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In many maritime regions of the world, such as the Mediterranean, Per-

sian Gulf, East China Sea, and the Californian Coast, atmospheric ducts are com-

mon occurrences. They result in various anomalies such as significant variations

in the maximum operational radar range, creation of regions where the radar is

practically blind (radar holes) and increased sea clutter. Therefore, it is important

to predict the real-time 3-D environment in which the radar is operating so that

the radar operator will at least know the true system limitations and in some cases

even compensate for them.

This dissertation addresses the estimation and tracking of the lower at-

mospheric radio refractivity under non-standard propagation conditions frequently

encountered in low altitude maritime radar applications. This is done by statisti-

cally estimating the duct strength (range and height-dependent atmospheric index

of refraction) from the sea-surface reflected radar clutter. Therefore, such meth-

ods are called Refractivity From Clutter (RFC) techniques. These environmental

statistics can then be used to predict the radar performance. The electromag-

netic propagation in these complex environments is simulated using a split-step

fast Fourier transform (FFT) based parabolic equation (PE) approximation to the

wave equation.
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The first part of this thesis discusses various algorithms such as genetic

algorithms (GA), Markov chain Monte Carlo samplers (MCMC) and the hybrid

GA-MCMC samplers that are used to estimate atmospheric radio refractivity for a

given azimuth direction and time. The results show that radar clutter can be a rich

source of information about the environment and the techniques mentioned above

are used successfully as near real-time estimators for the data collected during the

Wallops’98 experiment conducted by the Naval Surface Warfare Center.

The second part of this dissertation focuses on both spatial and temporal

tracking of the 3-D environment. Techniques such as the extended (EKF) and

unscented (UKF) Kalman filters, and particle filters (PF) are used for tracking the

spatial and temporal evolution of the lower atmosphere. Even though the tracking

performance of the Kalman filters was limited for certain duct types such as the

surface-based ducts due to the high non-linearity of the split-step FFT PE, they

performed well for other environments such as evaporation ducts. On the other

hand, particle filters proved to be very promising in tracking a wide variety of

scenarios including even abruptly changing environments.

xix
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Introduction

1.1 Background

The main objective of this dissertation is to predict and improve maritime

radar performance by statistically estimating and tracking the three dimensional

real-time properties of the lower atmosphere in which the radar is operating. This

means that one has to predict the electromagnetic lower atmospheric ducts that

frequently form in many ocean and coastal regions of the world. Therefore, this

necessitates the understanding of these atmospheric events, the ability to pre-

dict their effects on a radar system, the estimation of the environment using the

measured clutter, and finally compensating and taking necessary precautions to

counter the effects.

Hence, the work done in this dissertation involves three different fields:

1. Meteorology, for understanding the common lower atmospheric phenomena

that affect electromagnetic propagation, radar, and communication systems

operating in various environments, the atmospheric dynamics that result

in the formation of electromagnetic ducts, types of ducts and their differ-

ences, the regions there they commonly occur, their occurrence rates, spatial

and temporal variabilities, differences between coastal and open water en-

vironments, and the ability to forecast duct properties using meteorological

1
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models.

2. Electromagnetic Theory, particularly radar theory and electromagnetic prop-

agation in inhomogeneous media, for understanding how the radar signal

propagates in complex environments, the effects of the atmospheric duct as

a leaky waveguide, interaction and scattering of the electromagnetic signal

with the sea surface for very low angle of incidence and different sea states,

incidence angle and sea clutter calculations using ray-tracing and the split-

step fast Fourier transform based parabolic equation approximation to the

wave equation.

3. Signal Processing, for understanding how to formulate the problem in a

Bayesian framework, the statistical estimation of the environmental duct

parameters from the measured radar clutter using techniques such as genetic

algorithms (GA), different Markov chain Monte Carlo samplers (MCMC),

and hybrid GA-MCMC samplers that use nearest neighborhood and Voronoi

decomposition techniques, spatial and temporal tracking of the range, height,

azimuth and time dependent atmospheric index of refraction using various

Kalman and particle filters.

