. I is a random variable since the uncertainty of the objective function is encoded

in f∼N (µµµ, ).

The covariance function of the posterior distribution f is assumed diagonal and the

variance σ2(x) is:

ΣΣΣ≈ diag
[
σ

2(x1), . . . ,σ
2(xN)

]
. (4.33)

Using σ(x), we use the re-parameterization trick to rewrite the posterior distribution as:

f (x) = µ(x)+σ(x)z. (4.34)
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Table 4.1. Optimization of analytic (Part A, EI and PI) and quasi-Monte Carlo (Part B, qEI)
acquisition functions.

Input: Parameter domain X , acquisition function α , number of raw
samples Nraw, number of restarts Nrestart
Output: Next sample point xt or points Xt

Initialization:
1: xt ← 0, α̌ ← 0
2: X̃← Draw Nraw i.i.d. samples from X
3: α̃αα ← α(X̃) [Eq. (4.42)]
4: z← α̃αα−mean(α̃αα)

std(α̃αα) [Eq. (4.43)]
Part A: Expected Improvement
5: for i = 1 to Nrestart do
6: x← Draw sample from p(ez)
7: x̌← L-BFGS-B [−α(x)]
8: if α(x̌)> α̌ then
9: α̌ ← α(x̌)
10: xt ← x̌
Part B: q-Expected Improvement
12: for i = 1 to Nrestart do
13: x← Draw sample from p(ez)
14: for j = 1 to q do
15: x̌← L-BFGS-B [−α(x)]
16: col j

[
X̌
]
← x̌

17: x← x̌
18: if α

(
colNrestart

[
X̌
])

> α̌ then
19: α̌ ← α

(
colNrestart

[
X̌
])

20: Xt ← X̌

The improvement as defined in Eq. (4.32) is then rewritten:

I(x) = max(µ(x)+σ(x)z− f ′,0). (4.35)

Expected improvement (EI)

Expected improvement (EI) gives the expected magnitude in improvement over the best

previously observed evaluation of the objective function [10]. Defining z0 as:

z0(x) =
f ′−µ(x)

σ(x)
, (4.36)
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EI is computed by evaluating the upper side of the cumulative distribution function Φ(z) and the

normal probability distribution function ϕ(z):

EI(x) = E[I(x)] = E[max(µ(x)+σ(x)z− f ′,0)]

=
(
µ(x)− f ′

)
(1−Φ(z0(x)))+σ(x)ϕ(z0(x)) (4.37)

EI is increased either by reduction of the mean µ(x) (exploitation) or the variance σ(x) (explo-

ration). From Eq. (4.31), the point xt that maximizes Eq. (4.37) is selected for evaluation in the

subsequent trial.

The EI acquisition function assumes a noise free measurement of f ′, but from Eq. (4.12),

a small amount of noise in the objective function evaluation is expected. To avoid slow or

incorrect convergence, we use an implementation of EI which accounts for a noisy objective

function [56].

q-Expected Improvement (qEI)

Recent work [12, 13, 14, 15] extends improvement-based acquisition functions by im-

plementing parallel evaluations of the acquisition function. One such implementation, quasi-

Monte Carlo EI (q-Expected Improvement, or qEI), evaluates a batch of q random samples

X = [x1, . . . ,xq] ∈X with Eq. (4.37). The q resulting values of EI are averaged, giving qEI for

the q-batch:

qEI(X) = E
[

max
i=1,...,q

(µ(xi)+σ(xi)z− f ′,0)
]

(4.38)

≈ 1
q

q

∑
i=1

EI(xi) (4.39)
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Unlike the analytical acquisition function EI which yields only one candidate, qEI yields q

candidates to be subsequently evaluated in parallel, modifying Eqs. (4.31) and (4.30) to:

Xt = argmax
X=[x1,...,xq]

α( f (X)) (4.40)

D |t = D |t−1∪{(Xt , f (Xt))}. (4.41)

qEI therefore samples the acquisition function and objective function spaces more rapidly

than the analytical acquisition functions. However, as q increases, the optimization shifts from a

Bayesian framework to a Monte Carlo framework. In this study, q = 4 was found to appropriately

balance the benefits of sequential Bayesian optimization with the robustness of quasi-Monte

Carlo sampling.

Acquisition function optimization

Exhaustively evaluating the acquisition function to solve Eq. (4.31) or Eq. (4.40) is

computationally expensive for higher dimensional parameter spaces. In practice, an auxiliary

optimization is performed to suggest samples for the next trial. Here again the L-BFGS-B

algorithm is used [53, 54], and as Eqs. (4.31) and (4.40) are maximization problems, the auxiliary

optimization is transformed to a minimization problem by supplying the negated acquisition

function as the objective function.

Since acquisition functions are often non-convex and can contain large regions with zero

gradient, the auxiliary optimization is sensitive to the starting point. To improve performance, we

rely on heuristics whereby the auxiliary optimization is performed using Nrestart restarts. Starting

points are chosen by first evaluating the acquisition function α at Nraw random points X̃ ∈X :

α̃αα = α(X̃). (4.42)
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From these random evaluations of the acquisition function, a sample Z-distribution is computed:

z =
α̃αα−mean(α̃αα)

std(α̃αα)
(4.43)

which is used to construct an exponentiated distribution p(ez) from which Nrestart starting points

are drawn without replacement. The acquisition function’s maximizer x̌ is returned by L-BFGS-B

for each of the Nrestart starting points. The point x̌ corresponding to the highest value of α(x̌)

from the Nrestart restarts provides the next candidate point xt . Table 4.1 Part A summarizes

optimization of the EI acquisition function.

For each of the Nrestart auxiliary optimizations for the quasi-Monte Carlo acquisition

function qEI, q samples X = [x1, . . . ,xq] ∈X are sequentially drawn from p(ez). Each of the q

samples serves as a starting point for maximizing the acquisition function by L-BFGS-B, and

the maximizing points X̌ are evaluated by the acquisition function. The maximizing points X̌

corresponding to the highest value of α(X̌) from the Nrestart restarts provides the next candidate

points Xt . Table 4.1 Part B summarizes optimization of the qEI acquisition function.

4.3.4 Implementation

Implementation of Bayesian optimization with a GP surrogate model is shown in Ta-

ble 4.2, and parameter values used are in Table 4.3. First, Ninit samples are drawn from the

parameter space using a Sobol sequence[20] and evaluated by the objective function. The

initializing trials establish a reasonable prior distribution for the GP surrogate model. With the

GP model fit, the Bayesian framework proceeds by optimizing the acquisition function α and

generating candidate samples which are evaluated. Data from the new trials are appended to the

existing data D , and the GP model is fit with the updated data. This process repeats until the

total number of trials N has been reached.

Bayesian optimization using the EI acquisition function is illustrated in Fig. 4.3 for

one-dimensional range estimation for a simulated broadband source at 5.0 km; environment
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Table 4.2. Bayesian optimization with GP surrogate model.

Input: Parameter domain X , objective function f , kernel function K ,
acquisition function α , warmup evaluations Ninit, total evaluations N
Output: Best estimate of parameters x̂
Initialization:
1: f ′← 0, θθθ ← R
2: for t = 1 to Ninit do
3: xt ← SOBOL[X ] [20]
4: ft ← f (xt) [Eq. (4.5)]
5: if ft > f ′ then
6: x̂← xt , f ′← ft
Optimization:
7: for t = Ninit +1 to N do
8: µµµ ← E[ f (X)] [Eq. (4.7)]
9: θθθ ← L-BFGS-B [K (X,X;θθθ)] [Section 4.3.2]
10: ΣΣΣ←K (X,X;θθθ) [Eq. (4.9)]
11: G P ←N (µµµ,ΣΣΣ) [Eq. (4.10)]
12: xt ← argmaxx α(x) [Algorithm 4.1]
13: ft ← f (xt)
14: if ft > f ′ then
15: x̂← xt , f ′← ft

Table 4.3. Bayesian optimization strategy parameters.

Parameter Description Value
N Total trials 144
Ninit Warm-up trials 128
Nrestart Acquisition function re-starts 40
Nraw Raw samples for acquisition

function optimization [Table 4.1]
1024

q Batch size for q-Expected Im-
provement

4
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Figure 4.3. (color online) Range estimation for a simulated broadband source at 60 m depth and
5 km range using Bayesian optimization with GP surrogate model. Optimization is initialized
with eight quasi-random samples. Top panels show the true objective function f (x) (black
dashed), and the mean function (blue) and standard error (blue shaded) of the GP. Bottom
panels show the normalized expected improvement acquisition function α(x) [Eq. (4.37)]. The
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and array details are given in Section 4.4.1. The GP is initialized with 8 trials sampled by a

Sobol sequence. GP fit to the data is poor in early iterations but improves as observations are

added. The acquisition function adaptively balances exploitation and exploration, with maximum

values alternating between areas of high uncertainty (exploration) and areas with large objective

function values (exploitation). The optimal solution is generally located by the 5th trial; in later

trials, the acquisition function shape approaches a delta function, indicating a high confidence in

the solution.