1.2 Properties of the Lower Atmosphere

The term refraction refers to the property of a medium to bend an elec-

tromagnetic wave as it passes through the medium. The index of refraction of a

medium, n is defined as the ratio of the speed of light in vacuum to that of the

medium n = c/v . For many atmospheric applications it is simply taken as unity

since the atmospheric n changes only slightly, between 1.000250 and 1.000400 in

the lower atmosphere [1,2]. These fluctuations in the index of refraction are caused

by local changes in the temperature, pressure, and the humidity of the atmosphere.

Since the deviations are small, a new parameter N called the refractivity is defined

as the part-per-million (ppm) change in n, and is used for convenience in prop-
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agation calculations. Due to the curvature of the Earth, an initially horizontally

propagating signal will be moving away from the surface. To take this effect into

account, the modified refractivity (M) has been introduced. N and M can be

computed as

N = (n− 1) × 106 =
77.6p

T
+
es3.73 × 105

T 2
(1.1)

es =
rh6.105 expx

100
(1.2)

x = 25.22
T − 273.2

T
− 5.31 loge

(
T

273.2

)
(1.3)

M = N +
h

a
× 106 (1.4)

M ≃ N + 0.157h, (1.5)

where es is the partial pressure of water vapor, p is the barometric pressure in

millibars, T is the temperature in oK, rh is the percent relative humidity, h is the

height above the earth’s surface, and a is the radius of the Earth.

Classification of Atmospheric Conditions

Even though the fluctuations are on the order of part-per-millions, they

are sufficient to cause major changes in the tropospheric electromagnetic propaga-

tion. Normally, the refractivity is a near-exponential function of the altitude. This

exponential can be linearized within the first kilometer or so of the atmosphere.

The slope of this linear function is –0.039 N-units/m or 0.118 M-units/m and it

usually is referred to as the “standard atmosphere”. Standard atmosphere will

result in a downward bending of the electromagnetic wave. However, this is less

than the curvature of the earth, effectively resulting in a wave that slowly moves

away from the surface. This type of propagation is called the normal propagation

condition and it occurs as long as N is between –0.079 to 0 N-units/m (0.079 to

0.157 M-units/m).

If N has a positive slope with respect to the altitude, the wave will further

bend upward creating the sub-refractive conditions, which only infrequently occurs
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in nature.

On the other hand if the N-gradient continues to decrease it can reach

a critical value of –0.157 N-units/m (0 M-units/m). At this point the downward

bending caused by refraction exactly matches the curvature of the earth creating

an electromagnetic wave propagating horizontally to the surface. The condition

where the refraction strength is between the normal and this critical value is called

the super-refraction condition.

Figure 1.1: Tropospheric propagation conditions. Sub-refraction, standard refrac-
tion, super-refraction, and trapping (ducting). (Figure taken from [1])

If the negative N-gradient is even stronger than the critical value, the wave

will be forced to bend downward, eventually hitting the surface. However, since the

surface-reflected wave will reenter the strongly negative N-gradient region it will

again be bent down bouncing multiple times from the surface as shown in Fig. 1.1.

It effectively will be trapped between the surface and an imaginary upper boundary

creating a waveguide with an open leaky top wall called an electromagnetic duct.

Therefore this condition is called the trapping condition. These conditions are

summarized in Table 1.1.



5

Table 1.1: Tropospheric Propagation Conditions

Atmospheric Condition ∂N
∂z

(N-units/m) ∂M
∂z

(M-units/m)

Standard –0.039 0.118

Sub-refraction >0 >0.157

Normal –0.079 - 0 0.079 - 0.157

Super-refraction –0.157 - –0.079 0 - 0.079

Trapping <–0.157 <0

1.2.1 Electromagnetic Ducts

An electromagnetic duct is formed when the atmospheric index of refrac-

tion sharply decreases with altitude. There are two atmospheric processes that

can achieve this:

1. A humidity inversion, where the water-vapor content decreases with height.

2. A temperature inversion, where the temperature increases with height.

Land ducts usually occur at nights when the land mass cools down while

the upper air is not affected, creating a temperature inversion. Strong land ducts

can be produced if the ground is moist, enhancing the temperature inversion by a

humidity inversion.

Another duct formation is the thunderstorm duct. The relatively cool

air which spreads out from the base of a thunderstorm results in a temperature

inversion. This usually is strengthened by a humidity inversion created by the

moisture gradient of the thunderstorm.

However, the effects of the temperature inversion are not as strong as

that of the humidity inversion so any strong and persistent duct formation can

be sustained only in high humidity regions, hence the ocean and coastal areas.

The inherent moisture inversion profile in the lower atmosphere above large water

masses is a perfect environment for duct formation. When supported by a temper-

ature inversion (typically caused by advection of the warm and dry continental air
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over the coastal regions and the ocean) very strong sea ducts of several hundred

kilometer size can be formed, lasting for days. Typical examples that induce strong

duct formations include the Santa Ana of southern California, the Sirocco of the

southern Mediterranean, and the Shamal of the Persian Gulf.

The sea duct essentially is a fine-weather phenomenon. Since it requires

a strongly stratified atmosphere for temperature and humidity inversion, a well

mixed atmosphere due to poor weather conditions will prevent sea duct formation.

Rough terrain, high winds, cold, stormy, rainy, and cloudy conditions usually will

result in more uniform vertical temperature and humidity profiles, decreasing duct

formation. Therefore ducting is more common in equatorial, tropical, and sub-

tropical regions. Ducting is further enhanced in these regions due to the high

evaporation rate. The same is true for the summer and day time ducts [1, 2].
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Figure 1.2: Most common three duct types. Evaporation, surface-based, and ele-
vated ducts.

There are three major sea ducts frequently encountered in the lower at-

mosphere (Fig. 1.2):

1. Evaporation ducts (ED) are formed due to the inherent humidity inversion

at the air/sea boundary. They are the most commonly encountered type of

sea ducts. The air in contact with the sea is saturated with water vapor

and the water vapor decreases approximately as a logarithmic function of

height creating the evaporation duct structure given in Fig. 1.2 (a). The
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height at which the modified refractivity M becomes minimum is called the

evaporation duct height (EDH). ED formation is a strong function of latitude

since the necessary evaporation rates required cannot be sustained in colder

regions. For example, an evaporation duct with an EDH> 10 m occurs 92 %

of the time in the coastal regions of northern Brazil, whereas this number is

only 2 % at Bering Strait. EDH will very rarely be more than 40 m and the

world average is 13 m.

2. Surface-based ducts (SBD) are formed when sharp humidity and temperature

inversions occur due to the advection of warm and dry air over the ocean.

The humidity gradient is usually further enhanced due to the evaporation

from the sea surface. They are less common than the evaporation ducts

but usually have a more pronounced effect on electromagnetic propagation.

They typically are represented by a tri-linear profile with a negatively-sloped

trapping layer as given in Fig. 1.2 (b). When the bottom of the trapping layer

touches the sea surface, the SBD is sometimes referred to as a surface duct.

In both the SBD and ED, the sea surface serves as the bottom boundary for

the leaky electromagnetic waveguide.

3. Elevated ducts (ElevD) are formed due to the presence of marine boundary

layers. The resultant inversion is called tradewind inversion, generating an

strong duct at the top of the marine boundary layer. Elevated duct also has

a tri-linear profile similar to a SBD as given in Fig. 1.2 (c). Elevated ducts

are formed essentially from the same meteorological conditions as a SBD. In

fact, coastal SBD’s can slope upward to become elevated ducts. Similarly,

a tradewind inversion may intensify, turning an elevated duct into a SBD.