4.4 Results

Source localization is demonstrated using simulated and experimental data. A fixed

budget of 144 trials is set for all optimization strategies. For the Bayesian strategies, the GP prior

distribution is initialized with 128 trials sampled by a Sobol sequence. Two Bayesian strategies

are evaluated: Sobol+GP/EI, which uses the EI acquisition function, and Sobol+GP/qEI, which

uses the qEI acquisition function with q = 4. For comparison, 144 trials of Sobol sequence

sampling are evaluated, as well as 144 trials of grid search on an evenly spaced 12×12 grid.

4.4.1 Simulations

Measured data d are simulated from the SWellEx-96 experiment [57, 58]. The envi-

ronment, represented in Fig. 4.4, comprises a shallow, downward-refracting waveguide. A

vertical line array (VLA) of 64 hydrophones evenly spaced between depths of 94.125 and

212.5 m (1.875 m spacing) recorded signals from an acoustic source towed by RV Sproul

at a depth of approximately 60 m. The measured acoustic field d and replica fields d∗ are

computed using the KRAKEN normal mode propagation model [59]. The source is simulated

transmitting at Ω = {148,166,201,235,283,338,388} Hz from depth zsrc = 60 m at ranges

Rsrc = {1.0,3.0,5.0,7.0} km. The range search space is a ±1 km window centered around

the simulated source ranges Rsrc. For Rsrc = 1.0 km, the range search space is 1.01±1 km to

avoid near field effects. The depth search space is 60±40 m. Because the Bayesian and Sobol
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Figure 4.5. (color online) Two-dimensional matched field processing (MFP) multi-frequency
ambiguity surfaces (left column) for a simulated source at 60 m depth and 1, 3, 5, and 7 km range.
Best observed optimization performance (middle-left column), source range error (middle-right
column), and source depth error (right column) from 100 Monte Carlo simulations are shown
for each trial. Solid colored lines indicate mean values and shaded regions indicate standard
deviation.
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Figure 4.6. (color online) Highest observed objective vs. run time using a simulated source
at Rsrc = 3.0 km and zsrc = 60 m. Sobol+GP/EI and Sobol+GP/qEI (blue) consist of 128 Sobol
sequence trials followed by 16 GP/EI or GP/qEI steps (144 total trials); Sobol sequence (orange)
of 1,024 trials; and grid search (green) of a 32×32 grid (1,024 trials).
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sequence strategies are quasi-random, 100 Monte Carlo simulations are performed to assess

performance.

Figure 4.5 shows localization results for each optimization strategy, with each row

corresponding to a simulated source range. The two-dimensional broadband ambiguity surface

of Eq. (4.5) is shown in the left column and constitutes the objective function f (x) modeled

by the GP surrogate model. In all cases, Sobol+GP/EI and Sobol+GP/qEI outperform Sobol

sampling and grid search according to the best observed objective function value f̂ , range error,

and depth error. This is due to the grid search evaluating local optima. Grid search performance

is noteworthy in that, though f̂ increases as the grid is evaluated, the apparent improvement

might not give a decrease in range and depth errors.

Though fitting the GP surrogate model and optimizing the acquisition function are

somewhat computationally expensive, on average the Bayesian strategies converge on the global

optimum in far fewer trials than the Sobol sequence and grid search strategies alone. Figure 4.6

shows traces of f̂ as a function of run time for the 100 Monte Carlo runs of each strategy. Run

times were measured one run at a time on a 16-core laptop computer. The Bayesian strategies

ran for 144 trials (128 Sobol, 16 Bayesian), while the Sobol sequence and grid search strategies

ran for 1,024 trials. More trials and time are required for Sobol sampling and grid search to

converge on the global optimum than for the Bayesian strategies.

4.4.2 Experimental Data

The following analysis uses SWellEx-96 experimental data recorded during event S5,

conducted between 23:15-00:30 GMT on 10-11 May 1996 12 km west of Point Loma, California

[57, 58]. RV Sproul towed an acoustic source along an isobath of 200 m, though actual depth

varied, with the source tow commencing in 220 m of water and the second half of the tow

occurring in 180 m of water. RV Sproul proceeded from south to north at 5 knots (2.5 m/s), with

a closest point of approach (CPA) to the VLA of 900 m. The source was towed at 60 m depth

and transmitted five sets of tonals with varying source levels. Data were recorded by the VLA
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Figure 4.7. (color online) Range (blue) and depth (green) estimated localization for high-
resolution matched field processing (MFP), low-resolution MFP (grid search), sparse Bayesian
learning grid search (SBL), Sobol sampling, and Bayesian optimization using expected improve-
ment (Sobol+GP/EI) and quasi-Monte Carlo expected improvement (Sobol+GP/qEI) acquisition
functions. The black line indicates the GPS range of RV Sproul to the array. Gray shaded areas
indicate when the source stopped transmitting.

with a 1500-Hz sampling rate. The 64-element array is described in Section 4.4.1.

Data between 23:21-00:24 GMT were processed in 350 non-overlapping time steps. At

the starting point, half-way point, and CPA of the source tow, the deep source ceased broadcasting

CW tonals and transmitted frequency-modulated (FM) chirps; these time segments are omitted.

Replica vectors d∗ are calculated at each frequency in Ω = {148,166,201,235,283,

338,388} Hz using the environmental model in Fig. 4.4. These frequencies correspond to the

upper seven tonals from the the loudest set transmitted by the source. To approximate array tilt

and improve localization, a 1◦ tilt away from the source is applied to replica vector calculations

at all time steps [58]. Measurement vectors d are obtained from the discrete Fourier transform of

the experimental data at each time step and at the frequencies in Ω.

The range search space is a ±1 km window centered around the GPS position of
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Figure 4.8. (color online) Range (blue) and depth (green) estimation errors relative to high-
resolution matched field processing. Gray shaded areas indicate when the source stopped
transmitting.
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Table 4.4. Mean absolute error (MAE) and median absolute error (Med AE) with respect to
high-resolution matched field processing.

Range [km] Depth [m]

Strategy MAE Med AE MAE Med AE

Grid 0.111 0.046 7.795 3.576
SBL 0.130 0.048 7.500 3.697

Sobol 0.107 0.041 8.308 2.543
Sobol+GP/EI 0.090 0.017 7.125 0.974
Sobol+GP/qEI 0.093 0.017 7.477 1.286

RV Sproul (RGPS) at each time step. When RGPS < 1.01 km, the range search space is 1.01±1 km

to avoid near field effects; when RGPS > 7.0 km, the search space is 7.0± 1 km. The depth

search space is 60±40 m.

High-resolution MFP (200 range bins, 100 depth bins) establishes a baseline against

which to compare optimization strategies and compute localization error. Results from high-

resolution MFP are plotted in the upper left panel of Fig. 4.7 for each time step. As RV Sproul

approaches the array, the ship’s GPS range is closer than the high-resolution MFP estimate due

to the scope of the cable towing the source; at CPA, the disparity expectedly reverses. Over

the course of the source tow, the high-resolution MFP depth estimate indicates a gradual depth

change from 50 to 70 m. The apparent depth change results from a mirage effect arising from

mismatch between true and modeled (217 m) bathymetry used to compute replica vectors d∗

[60].

Range and depth estimation are performed using the Sobol+GP/EI and GP/qEI Bayesian

optimization strategies, and the grid search and Sobol sampling as described in Section 4.4.1.

For additional comparison, results from SBL [25, 26, 27, 28, 61] computed at the same points as

the grid search are presented. No prior information is passed from one time step to the next, and

the optimizations are reinitialized at each time step. Figure 4.7 shows results of range and depth

estimation at each time step for all strategies, and Fig. 4.8 shows the range and depth estimation

errors relative to high-resolution MFP. All methods localize the source reasonably well, but the
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Figure 4.9. (color online) (a) Objective function (ambiguity surface), (b) mean function, and (c)
standard error surface for the GP posterior at time step 200 (RGPS = 2.56 km). Optimization was
performed using the EI acquisition function. Samples (orange circles) and the actual (green) and
estimated (red) source positions are indicated. The inset in (b) shows the dense sampling pattern
and best estimate from Bayesian optimization converging on the global optimum.

Bayesian methods are able to track the source more closely than grid search and Sobol sampling.

At longer ranges, Bayesian methods track the source more closely than SBL, whereas at close

range, SBL out-performs the Bayesian methods. The mean absolute and median absolute errors

over the entire source tow are listed for each strategy in Table 4.4. Except for SBL, performance

suffers when the source is near CPA, likely due to the complicated structure of the ambiguity

surface at this range: from Fig. 4.5, the ambiguity surface at Rsrc = 1.0 km has local optima in

close proximity to the global optimum.

Figure 4.9 compares the GP mean and standard error surfaces to the objective function

surface upon completion of the Sobol+GP/EI strategy for time step 200. In the region surrounding

the global optimum where sampling is most dense, the mean function µ(x) resembles the

objective function f (x) and has low variance.

4.5 Discussion

We find the success of the Sobol+GP/EI and Sobol+GP/qEI strategies rests on establish-

ing a reasonable prior over the objective function prior to commencing Bayesian optimization.

Two primary factors contribute to this prior: the domain of the parameter space and the number
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of warm-up trials.

The complicated structure of the ambiguity surface informed our choice of a parameter

space constrained to 2 km range and 80 m depth windows. When a broader search space is used

(e.g., 1 to 10 km range and 0 to 200 m depth), there are more local optima in the parameter space

and Bayesian optimization converges on the optimal solution less reliably. This can be mitigated

by using more warm-up trials to obtain a better prior.

The appropriate balance between warm-up trials and Bayesian optimization trials is a

design consideration which must be evaluated according to the data, objective function, parameter

space, and computational budget available. We arrived at a ratio of 128 warm-up trials to 16

Bayesian optimization trials through experimentation. Initial attempts to invert the ratio resulted

in a poor prior, and Bayesian optimization was unable to reliably converge on a solution due

to the complicated structure of the objective function. Since Bayesian optimization trials take

approximately 1 s to fit the GP and optimize the acquisition function, using 16 warm-up trials and

128 Bayesian trials not only resulted in poor convergence but also expended more computation

time. The ratio of warm-up trials to Bayesian optimization trials is therefore best evaluated

against the expected number of optima in the objective function, which is itself dependent on the

domain of the parameter space.

Experimentation with adjusting the size of the parameter space and the ratio of warm-up

trials to Bayesian optimization trials suggests our method is better suited for applications where

there is a strong prior over range and depth rather than for wide-area search. Cases where the

approximate location of a source is known but precise localization is required could include

localization of towed sources, underwater vehicles, and oceanographic moorings.

An important consideration for this method is that the quality of the optimization is

contingent on the quality of the ambiguity surface. If the signal-to-noise ratio of the data is low,

a sidelobe could be the global optimum rather than the peak corresponding to the true source

location. Adequate signal processing steps must therefore be taken to maximize signal gain and

reduce sidelobes. Approaches for reducing sidelobes employ high-resolution beamformers such
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as SBL [25, 26, 27, 28] or multiple signal classification (MUSIC)[24] as the objective function.

However, in optimization applications, conventional beamforming is often preferred as it has

broad peaks and is more robust.

4.6 Conclusion

We have demonstrated efficient and accurate source localization with sequential Bayesian

optimization when the ambiguity surface is modeled as a Gaussian process and sampling is guided

by a probabilistic acquisition function. In addition to being sample-efficient, the Sobol+GP/EI

and Sobol+GP/qEI strategies are advantageous as they are suitable for non-convex objective

functions and require no information about the gradient of the objective function.

Simulations of a shallow-water waveguide and real data from an acoustic source tow

experiment demonstrated that the Sobol+GP/EI and Sobol+GP/qEI strategies converge on the

global optimum rapidly and yield superior results compared to grid search and quasi-random sam-

pling strategies. We conclude the Sobol+GP/EI and Sobol+GP/qEI strategies are best employed

as a hybrid sampling strategy in which the majority of trials in a fixed budget establish the prior

over the objective, and the remaining Bayesian optimization trials fine-tune the optimization.
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Chapter 5

Bayesian optimization with Gaussian pro-
cesses for robust localization

We present a sample-efficient Bayesian optimization (BO) method to estimate underwater

source localization robust to unknown tilt in a vertical line array. Rather than conducting

exhaustive search of parameter space to estimate localization and tilt, BO uses a Gaussian

process (GP) surrogate model of the Bartlett power objective function to guide sampling of the

parameter space. Samples are suggested using a heuristic acquisition function that uses the GP

to balance exploitation and exploration of parameter space. Using experimental data, we show

that BO obtains better localization estimates than conventional grid search and quasi-random

sampling strategies, and that robustness to array tilt comes with little additional computational

cost.

5.1 Introduction

Localization of an underwater acoustic source with a vertical line array (VLA) can

be accomplished through matched field processing (MFP) [1], which seeks to match replica

pressure fields produced by a propagation model to the observed field on the VLA. MFP can

be computationally intensive, requiring many evaluations of a propagation model evaluated

in a grid search of the parameter space. The computational cost of grid search is exacerbated

when the dimensionality of the parameter space increases; compensatory measures like reducing
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grid resolution risk missing the optimal matched field and may lead to localization errors.

Because MFP is sensitive to array tilt, which arises from currents acting on the VLA [2], [3], [4],

estimating tilt to calibrate the VLA introduces an additional parameter to the search space and

increases computational cost.

Source localization robust to array tilt has been demonstrated using sparse Bayesian

learning (SBL) [5], [6] and multiple constraint MFP (MCM) [4]. However, both SBL and MCM

are implemented as grid search and can be computationally expensive. Markov chain Monte

Carlo methods [7], [8] and particle filtering [9] have also been used to estimate source localization

and array tilt, among other geoacoustic parameters, but rely on thousands of evaluations of the

forward model and require careful hyperparameter tuning. Data-driven localization methods

using deep learning and neural networks have been demonstrated, but require large amounts of

training data specific to a particular scenario [10], [11].

Bayesian optimization (BO) is a sample-efficient sequential optimization method for

estimating the global optimum of an objective function [12], [13] and has been implemented

for a variety of signal processing tasks [14], [15], [16], [17]. The framework is sequential in

that it suggests a new sample in parameter space to evaluate based on previous evaluations of

the objective function. Performance and characterization of BO were evaluated for underwater

source localization with a known tilt [18].

We propose utilizing the sample-efficient BO framework to estimate source localization

robust to array tilt mismatch by including tilt as a search parameter. Given a fixed amount of

parameter space samples, we demonstrate that BO outperforms conventional methods like grid

search and quasi-random search in estimating source localization. Furthermore, we demonstrate

that BO obtains accurate estimates of source localization more rapidly than conventional methods.
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5.2 Parameterization

We define our model and objective function after [7]. Consider an acoustic pressure field

q(ωl) ∈ CJ sampled by a vertical line array (VLA) with J elements processed at frequencies

ΩΩΩ = [ω1, . . . ,ωL]. Observed data are the sum of predictions of the data p(m,ωl) ∈ CJ given a

model m ∈M D with D parameters, and an error term e(ωl):

q(ωl) = p(m,ωl)+ e(ωl). (5.1)

For joint localization and array tilt estimation, the model is parameterized as m = [rs,zs,τ]
T,

where rs is source range, zs is source depth, and τ is array tilt. Predicted data are modeled by:

p(m,ωl) = w(m,ωl)S(ωl) (5.2)

where w(m,ωl) ∈ CJ is a replica pressure field produced by an acoustic propagation model,

and S(ωl) ∈ C is an unknown deterministic source term. For brevity, we denote frequency

dependence by ql = q(ωl), etc.

Given VLA element depths z = [z1, . . . ,zJ]
T, transformed coordinates r′ and z′ account

for a vertical line array (VLA) anchored at depth zb and range rs, tilted by τ from vertical in the

source-receiver plane:

r′ = rs +(zb− z)sinτ (5.3)

z′ = (zb− z)cosτ. (5.4)

The replica pressure field is parameterized as a summation of modes indexed by m:

wl(rs,zs,τ) =
1

4ρ(zs)

∞

∑
m=1

Ψm(zs)Ψm(z′)H
(1)
0
(
krmr′

)
(5.5)

where ρ is water density; Ψm is the mth mode function at a given depth; H(1)
0 is the zeroth-order
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Hankel function of the first kind; and krm is the horizontal wavenumber of the mth mode [19]. Ψ

and krm are computed using KRAKEN [20].

The estimated model m̂ is obtained by matching ql and pl through minimization of an

objective function φ :

m̂ = argmin
M

[φ(m)] (5.6)

φ is constructed from the Bartlett objective function [7]:

φ(m) =
L

∏
l=1

(
tr R̂l−

wH
l (m)R̂lwl(m)

wH
l (m)wl(m)

)
(5.7)

where R̂l ∈ CJ×J is the sample covariance matrix (SCM) from K snapshots:

R̂l =
1
K

K

∑
k=1

qk,lqH
k,l. (5.8)

5.3 Bayesian Optimization Framework

In BO, a GP surrogate model G P(µµµ,ΣΣΣ) (defined below) approximates the objective

function φ(m) by performing GP regression over parameter space M . The GP surrogate model

is then used by an acquisition function to suggest a new sample in M to evaluate. The process

repeats as data are added by exploration of M until a fixed budget of Ntotal evaluations, or trials,

is expended.