Elevated ducts usually occur at altitudes much higher than the SBD. For

example the average elevated duct height is 600 m and 1500 m, respectively

for the southern California coast and the coast of Japan. The fundamental

difference between an elevated duct and other duct types is that the duct
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is no more bounded below by the sea surface. This is especially important

for RFC, since the ducting conditions are inferred from the surface-reflected

sea clutter. Since elevated ducts do not interact with the surface, the RFC

techniques discussed in this dissertation cannot be used for elevated duct

prediction.

Annual regional statistics of different regions throughout the world are

given in Table 1.2.

Table 1.2: Some Regional Duct Statistics

Percent Occurrence (Annual Averages)

Region ED>10 m SBD ElevD multi–Elev. Elev.+SBD

D N D N D N D/N Avg. D/N Avg.

Persian Gulf 77 62 36 52 26 33 2.8 4.8

Gulf of Mexico 84 79 9 10 38 40 8.3 2.6

East China Sea 83 76 10 7 15 18 3.4 2.0

(Indian Ocean)

Diego Garcia 87 76 34 18 20 37 7.3 3.8

(Atlantic Ocean)

Rio Grande do Nor. 92 87 18 18 24 30 6.8 7.2

East Mediterranean 72 62 13 11 12 16 2.4 2.5

West Mediterranean 58 45 15 14 10 12 1.7 2.6

Yellow Sea 63 56 16 13 17 18 7.0 3.4

Southern California 46 35 23 15 33 38 5.6 3.2

Baltic Sea 12 8 2 3 3 4 0.6 0.4

Bering Strait 2 1 6 5 4 5 1.1 0.8

1.2.2 Effects of Ducts on Naval Radar and Communication Systems

Even though the sub-refractive and super-refractive conditions are im-

portant in their own right, they do not result in a major change in the shape of the

coverage diagram of a radar. On the contrary, trapping conditions will fundamen-
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tally alter the propagation characteristics, the coverage area, and hence almost all

of the important radar parameters as shown in Fig. 1.3.

The M-profile structure seen in Fig. 1.3 (a) is a weak evaporation duct.

Notice how the value of M increases at a rate of 0.118 M-units/m except for the

evaporative region near the surface. Since the evaporation duct is very weak it

does not affect the propagation as seen from its coverage diagram obtained using

the split-step fast Fourier transform (FFT) parabolic equation (PE). The upward

bending effect of the normal propagation conditions can be seen clearly. Since the

signal is bend upward, it has minimal interaction with the sea surface resulting

in a clear clutter map, defined as the clutter observed on the radar plan position

indicator (PPI).

Reflectivity image: April 02, 1998 Map # 040298-17 18:50:00.3
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Figure 1.3: Vertical M-profiles, coverage diagrams, and clutter maps resulting from
(a) a weak evaporation duct and (b) a strong surface-based duct.
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Fig. 1.3 (b) shows what happens in the event of the formation a lower

atmospheric duct. The coverage diagram is now entirely changed with a complex

waveguide-like propagation pattern within the duct. Since the electromagnetic

wave is trapped, it interacts heavily with the surface, resulting in an increase in

the sea clutter observed by the radar. With each bounce, a small portion of the

signal is scattered depending on the surface roughness and observed by the radar

as shown on the radar PPI. Since the surface bounces occur at certain ranges as

shown in the coverage diagram, it results in the formation of clutter rings around

the radar on the PPI screen. The RFC techniques introduced in this dissertation

uses this effect to estimate and track the atmospheric ducting conditions.

Figure 1.4: Effects of ducting on naval and communication systems.(Figure taken
from [1])

The propagation changes discussed above result in important deviations

in the radar/communication system characteristics as shown in Fig. 1.4. An impor-

tant effect of ducting is the change in the maximum radar detection/communication

channel range. For example, the range can be reduced significantly outside the duct

since most of the electromagnetic signal is trapped within the duct. These areas

are called radar holes. On the contrary, the maximum detection range within the
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duct increases typically from two to five times that of a standard atmospheric

case [2].