5.3.1 Gaussian process regression

Here we follow the derivations of [21]. A Gaussian process is a collection of N random

points:

M = [m1, . . . ,mN ] ∈M D×N , (5.9)
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any finite of number of which have a joint Gaussian distribution. Given a real process f =

[φ(m1), . . . ,φ(mN)]
T, a GP is described by a mean function,

µµµ = E[f] = [µ(m1), . . . ,µ(mN)]
T ∈ RN , (5.10)

where µ(mn) is the mean at mn; and a covariance function,

ΣΣΣi j = E[( f (mi)−µ(mi))( f (m j)−µ(m j))] (5.11)

= K (mi,m j) ∈ RN×N , (5.12)

where K (mi,m j) is a kernel function measuring the similarity between points mi and m j. The

covariance function is assumed diagonal such that the variance at a point σ(m) is obtained from

ΣΣΣ≈ diag
(
[σ2(m1), . . . ,σ

2(mN)]
)
. The real process f is modeled by the GP as f∼ G P(µµµ,ΣΣΣ)

and has observations comprising parameters evaluated by the objective function:

D = {(mn,yn), n = 1 : N}= {M,y}, y ∈ RN . (5.13)

The GP predicts N∗ unobserved outputs f∗ at inputs

M∗,D×N∗ = [m∗1, . . . ,m
∗
N∗ ]. From [7, eq. (17.33)], the joint distribution of the observed pro-

cess y and the predictive distribution f∗ is:

p(y, f∗|M,M∗) =

y

f∗

= N


µµµM

µµµ∗

 ,
K̂M,M KM,∗

KT
M,∗ K∗,∗


 (5.14)
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where µµµM and µµµ∗ are the mean functions at M and M∗, respectively; and

K̂M,M = KM,M +σ
2
y I = K (M,M)N×N +σ

2
y I (5.15)

KM,∗ = K (M,M∗)N×N∗ (5.16)

K∗,∗ = K (M∗,M∗)N∗×N∗ . (5.17)

From [7, eq. (17.34)], the GP is conditioned on the new observations, giving the posterior

distribution:

p(f∗|D ,M∗) = N (f∗|µµµ∗|M,ΣΣΣ∗|M) (5.18)

µµµ∗|M = µµµ∗+KT
M,∗K̂

−1
M,M(y−µµµM) (5.19)

ΣΣΣ∗|M = K∗,∗−KT
M,∗K̂

−1
M,MKM,∗. (5.20)

The kernel function (5.12) measures similarity between two points in M . We use a

positive-definite and stationary kernel with real-valued inputs, i.e.,

K (mi,m j) = K (r), r = mi−m j (5.21)

and specifically adopt the Matern kernel with smoothness parameter ν = 5/2:

K

(
r;

5
2
, l
)
= σ

2
y

D

∏
d=1

(
1+

√
5rd

ld
+

5r2
d

3l2
d

)
exp

(
−
√

5rd

ld

)
(5.22)

where σy ∈ R and ld ∈ R are hyperparameters, with σ2
y estimating the noise variance of the GP

and l = [l1, . . . , lD] controlling the length scale in dimension d [7, eq. (17.13)].

Kernel hyperparameters θθθ = [σ2
y , l] must be optimized for the GP surrogate model to

appropriately reflect the data and is efficiently performed with an empirical-Bayes approach.
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Noting θθθ is implicit in K̂M,M, marginalizing the product of the Gaussians

p(f|M,θθθ) = N (f|µµµM,K̂M,M) (5.23)

p(y|f,M) =
N

∏
n=1

N (yn| fn,σ
2
y ). (5.24)

with respect to f results in the marginal likelihood, itself a Gaussian [7, eq. (17.51)]:

p(y|M,θθθ) =
∫

p(y|f,M,θθθ)p(f|M,θθθ)df (5.25)

= N (y|µµµM,K̂M,M). (5.26)

To find the optimal θθθ , the log marginal likelihood is maximized [7, eq. (17.51)]:

L = log p(y|M,θθθ) = logN (y|µµµM,K̂M,M)

=−1
2
(y−µµµM)T K̂−1

M,M (y−µµµM)

− 1
2

log |K̂M,M|−
N
2

log(2π) (5.27)

∂L
∂θ j

=
1
2

tr

[
(γγγγγγ

T− K̂M,M)
∂ K̂M,M

∂θ j

]
, (5.28)

where γγγ = K̂−1
M,M(y−µµµM) [7, eq. (17.52)]. Since (5.27) is smoothly varying with few optima, hy-

perparameter optimization is performed with the bounded Limited-memory BFGS (L-BFGS-B)

algorithm [22], [23].

5.3.2 Acquisition function

At trial t, a sample mt is evaluated by the objective function φ(mt) (5.7). The next

sample mt+1 is suggested through optimization of a heuristic acquisition function α(φ(m)):

mt+1 = argmax
m∈M

[α (φ(m))] (5.29)
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Figure 5.1. Gaussian process regression (upper panel) of the objective function φ(m) for one-
dimensional ambiguity surface over source range. The true surface (solid) is approximated by
the mean function µ(m) (dashed) and uncertainty σ(m) (shaded) conditioned on observed data
y (dots). The next sample yt+1 is suggested by the maximum of the acquisition function α(m)
(lower panel) normalized to [0,1].

Table 5.1. Pseudocode for Bayesian optimization with GP surrogate model.

Input: Parameter domain M , objective function φ , kernel function K , acqui-
sition function α , total trials Ntotal.
Output: Best estimate of parameters m̂
1: m̂,φ ′← SOBOL[M ,Ninit]
2: for t = Ninit +1 to Ntotal do
3: µµµ ← E[φ(M)] [eq. (5.10)]
4: θθθ ← L-BFGS-B [K (M,M;θθθ)] [eq. (5.27)-(5.28)]
5: ΣΣΣ←K (M,M;θθθ) [eq. (5.12)]
6: mt ← argmaxm α(φ(m)) [Section 5.3.2]
7: φt ← φ(mt)
8: if φt > φ ′ then
9: m̂←mt , φ ′← φt

Table 5.2. Bayesian optimization implementation parameters.

Parameter Description Value
Ntotal Total trials 64
Ninit Warm-up trials 32
Nacq Samples for acquisition function optimization 1024
Nrestart Acquisition function re-starts 40
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An ideal acquisition function balances exploration of regions of high uncertainty with exploitation

(i.e., dense sampling) of well-performing regions. We adopt the expected improvement (EI)

acquisition function due to its ability to adaptively balance these competing goals [24], [13]. EI

quantifies the amount of improvement a sample is expected to yield over the lowest previously

observed objective function φ ′, and is defined as:

αEI(φ(m)) = E
[
max(φ(m)−φ

′,0)
]

= σ(m)(zΦ(z)+ϕ(z))
(5.30)

where z is the standardized improvement:

z =
φ ′−µ(m)

σ(m)
, (5.31)

Φ is the cumulative distribution function, and ϕ is the normal probability distribution function.

5.3.3 Implementation

BO is implemented using the BOTORCH Python library [25], with pseudocode given

in Table 5.1 and algorithm parameters in Table 5.2. To initialize the GP surrogate model, Ninit

warmup trials are completed by using a Sobol sequence [26] to generate quasi-random samples

from the parameter space M . BO proceeds by performing the GP regression on the observed

data D and optimizing the acquisition function α to suggest the next sample. The process repeats

until a fixed budget of N trials is expended. Since the acquisition function can be non-convex but

is inexpensive to evaluate, (5.30) is optimized by taking Nrestart random restarts of L-BFGS-B

initialized with Nacq samples drawn from the acquisition function; values for Nrestart and Ninit are

given in Table 5.2.

One iteration of BO for a one-dimensional ambiguity surface over source range is shown

in Fig. 5.1 with the GP surrogate model for the objective function φ(m) and the corresponding

acquisition function α(φ(m)). In this example, the GP surrogate model was fit to 10 samples
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Figure 5.2. Parameter estimates and errors. Gray regions indicate when the source ceased
transmitting.

from the objective function. The EI acquisition function is non-zero in regions of high uncertainty

and low objective function value, and zero in regions of low uncertainty and high objective

function value. The next sample is suggested by the maximum of the acquisition function.

5.4 Experimental Results

Localization and array tilt estimation are demonstrated using experimental data collected

during SWellEx-96 off the coast of Southern California [27]. A 64-element VLA was anchored at

the ocean bottom at 217 m depth, with elements spaced evenly between 94.125 m and 212.25 m

(1.875 m spacing). During event S5, an acoustic source was towed in a straight line from south

to north at 5 knots, during which time the source closed from 5 km to within 1 km at the closest

point of approach (CPA) before opening to 2 km. At CPA, the VLA stood nearly due west of the

source. The source was towed at 60 m depth and transmitted 13 tones between 50 and 400 Hz.

Data were recorded at the VLA with a 1.5 kHz sampling rate and processed in 8,192-

sample (2.7 s) segments with 50% overlap. A Hann window was applied to each segment and
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Figure 5.3. Lowest observed objective function φ(m̂) over 64 trials for each optimization
strategy.

Table 5.3. Mean absolute error (MAE) of strategies over all time steps.

Strategy rsrc [km] zsrc [m] τ [◦]

Grid 0.49 23.7 2.2
Sobol 0.12 4.7 2.2

Sobol+GP/EI 0.08 1.8 1.3

8,192-point FFT computed, from which complex acoustic pressure on the array was retrieved

for the 13 source frequencies. SCMs were computed (5.8) with K = 8 overlapping segments.

Processing resulted in discretization of 45 minutes of data into 125 time steps. On three occasions,

the source ceased transmitting; affected segments were removed.

Forward model computations for (5.7) were performed using an acoustic environment

model [27], [28]. Of note, though the model is range-independent, bottom depth at the source

was up to 30 m shallower than at the VLA; true source ranges and depths were corrected

according to [29]. The parameter search space was defined as r̂s ∈ rs±1.0 km, ẑs ∈ zs±40 m,

and τ̂ ∈ [−4◦,4◦]. True source range rs was obtained from a GPS receiver on the tow vessel, and

source depth zs was set to 60 m; both values were corrected according to [29]. Tilt data and array

heading were measured by an inclinometer on the VLA and used to calculate τ .

Three estimation strategies were evaluated for each time step: grid search, quasi-random

search using Sobol sequences [26], and BO. BO was performed using a strategy of warmup

trials generated by a Sobol sequence followed by BO trials, i.e., the Sobol+GP/EI strategy. From
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Table 5.2, 64 total trials were completed, with 32 warmup trials and 32 BO trials. Optimization

was re-initialized at every time step with only search space constraints as prior information. To

compare performance for an equivalent number of trials, Sobol sampling and grid search were

also evaluated with 64 trials, with grid search parameter space discretized to a 4×4×4 grid.

Fig. 5.2 shows parameter estimates and associated errors for source range, depth, and

VLA tilt at each time step for the 64-trial optimizations. BO (Sobol + GP/EI) consistently

estimates source range and depth with minimal error. Array tilt is estimated with a bias from

the expected values but is consistent with previous MFP results [27], [6]; discrepancy in the

estimated tilt is likely due to mismatch in the range-independent model environment. Grid search

results illustrate an inadequately discretized parameter space, with low error occurring only when

the sample point coincides with the optimum value of the objective function. Sobol sampling

has better performance than grid search for the equivalent number of trials, but the parameter

space remains inadequately sampled. See Table 5.3 for mean absolute errors of the estimated

parameters over the source tow. Fig. 5.3 shows the lowest values of (5.7) for each time step, with

BO out-performing grid and Sobol search.

In practice, grid search and quasi-random search for source localization and tilt estimation

would be conducted with more than 64 trials with additional computational cost. To illustrate that

BO is more time-efficient than grid search and Sobol sampling, Fig. 5.4 shows the progression of

the lowest value of (5.7) vs. run time for all time steps but with greater sampling density for grid

search and Sobol sampling. Grid search was discretized to rsrc× zsrc× τ ∼ 24×9×5 (1,080

trials), and Sobol sampling was performed with 1,024 trials. Even with the higher sampling

density, grid search and Sobol sampling do not reach the low values of BO and would require

increased sampling density to achieve equivalent performance.

Fig. 5.5 shows the lowest observed values of (5.7) for 64 trials of BO including estimated

array tilt and BO with array tilt fixed to 0◦. For little additional computational cost, including

tilt in the parameter search space results in lower values of (5.7) than fixing tilt to a constant

value. Furthermore, the robustness to array tilt is achieved with less computational cost than that
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Figure 5.5. Lowest observed objective function φ(m̂) for 64 trials of BO with tilt included in
the parameter space (solid) and no tilt (dashed).

required by grid search and quasi-random sampling to achieve similar results (Fig. 5.4).

5.5 Conclusion

BO with a GP surrogate model is a sample-efficient strategy for estimating source

localization in the presence of unknown array tilt. By leveraging the efficiency of BO, the

inclusion of tilt in the parameter search space is computationally straightforward and leads to

more robust estimates of source range and depth than when tilt is fixed. Furthermore, BO is able

to achieve better performance than grid search and Sobol sampling in fewer trials and in less

time.
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Chapter 6

Geoacoustic inversion with Bayesian opti-
mization

Geoacoustic inversion is a computationally expensive task in high-dimensional parameter

spaces, typically requiring thousands of evaluations of a forward model to estimate the geoacous-

tic environment, In this study, we demonstrate Bayesian optimization (BO), an efficient global

optimization method that is capable of estimating geoacoustic parameters in 7-dimensional space

within hundreds of evaluations instead of thousands. BO iteratively searches parameter space for

the global optimum of an objective function, defined in this study as the Bartlett power. Each step

consists of fitting a Gaussian process (GP) surrogate model to observed data, and then choosing

a new point to evaluate using a heuristic acquisition function. The ideal acquisition function

balances exploration of the parameter space in regions with high uncertainty with exploitation of

high-performing regions. In this study, two acquisition functions are evaluated: upper confidence

bound and expected improvement. BO is demonstrated for both simulated and experimental data

from a shallow-water environment. Results indicate BO rapidly estimates optimal parameters

compared to quasi-random search.

6.1 Introduction

Geoacoustic inversion is typically a computationally expensive task, requiring thousands

of evaluations of a forward model to estimate underlying parameter distributions. While compu-
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tational costs have been mitigated through advances in computing capabilities, settings remain in

which efficient estimates of the ocean environment are desirable. For example, the proliferation

of battery-limited autonomous underwater vehicles has led to a demand in in-situ estimates of

the ocean environment to improve acoustical navigation, as sound propagation is inextricably

linked to the environment. This study proposes Bayesian optimization (BO) as a sample-efficient

method for performing geoacoustic inversion.

In the forward problem, underwater acoustic propagation models provide reliable predic-

tions of sound fields in underwater environments. In addition to source-receiver geometry, an

important factor in the accuracy of these models is the inclusion of sound speed profile (SSP) and

seabed properties, which affect the acoustic field in water due to refraction and interactions with

the bottom [1]. While SSP in the water column can be measured using conductivity-temperature-

depth (CTD) instruments, geoacoustic parameters are far more challenging and expensive to

measure, particularly when the seabed consists of inhomogeneous geologic layers. Geoacoustic

inversion is therefore an important field of underwater acoustics, providing feasible constraints

on environmental models for parameters that are difficult to directly sample.

The inverse problem, i.e., estimating model parameters given a propagation model and

observed data, is conventionally solved through matched field processing (MFP), which evaluates

samples from the parameter space with the objective of finding parameters that yield a predicted

acoustic field that matches the observed data [2, 3]. These matches, or correlations, comprise an

ambiguity surface that is computed over the parameter space. Numerous implementations of

geoacoustic inversion have been developed in the past decades. For two- or three-dimensional

parameter space, such as with source localization, MFP is typically implemented as grid search

[2], where parameters like source range and depth are discretized into equally spaced resolution

cells according to physical characteristics of the waveguide [4]. For geoacoustic inversion, grid

search—even with coarse resolution—is computationally unfeasible due to the high dimension-

ality of the parameter space, as computational cost scales exponentially with dimensionality.

Geoacoustic parameter estimation in high dimensions became computationally feasible
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and statistically tractable with the adoption of Markov chain Monte Carlo (MCMC) sampling

algorithms. By treating the ambiguity surface as a posterior distribution over the parameter

space, simulated annealing [3], genetic algorithms [5], and Gibbs sampling [6] provide statistical

estimates of the parameter distributions. Hybrid methods combine these distributions with

gradient-based optimization methods to fine-tune the estimates [7, 8]. For time-evolving cases,

particle filtering was demonstrated for geoacoustic inversion during an acoustic source tow [9].

In cases where the number of geoacoustic parameters is unknown (for example, the number

and makeup of sediment layers in the seabed), transdimensional geoacoustic inversion provides

estimates of the number of geoacoustic parameters, in addition to their distributions [10]. For

a detailed history and review of geoacoustic inversion methods, please consult [11]. Recent

developments in geoacoustic inversion involve joint estimation of geoacoustic parameters and

SSP in the water column using transdimensional inversion [12]. Additionally, data-driven

methods using neural networks have been demonstrated for SSP and geoacoustic inversion

[13, 14, 15, 16, 17]. Further discussion of advances in machine learning methods related to

geoacoustic inversion can be found in [18].

One of the drawbacks of MCMC is its computational cost: thousands of evaluations of

the forward model are required to form parameter estimates, and methods like genetic algorithms

have tunable parameters that require optimization [7, 19, 20, 21]. Machine learning-based

approaches are also computationally expensive, requiring ample data for training and prediction

and numerous runs for hyperparameter optimization Training can take many hours, and models

are not readily transferred to other geoacoustic environments, necessitating retraining on new

data when models can not be generalized.

To overcome these challenges, we demonstrate Bayesian optimization (BO), a sample-

efficient, global optimization strategy which adaptively chooses which samples to evaluate

according to previous evaluations of the ambiguity surface [22, 23]. Treating the ambiguity

surface as an objective function, BO seeks to find the global minimum. At every step of the

optimization, BO fits a Gaussian process [24] (GP) surrogate model to the ambiguity surface; the
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uncertainty encoded in the GP is then used by a heuristic acquisition function to suggest which

point in parameter space to evaluate next [25]. BO requires no information about the gradient of

the ambiguity surface, and though not invulnerable to converging on local optima, its adaptive

nature makes it more robust for multimodal objective function optimization than gradient-based

methods. Bayesian optimization was previously demonstrated for source localization in [26],

where a more detailed comparison to other optimization strategies can be found.

The paper is organized as follows: Sec. 6.2 presents the geoacoustic inversion problem;

Sec. 6.3 describes the Bayesian optimization framework; Sec. 6.4 summarizes the data and

geoacoustic environment model used for simulated and experimental data analysis; Sec. 6.5

presents analysis of BO results using simulated and experimental data; and Sec. 6.6 provides a

discussion of the BO results.

6.2 Inversion framework

6.2.1 Parameterization

Consider an acoustic pressure field q(ωl) ∈ CJ sampled by a vertical line array (VLA)

with J elements processed at frequencies ΩΩΩ = [ω1, . . . ,ωL]. Observed data are the sum of

predictions of the data p(m,ωl) ∈ CJ given a model m ∈M D with D parameters, and an error

term e(ωl):

q(ωl) = p(m,ωl)+ e(ωl). (6.1)

Predicted data are modeled by:

p(m,ωl) = w(m,ωl)S(ωl) (6.2)

where w(m,ωl) ∈ CJ is a replica pressure field produced by an acoustic propagation model,

and S(ωl) ∈ C is an unknown deterministic source term. For brevity, we denote frequency

dependence by ql = q(ωl), etc. Replica pressure fields wl(m) are generated using the KRAKEN
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normal mode propagation model [27].