Moreover, ducting will also cause altitude errors in the target location

due to the strong bending of the wave. System performance may also suffer from

increased sea clutter.

1.2.3 Measurement of Duct Properties

The most accurate way of measuring the atmospheric refractivity profile is

using a microwave refractometer [2,3]. It measures the index of refraction directly

by using cavity resonance. It is composed of two microwave cavities fed by the

same source. One is an open cavity that will collect the sample of atmosphere

and the other one is a sealed cavity acting as a reference. The difference in the

resonance frequencies will indicate how much difference there is between the two

media, enabling the measurement of the n of the environment. Even with its very

high accuracy and measurement speed refractometers are expensive and must be

used with a helicopter or plane flying in a sawtooth pattern to obtain the two

dimensional height and range dependent profile greatly limiting their usage.

The most common measurement technique is measuring n indirectly from

the atmospheric temperature, humidity and pressure profiles, and using these in

(1.1). Radiosonde balloons [4] that carry conventional weather observation instru-

ments to measure these three environmental parameters are used for this purpose.

Their shortcomings are the slow response time (typically 30 min. to get a ver-

tical profile), slow update rate (typically one launch every two to twelve hours),

inability to obtain range-dependent profiles, local heat sources lowering the accu-

racy (especially the effect of the metallic body of the ship it is launched from),

non-vertical sampling due to the horizontal drift resulting from the wind, the need

of extra hardware and measurement, and the associated cost for these hardware.

These drawbacks also are valid for the rocketsondes that essentially do the same

thing.
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Doppler spread radars [5] are another way of gathering information about

the environment. Although they do not directly measure the refractivity profile,

they provide detailed temporal and spatial pictures of the structure parameter C2
n

describing the turbulent perturbations in the refractivity. This theoretically can be

used to extract refractivity itself. However, in practice, clouds, other contaminants,

the need for a high signal to noise ratio, and contamination of the doppler spectrum

due to non-turbulence related processes limit the effectiveness of the technique.

One other option is to forecast the ducting conditions using atmospheric

prediction models. One such has recently been developed by the US Navy. The

Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS), developed

by the Naval Research Laboratory (NRL), is a high-resolution, local weather-

prediction model coupled with a powerful data assimilation code that integrates re-

gional and satellite measurements [6,7]. It can provide a range-dependent “ducting

forecast” anywhere around the world and usually updates every 12 hours. How-

ever, COAMPS also has limited capabilities and the M-profile predictions near the

surface have relatively poor accuracy.

Another technique that can infer the refractivity is the lidar [8] tech-

niques such as the differential absorption lidar (DIAL) and the Raman lidar. Li-

dars are used to measure the temperature and water vapor profiles. DIAL uses

the strong wavelength-dependent absorption characteristics of atmospheric gases.

Raman-scattering lidars utilize a weak molecular scattering process which shifts

the incident wavelength by a fixed amount associated with rotational or vibra-

tional transitions of the scattering molecule. They can measure both horizontal

and vertical variations and are much faster than radiosondes. Disadvantages of

lidar are that it is a more complex technique using expensive equipment and that

lidars are limited by daytime background radiation and aerosol extinction.

The Global Positioning System (GPS) technique [9] is an attempt to

use GPS satellites to infer the atmospheric environment. Similar to the radar

signal, a GPS signal from a rising or setting satellite just over the horizon will
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be distorted while propagating through the duct. Therefore, it may be possible

to get information about the environment through which the GPS signal passes.

This method estimates duct parameters by matching the delays in the received

GPS signal using a ray-tracing code. Although still under development, GPS

measurements may be a promising alternative to the radiosonde measurements

due to higher update rates.

Finally, one can use the radar itself to gather information about the en-

vironment. The prospect of using the radar itself during its normal operation

without needing any other hardware or extra measurements makes the refractivity

from clutter (RFC) technique a promising alternative and addition to the methods

provided above. It would only require the radar clutter, the normally filtered-out

and discarded part of the radar signal, as its input. The technique potentially can

provide the estimation and tracking of the range, azimuth and time-dependent

three-dimensional cylindrical refractivity profile with the radar at its center. How-

ever it should also be noted that, similar to the techniques above, RFC comes

with its own limitations and assumptions as discussed in detail throughout the

dissertation.