6.2.2 Objective function

The estimated model m̂ is obtained by matching ql and pl through minimization of an

objective function φ :

m̂ = argmin
M

[φ(m)] (6.3)

φ̂ = φ(m̂). (6.4)

φ is constructed from the Bartlett objective function [28, 29]:

φ(m) =
L

∏
l=1

(
tr R̂l−

wH
l (m)R̂lwl(m)

wH
l (m)wl(m)

)
(6.5)

where R̂l ∈ CJ×J is the sample covariance matrix (SCM) from K snapshots:

R̂l =
1
K

K

∑
k=1

qk,lqH
k,l. (6.6)

6.3 Bayesian optimization

In BO, a GP surrogate model G P(µµµ,ΣΣΣ) approximates the objective function φ(m) by

performing GP regression over a set of observed data D . Next, an acquisition function takes

the GP surrogate model as its input and suggests a new point in M to evaluate. The process

repeats as data are added by exploration of M until a fixed budget of Ntotal evaluations, or trials,

is exhausted.
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6.3.1 Gaussian process surrogate model

Here we follow the derivations of [30]. A Gaussian process is a collection of N random

points:

M = [m1, . . . ,mN ] ∈M D×N , (6.7)

any finite number of which have a joint Gaussian distribution. Given a real process f =

[φ(m1), . . . ,φ(mN)]
T, a GP is described by a mean function,

µµµ = E[f] = [µ(m1), . . . ,µ(mN)]
T ∈ RN , (6.8)

where µ(mn) is the mean at mn; and a covariance function,

ΣΣΣi j = E[( f (mi)−µ(mi))( f (m j)−µ(m j))] (6.9)

= K (mi,m j) ∈ RN×N , (6.10)

where K (mi,m j) is a kernel function measuring the similarity between points mi and m j. The

covariance function is assumed diagonal such that the variance at a point σ(m) is obtained from

ΣΣΣ≈ diag
(
[σ2(m1), . . . ,σ

2(mN)]
)
. The real process f is modeled by the GP as f∼ G P(µµµ,ΣΣΣ)

and has observations comprising parameters evaluated by the objective function:

D = {(mn,yn), n = 1 : N}= {M,y}, y ∈ RN . (6.11)

The GP predicts N∗ unobserved outputs f∗ at inputs M∗,D×N∗ = [m∗1, . . . ,m
∗
N∗]. From [30,

eq. 17.33], the joint distribution of the observed process y and the predictive distribution f∗ is:

p(y, f∗|M,M∗) =

y

f∗

= N


µµµM

µµµ∗

 ,
K̂M,M KM,∗

KT
M,∗ K∗,∗


 (6.12)
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where µµµM and µµµ∗ are the mean functions at M and M∗, respectively; and

K̂M,M = KM,M +σ
2
y I = K (M,M)N×N +σ

2
y I (6.13)

KM,∗ = K (M,M∗)N×N∗ (6.14)

K∗,∗ = K (M∗,M∗)N∗×N∗ . (6.15)

From [30, eq. 17.34], the GP is conditioned on the new observations, giving the posterior

distribution:

p(f∗|D ,M∗) = N (f∗|µµµ∗|M,ΣΣΣ∗|M) (6.16)

µµµ∗|M = µµµ∗+KT
M,∗K̂

−1
M,M(y−µµµM) (6.17)

ΣΣΣ∗|M = K∗,∗−KT
M,∗K̂

−1
M,MKM,∗. (6.18)

The kernel function (6.10) measures similarity between two points in M . We use a

positive-definite and stationary kernel with real-valued inputs, i.e.,

K (mi,m j) = K (r), r = mi−m j (6.19)

and specifically adopt the Matern kernel with smoothness parameter ν = 5/2:

K

(
r;

5
2
, l
)
= σ

2
y

D

∏
d=1

(
1+

√
5rd

ld
+

5r2
d

3l2
d

)
exp

(
−
√

5rd

ld

)
(6.20)

where σy ∈ R and ld ∈ R are hyperparameters, with σ2
y estimating the noise variance of the GP

and l = [l1, . . . , lD] controlling the length scale in dimension d [30, eq. 17.13].

Kernel hyperparameters θθθ = [σ2
y , l] must be optimized for the GP surrogate model to

appropriately reflect the data and is efficiently performed with an empirical Bayes approach.
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Noting θθθ is implicit in K̂M,M, marginalizing the product of the Gaussians

p(f|M,θθθ) = N (f|µµµM,K̂M,M) (6.21)

p(y|f,M) =
N

∏
n=1

N (yn| fn,σ
2
y ). (6.22)

with respect to f results in the marginal likelihood, itself a Gaussian [30, eq. 17.51]:

p(y|M,θθθ) =
∫

p(y|f,M,θθθ)p(f|M,θθθ)df (6.23)

= N (y|µµµM,K̂M,M). (6.24)

To find the optimal θθθ , the log marginal likelihood is maximized [30, eq. 17.51]:

L = log p(y|M,θθθ) = logN (y|µµµM,K̂M,M)

=−1
2
(y−µµµM)T K̂−1

M,M (y−µµµM)

− 1
2

log |K̂M,M|−
N
2

log(2π) (6.25)

∂L

∂θ j
=

1
2

tr

[
(γγγγγγ

T− K̂M,M)
∂ K̂M,M

∂θ j

]
, (6.26)

where γγγ = K̂−1
M,M(y−µµµM) [30, eq. 17.52]. Hyperparameter optimization is performed using 50

steps of AdamW, an adaptive gradient-based stochastic optimizer [31].

The empirical Bayes hyperparameter optimization of (6.20) is a form of automatic

relevancy determination (ARD) [30, sec. 17.1.2.1]. During optimization of an ARD kernel,

if a particular parameter does not affect the value of the objective function, the associated

hyperparameter for that parameter’s dimension will approach ld = ∞.

147



6.3.2 Acquisition function

Bayesian optimization is performed sequentially over a fixed budget of Ntotal trials. At

trial t, a point mt is evaluated by the objective function φ(mt) (6.5). The next point mt+1 is

suggested through optimization of a heuristic acquisition function α(φ(m)):

mt+1 = argmax
m∈M

[α (φ(m))] (6.27)

The ideal acquisition function balances the exploration of regions of high uncertainty with

the exploitation of well-performing regions. Though there are many acquisition functions in

the literature, we examine the upper confidence bound (UCB) and expected improvement (EI)

functions for their robust performance and simplicity.

Upper confidence bound

The UCB acquisition function [25, 32] is the weighted sum of the GP posterior mean

function µ(m) and uncertainty σ(m):

αUCB(φ(m)) = µ(m)+κσ(m). (6.28)

κ is a tunable parameter that controls the tradeoff between exploration and exploitation. UCB is

sensitive to the choice of κ and requires tuning to achieve optimal performance [25]. Initially,

UCB is dominated by the uncertainty term σ(m) and favors exploration of the parameter

space. As more data are added, the GP mean function µ(m) dominates and UCB exploits the

best-performing regions.

Expected improvement

The EI acquisition function requires no hyperparameter tuning, adaptively balancing

exploitation with exploration [25, 23]. EI quantifies the expected amount of improvement a point

is expected to yield over the best previously observed objective function φ̂ (6.4) and is defined
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Figure 6.1. 512 points drawn from a (a) uniform distribution, (b) Sobol sequence, and (c) scram-
bled Sobol sequence.

as:

αEI(φ(m)) = E
[
max(φ(m)− φ̂ ,0)

]
= σ(m)(zΦ(z)+ϕ(z))

(6.29)

where z is the standardized improvement:

z =
φ̂ −µ(m)

σ(m)
, (6.30)

Φ is the cumulative distribution function, and ϕ is the normal probability distribution function.

6.3.3 Implementation

To establish a reasonable prior over the objective function, the GP surrogate model is

initialized with Ninit warmup trials. For this study, warm-up trials are generated using quasi-

random sampling. A Sobol sequence is a quasi-random sequence that generates points in M such

that the points are spread more evenly than when drawn from a uniform distribution [33]. This

study uses a variation of a Sobol sequence: the scrambled Sobol sequence randomizes the order

of the points, which can reduce the correlation between dimensions [34]. Figure 6.1 illustrates

the difference between uniform, Sobol sequence, and scrambled Sobol sequence sampling.
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Table 6.1. Pseudocode for Bayesian optimization.

Input: Parameter domain M , objective function φ , kernel function K , acqui-
sition function α , total trials Ntotal.
Output: Best estimate of parameters m̂
1: m̂, φ̂ ← SOBOL[M ,Ninit]
2: for t = Ninit +1 to Ntotal do
3: µµµ ← E[φ(M)] [Eq. (6.8)]
4: θθθ ← ADAMW [K (M,M;θθθ)] [Eqs. (6.25)-(6.26)]
5: ΣΣΣ←K (M,M;θθθ) [Eq. (6.10)]
6: mt ← argmaxm α(φ(m)) [Sec. 6.3.2]
7: φt ← φ(mt)

8: if φt > φ̂ then
9: m̂←mt , φ̂ ← φt

BO is implemented using the BOTORCH Python library [35], with pseudocode given in

Table 6.1 and algorithm parameters in Table 6.2. The GP surrogate model is initialized with Ninit

warmup trials generated by a quasi-random Sobol sequence [33] of points from the parameter

space M . GP regression is performed on the observed data D and the next trial is suggested by

(6.27); this repeats until a fixed budget of Ntotal trials is expended. Since the acquisition function

can be non-convex but is inexpensive to evaluate, (6.27) is optimized through quasi-random

Monte Carlo sampling: for Nrestart random restarts, the acquisition function is evaluated at Nacq

points drawn from a Sobol sequence and maximized using L-BFGS-B [36, 37]. Values for Nrestart

and Ninit are given in Table 6.2.

To improve numerical stability while fitting the GP surrogate model, data are transformed

by normalizing model parameters m to [0,1] and standardizing objective function values y to

zero mean and unit variance. Hyperparameter optimization is improved by assigning prior

distributions to the kernel hyperparameters: kernel length scale l values are drawn from a Gamma

distribution with shape a = 3 and rate b = 6, giving a mean of 0.5; and noise variance σ2
y values

are drawn from a Gamma distribution with shape a = 2 and rate b = 0.15.

One iteration of BO for a one-dimensional ambiguity surface over source range is shown

in Fig. 6.2 with the GP surrogate model for the objective function φ(m) and the corresponding
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Table 6.2. Bayesian optimization algorithm parameters.

Parameter Description Value
Ntotal Total trials 500
Ninit Warm-up trials 200
Nacq Samples for acquisition function

optimization
1024

Nrestart Acquisition function re-starts 40
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φ
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±2σ(m)
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Figure 6.2. Gaussian process regression (upper panel) of the objective function φ(m) for one-
dimensional ambiguity surface over source range rsrc. The true surface (solid) is approximated
by the mean function µ(m) (dashed) and uncertainty σ(m) (shaded) conditioned on observed
data y (dots). The next point yt+1 is obtained from the maximum of the acquisition function
α(m) (lower panel), shown here normalized to [0,1].
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Figure 6.3. (a) Environmental model used for simulations and geoacoustic inversion. Sensitivity
analyses for (b) simulated and (c) experimental data; parameter estimates are indicated with
vertical dashed lines.

acquisition function α(φ(m)). In this example, the GP surrogate model was fit to 10 samples

from the objective function. The EI acquisition function is non-zero in regions of high uncertainty

and low objective function value, and zero in regions of low uncertainty and high objective

function value. The next sample is suggested by the maximum of the acquisition function.

6.4 Data and environment

BO is demonstrated using data from the SWellEx-96 experiment, conducted off the coast

of southern California in shallow water [38]. Data were recorded on a 64-element vertical line

array (VLA) deployed in 217 m of water with elements spaced evenly between 94.125 m and

212.25 m. The sampling rate of the VLA was 1.5 kHz. During event S5, R/V Sproul towed an

acoustic source from south to north at a speed of 5 knots and depth of 60 m, with the closest point

of approach (CPA) to the VLA occurring 1 km to the east of the array. The source transmitted a

comb signal comprising 13 tones between 49 and 388 Hz. Hann-windowed time series data are

processed from 21 of the 64 channels in 8,192-sample (2.7 s) segments with NFFT = 8,192 at

ΩΩΩ = [148,235,388] Hz. K = 8 segments with 50% overlap are used to form the SCM (6.6).

Though water depths at the source range and VLA differ by as much as 40 m, a range-
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Table 6.3. Model m parameterization.

Parameter Definition Bounds
rsrc [km] Source range [0.75, 1.25]
zsrc [m] Source depth [60, 80]
τ [◦] Array tilt [-3, 3]
hw [m] Water depth [212, 222]
hs [m] Sediment thickness [10, 40]
cs,t [m/s] Sediment top sound speed [1500, 1800]
cs,b [m/s] Sediment bottom sound speed [1.5, 2.5]

independent model is adopted to predict the acoustic field at the array. Range dependence due

to differing bottom depths at the source and VLA results in the source appearing farther and

deeper than it is, and is accounted for through straightforward corrections [39]. At CPA, any

discrepancy between Sproul’s GPS range and the source’s true range as a result of tow-cable

scope is negligible, since the array is nearly broadside to the ship-source axis at CPA.

The SWellEx-96 geoacoustic and oceanographic environments are well characterized

[40, 38] and serve as a useful testbed for BO. The environment model is depicted in Fig. 6.3a,

where the geoacoustic environment is parameterized by two layers of sediment (subscript s) and

mudrock (subscript m) situated atop a bedrock halfspace (subscript b), and the water column

consists of a downward refracting sound speed profile (SSP). Model parameters m and boundaries

are listed in Table 6.3.

Underwater acoustic propagation depends on many parameters, not all of which contribute

equally to the acoustic field. To determine approximately which parameters are most important,

we perform a sensitivity analysis by sweeping through one parameter in m at a time while

fixing all others at their anticipated values. Sensitivity analyses for simulated and experimental

data are shown in Fig. 6.3b and Fig. 6.3c, respectively. Though a one-dimensional sensitivity

analysis may fail to fully convey higher-dimensional structure in the data, it is a useful tool for

coarsely identifying which parameters affect the acoustic field most strongly. From Figs. 6.3b

and 6.3c, the acoustic field is most sensitive to source range rsrc, source depth zsrc, and array tilt

τ . Simulations indicate the remaining parameters show little sensitivity, but experimental data
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Figure 6.4. Lowest observed values of φ̂ from 30 Monte Carlo runs for (a)-(c) simulated and
(d)-(f) experimental data. (a)(d) φ̂ vs. trial; solid lines indicate the mean value of the Monte
Carlo runs at that trial, and dashed lines indicate minimum and maximum values. (b)(e) φ̂ vs.
wall time; each trace represents a Monte Carlo run. (c)(f) Distribution of final values of φ̂ ;
outer horizontal lines represent minimum and maximum values and inner horizontal lines denote
quartile boundaries.

reveal sensitivity to water depth hw, sediment thickness hs, and sound speeds cs,t , cs,b at the top

and bottom of the sediment layer, respectively. Attenuation and density show little sensitivity at

the processed frequencies in the given environment and are omitted from the inversion.

6.5 Example

Bayesian optimization is demonstrated on both simulated and experimental data using

the UCB and EI acquisition functions. Sobol sequence sampling is also performed to serve as a

comparison. Since BO takes more time per trial than quasi-random sampling, we use a Sobol

sequence with 50,000 points. Since each strategy is sensitive to initialization, 30 Monte Carlo

runs are performed to characterize performance.
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Figures 6.4a and 6.4d show the lowest observed values of φ̂ (6.4) for simulated and

experimental data, respectively. Solid lines indicate the mean value of φ̂ vs. trial, and dashed

lines indicate the minimum (best) and maximum (worst) value vs. trial. The BO strategies are

run with Ntotal = 500 trials and initialized with Ninit = 200 warmup trials. With the GP surrogate

model conditioned on the warmup trials, BO rapidly locates optimal regions to evaluate. Both

the UCB and EI acquisition functions yield superior optimization performance to Sobol sampling

given the same trial budget, with EI providing slightly better results than UCB.

In practice, a grid search or quasi-random search would not be restricted to Ntotal = 500

trials. While the per-trial comparison of Figs. 6.4a and 6.4d are useful, equally important to

consider is the wall time that elapses to run each strategy. To examine whether the time-per-trial

of BO outweighs running grid or quasi-random search with a large number of points, Figs. 6.4b

and 6.4e show φ̂ vs. elapsed wall time for each Monte Carlo run of the BO and Sobol strategies.

BO with the UCB and EI acquisition functions is shown with Ninit = 200 and Ntotal = 500, while

Sobol sampling is evaluated for Ntotal = 50,000 trials, which takes a similar amount of time to

run as 500 trials of BO. BO achieves better values for φ̂ than Sobol sampling even when the latter

is permitted to evaluate two orders of magnitude more trials. Since UCB is a computationally

simpler acquisition function to optimize, its performance vs. wall time is particularly noteworthy,

rapidly converging on low values of φ̂ . The more complicated optimization of the EI acquisition

function takes more time but yields superior results to UCB.

The distributions of final optimization results from each strategy’s 30 Monte Carlo runs

are shown in Figs. 6.4c and 6.4f. Distributions consist of values for φ̂ at the 500th trial for the

BO strategies and the 50,000th trial for Sobol search. With both simulated and experimental data,

BO with the EI acquisition function achieves the best values for φ̂ . BO with the UCB acquisition

function also achieves improved performance over Sobol sampling, but the distribution of final

values is wider than for EI since UCB can get stuck in local optima and is unable to adaptively

balance between exploitation and exploration like EI [25, 32].

Figure 6.5 shows histograms of parameter estimates from the 30 Monte Carlo runs of
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Figure 6.5. Histograms of parameter estimates from 30 Monte Carlo runs of Bayesian optimiza-
tion with expected improvement acquisition function and Ninit = 200. Estimates are shown for
(a)-(g) simulated and (h)-(n) experimental data; true and expected values are indicated by the
black dashed line for simulated and experimental data, respectively.