1.3 Electromagnetic Propagation in the Lower Atmosphere

The electromagnetic theory section can be split into two sections. First

one describes the split-step fast Fourier transform parabolic equation approxima-

tion to the wave equation used in this work and the other describes the extraction

of the radar clutter return in this complex environment using the radar equation,

taking into account the very low-angle sea surface radar cross section and the

adjustment in the propagation loss due to the non-standard propagation.
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1.3.1 Tropospheric Propagation Using Split-Step Fast Fourier Trans-

form Parabolic Equation

Computation of the electromagnetic propagation in the atmosphere usu-

ally means solving the Maxwell’s equations for a very large domain of interest with

respect to the wavelength. This makes it impossible to solve the exact problem and

approximations are made to simplify the problem to a manageable size. For many

years, approximate methods such as the geometrical optics and mode theory have

been used in tropospheric propagation calculations involving complex refraction

problems such as the non-standard propagation formed under ducting conditions.

These methods were largely replaced in 1990’s by the parabolic equation (PE) fol-

lowing the introduction of the method in [10]. The formulation developed below

is based on the ones given in [11–14]. Two different PE codes are used through-

out this dissertation; our own code developed following [14] that is embedded into

our Monte Carlo sampler and tracking algorithm codes, and the Terrain Parabolic

Equation Model (TPEM) code written by Amalia E. Barrios [13].

Assuming a time harmonic variation of e−jwt, the two dimensional cylin-

drical scalar wave equation for the electromagnetic field ψ(r, z) in a homogeneous

medium with a refractive index n can be written as

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+
∂2ψ

∂z2
+ k2n2ψ = 0, (1.6)

where k is the wave number, r and z are range and height of the cylindrical coor-

dinates (r, θ, z), respectively. However, in reality the index of refraction will not be

constant in our inhomogeneous medium but a function of r and z as n(r, z). But

since the variation in n will almost always be very small relative to the wavelength,

(1.6) is still a highly accurate approximation.

An electromagnetic field trapped within the duct would have a canonical

outgoing solution to the wave equation in cylindrical coordinates in terms of a

Hankel function H1
0 (kr) of the first kind and of order 0. Since the Hankel function

can be represented by the first order term in its asymptotic expansion in the
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far-field, one can define the reduced function u(r, z) in terms of the field ψ(r, z)

propagating in the r-direction as

H1
0 (kr) ≃

√
2

πkr
ej(kr−π

4
) (1.7)

u(r, z) =
√
kre−jkrψ(r, z). (1.8)

where the square root term represents the decay in cylindrical spreading (1/
√
r

compared to the 1/r decay term of the classical spherical spreading). Inserting

(1.8) into (1.6) one can obtain the wave equation for a flat earth given by

{
∂2

∂r2
+ 2jk

∂

∂r
+

∂2

∂z2
+ k2(n2 − 1)

}
u(r, z) = 0, (1.9)

which can be factored as

{
∂

∂r
+ jk(1 −Q)

}{
∂

∂r
+ jk(1 +Q)

}
u(r, z) = 0. (1.10)

Q in (1.10) is a pseudo-differential operator defined by

Q (Q(u)) =
1

k2

∂2u

∂z2
+ n2u. (1.11)

By defining a special square root function that corresponds to the composition of

operators one can formally define Q as

Q =

√
1

k2

∂2

∂z2
+ n2(r, z). (1.12)

Finally one can define a function Z such that

Z =
1

k2

∂2

∂z2
+ (n2 − 1) (1.13)

Q =
√

1 + Z. (1.14)

One should note that there are inherent errors in the factorization given in (1.10).