BO with the EI acquisition function and Ninit = 200 trials. For simulated data, final parameter

estimates are close to the true parameter values for the most sensitive parameters identified

from Fig. 6.3: source range rsrc, source depth zsrc, and VLA tilt τ . Estimates of water depth

hw and sediment sound speeds at the top cs,t and bottom cs,b of the first sediment layer are

distributed more widely than source-receiver geometry parameters but remain consistently

centered around their true values. Sediment layer thickness hs exhibits a bimodal distribution.

Results from experimental data are also consistent with anticipated values, although the less

sensitive parameters exhibit biases in the estimates. Distributions of parameter estimates from

both simulated and experimental data are consistent with the sensitivities shown in Fig. 6.5,

indicating that the optimization can estimate the most sensitive parameters but is vulnerable to

terminating in local optima in the least sensitive parameters.

6.6 Discussion

The previous analyses use Ninit = 200 warmup trials to initialize the GP surrogate model.

This is an arbitrary selection that can be tuned according to the requirements of the optimization

problem. For example, if more rapid optimization is desired, Ninit can be set to higher values, with

the remainder of the budget consisting of BO to rapidly fine-tune the solution. However, setting

Ninit too high precludes BO from exploring the parameter space and can lead to incomplete

156



optimization and suboptimal parameter estimates.

Because BO operates on the ambiguity surface, its performance relative to the true model

parameters is dependent on the quality of the ambiguity surface. For example, in cases where

there is model mismatch or noisy data, sidelobes in the ambiguity surface will become more

prominent, making the surface more multimodal and increasing the likelihood that BO might

converge on a local optimum. With enough noise or mismatch, sidelobes in the ambiguity surface

may obfuscate the peak associated with the true parameters, and BO will estimate the wrong

parameters. This dependence is not unique to BO, as any sampling algorithm that makes use of

the Bartlett objective (6.5) is susceptible. Like any optimization algorithm, BO can converge

on local optima if terminated too early, though various techniques have been implemented to

make BO more robust in the optimization of multi-modal objective functions, including the

development of robust, quasi-Monte Carlo acquisition functions, incorporation of random restart

heuristics, and use of trust regions which adaptively update the parameter search space [35, 41].

One of the most flexible and intuitive aspects of BO is the ability to incorporate prior

knowledge of the geoacoustic environment by placing prior distributions over the GP surrogate

model hyperparameters and parameter space boundaries. For example, length scales associated

with source range and depth can be constrained according to the size of the expected resolution

cell [4], and parameters with little sensitivity can be assigned kernel length scale priors that favor

large numbers to ensure little curvature in that dimension. Prior knowledge and expertise about

the physics of propagation and the geoacoustic environment—e.g., from geologic surveys or

computational models—directly inform the shape of the GP surrogate model, which is in turn

used by the acquisition function to guide the search for the global optimum. The ability to specify

kernel functions and hyperparameter priors in multiple dimensions enables the construction of

more sophisticated GP surrogate models that can encompass this prior knowledge and has been

demonstrated for high-dimensional BO problems [42].
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6.7 Conclusion

Bayesian optimization (BO) efficiently finds regions of optimal performance due to

its ability to incorporate observations of the objective function into its decision-making about

where to sample next. With a suitably designed kernel function, the Gaussian process (GP)

surrogate model provides a flexible and tractable method to incorporate prior knowledge of

the geoacoustic environment into the optimization problem. The heuristic acquisition function

relies on the GP to balance exploration of regions of high uncertainty with exploitation of

regions where the best observed objective function values reside. The BO framework enables

optimization of non-convex objective functions and requires no information about the gradient of

the objective function. Using simulated and real data from a shallow-water experiment, we have

demonstrated that BO strategies provide more accurate estimates of the geoacoustic parameters

than quasi-random search, and do so in less time.
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Chapter 7

Conclusion

This dissertation investigated using unsupervised machine learning for exploratory anal-

ysis of continuously recorded seismic data. A key step in the method was the data-driven

dimensionality reduction of spectrograms using a convolutional autoencoder, which improved

the clustering performance of seismic signals. Automatic identification of dominant forms of

seismicity within the data set enabled a more detailed examination of how certain environmental

parameters may be associated with specific types of seismicity on the Ross Ice Shelf, as the

clustering analysis provided information on what kinds of signals are detected, in addition to

when and where. The unsupervised aspect of this method can provide time and computational

savings, as analysts can use clustering results as an entry point for more targeted interrogations

of the data rather than performing manual searches. The method is sufficiently flexible to employ

any number of signal detection algorithms, autoencoder architectures, and clustering algorithms

for the latent space, and is appropriate for both seismic and acoustic data sets.

Deep clustering continues to find use in both seismological and acoustical applications

[1, 2, 3, 4, 5]. The method is particularly promising for the extremely large data sets generated

by an emerging field of remote sensing called distributed acoustic sensing (DAS), which utilizes

fiber optic cables as arrays that can measure ground motion [6]. These systems record at high

sampling rates with high spatial resolution over hundreds or thousands of meters, generating

tremendous amounts of data. Deep clustering has been demonstrated for DAS data and will be
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essential for exploring these large data sets in an efficient manner [7].

This dissertation additionally presented Bayesian optimization (BO) for efficiently per-

forming geoacoustic inversion with underwater acoustic data. BO was first demonstrated for

acoustic source localization in a shallow water waveguide using simulated and experimental data.

In the first investigation of BO, the parameter space consisted of source depth and range, with all

other geoacoustic parameters fixed. BO successfully localized the source within 144 evaluations

of the forward model. A subsequent investigation of BO increased the parameter space dimen-

sionality by estimating array tilt in addition to source localization. BO successfully estimated all

three parameters in just 64 evaluations of the forward model and achieved superior performance

compared to localization alone, since array tilt estimation reduced the mismatch between the real

and modeled environments. Finally, a high-dimensional geoacoustic inversion was performed,

in which source localization, array tilt, water depth, and sediment layer properties were jointly

estimated. BO correctly estimated the most sensitive parameters and yielded plausible estimates

for the least sensitive parameters within 500 evaluations of the forward model.

Unlike exhaustive search and Markov chain Monte Carlo (MCMC) methods, BO is

capable of exploring parameter spaces without requiring thousands of evaluations of the forward

model. Furthermore, the BO framework is flexible and customizable, allowing for multiple

opportunities to assign prior knowledge to constrain the optimization and improve performance.

Parameter space boundaries can be constrained by a physical understanding of the waveguide

(e.g., restricted to range-depth resolution cells [8]), by geophysical surveys of seabed properties,

and by oceanographic knowledge of the structure of sound speed profiles in particular environ-

ments. Such knowledge can be encoded in more sophisticated ways than just parameter space

boundaries: covariance function behavior can be controlled by selecting kernel functions that

appropriately reflect the expected data, and hyperparameter priors can be assigned based on

knowledge of the waveguide and environment. With priors carefully assigned in this manner, the

Gaussian process interpolation of the matched field objective function gains physical salience

upon which acquisition functions capitalize.
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Despite the encouraging performance of BO, there is no perfect global optimization

algorithm, and BO can suffer from getting stuck in local optima, especially in cases where

improper hyperparameter priors—including the choice of kernel function—are used. Improving

BO remains a robust and active area of research, with recent advances centered around paral-

lelization of the acquisition function optimization [9, 10, 11, 12, 13, 14, 15, 16], multi-objective

optimization [17, 18, 19, 20], and high-dimensional optimization [21, 22]. The high-dimensional

optimization approaches of [21] and [22] are particularly interesting for geoacoustic inversion,

as they are premised on the assumption that not all parameters in the parameter space are equally

important. This may have useful applications for geoacoustic inversion, where parameters like

source-range geometry exhibit strong sensitivity, while others, such as certain sediment proper-

ties, can exhibit very little. Automatically adjusting kernel function priors to systematically probe

and optimize the most sensitive parameter subspaces could make high-dimensional problems

with tens of parameters efficient and feasible [22].

Chapter 3 did not implement the methods discussed above, but instead relied on manual

interpretation of data collected under sea ice in the Arctic Ocean. The acoustic analysis presented

in this dissertation represents not just the types of data that can be collected from challenging

environments using acoustic sensors, but also the opportunities available to apply automated

machine learning tasks to acoustic data processing and analysis. For example, data from the

acoustic sensors were rich with biological activity, and classification, clustering, and other event

detection schemes could be applied to this kind of data to identify common biological calls or

anthropogenic activity [23, 24, 1, 25].

Each chapter of this dissertation relied on data collected in real environments, from

Antarctica to the Arctic to the waters off southern California. Unsupervised exploration of

large data sets, along with efficient geoacoustic inversion and parameter estimation, constitute a

broader effort to rely on data-driven methods to learn and infer properties of the environment

through which seismic and acoustic waves propagate. In each setting, environmental processes

that affect seismic and acoustic signal generation and propagation were encoded into the data.
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While physical models can predict these processes with high degrees of accuracy, inverting these

models to estimate the parameters that explain the observed data is computationally difficult,

and data sets are reaching sizes that are impossible for humans alone to analyze. The two

paradigms of environmental characterization investigated in this dissertation—unsupervised

machine learning and Bayesian optimization—provide tools that can supplement, enhance, and

accelerate conventional analytical workflows, with the ultimate goal of more rapidly gaining new

insights into our earth and ocean systems.
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