If the index of refraction n varies considerably with range, then the operator Q

does not commute with the range derivative and the factorization fails.
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Now the wave equation can readily be split into outgoing and incoming

field components, each corresponding to a parabolic equation

∂u+

∂r
= −jk(1 −Q)u+ (1.15)

∂u−
∂r

= −jk(1 +Q)u−, (1.16)

where u+ and u− correspond to the forward and backward propagating waves, re-

spectively. Assuming that the backward propagating part of the wave is negligible

so that all the energy propagates in the forward direction the wave equation will

have a solution given by

u(r + △r, z) = ejk△r(−1+Q)u(r, z). (1.17)

This equation can be solved by marching techniques given the initial vertical field

profile at a desired initial range, and the necessary boundary conditions on the

bottom and top of the domain. The bottom of the domain is the sea/air interface

usually taken as a perfect electric conductor (PEC) boundary layer. The top is

an open infinite boundary condition so the artificially created domain truncation

will require an absorbing boundary condition to prevent the signal going upwards

from reflecting back into the region of interest.

The simplest approximation of (1.15) is obtained by using the first order

Taylor series expansions of the square root and exponential functions.

Q =
√

1 + Z ≃ 1 +
Z

2
(1.18)

This yields the standard parabolic equation (SPE)

∂2u(r, z)

∂z2
+ 2jk

∂u(r, z)

∂r
+ k2(n2(r, z) − 1)u(r, z) = 0. (1.19)

Note that (1.19) is exactly the same as the original equation (1.9) with the first term

dropped. This is because all the intermediate steps and approximations covered

above can be combined into a single narrow-angle condition called the paraxial or

parabolic approximation where

2k

∣∣∣∣
∂u

∂r

∣∣∣∣ ≫
∣∣∣∣
∂2u

∂r2

∣∣∣∣ , (1.20)
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which results in the cancelation of the first term in (1.9). Therefore, to approximate

the wave equation in this parabolic equation form the following conditions must

be satisfied [14]:

1. The equation is only valid within a narrow beam geometry called the paraxial

cone, typically not more than 10o. The first order error term associated with

increased propagation angle is proportional to sin4 α, where α is the angle

between the propagation direction and the horizontal paraxial direction r.

This error term will increase with α as 10−7, 10−3, and over 10−2 for 1o, 10o,

and 20o, respectively. More computationally expensive wider angle schemes

can be implemented using the Padé coefficients however lower atmospheric

duct calculations will typically require an angle less than 0.5o (see Fig. 1.5)

making the fast narrow angle code preferable to wide angle finite difference

schemes.

2. The field is valid only in the far-field, not close to the source.

3. The medium is only weakly inhomogeneous such as the part-per-million

changes involved here.

4. Most of the energy should be propagating forward without any significant

back scattering.

Equation (1.17) can be marched using the split-step fast Fourier transform

(FFT) method, where u(r, z) and U(r, p) are Fourier transform pair related by

U(r, p) = F {u(r, z)} =

∫ zmax

−zmax

u(r, z)e−jpzdz (1.21)

u(r, z) = F−1 {U(r, p)} =
1

2π

∫ pmax

−pmax

u(r, z)ejpzdp, (1.22)

where the transform variable is defined by p = k sinα, and the domain truncation

height is related to pmax using the Nyquist criteria zmaxpmax = Nπ, N being the

FFT size. Taking the FFT of the SPE (1.19) one can compute the closed form
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solution for U(r, p) as

−p2U(r, p) − 2jk
∂U(r, p)

∂r
+ k2(n2 − 1)U(r, p) = 0 (1.23)

U(r, p) = e−jp2r/(2k).ejk(n2−1)r/2, (1.24)

which will result in a marching solution of

u(r + △r, z) = ejk(n2−1)△r/2F−1
{
e−jp2△r/(2k)F {u(r, z)}

}
. (1.25)

An important step is the inclusion of the correction term in the first exponential

due to the earth flattening transformation. This will replace n2 with the modified

index of refraction m2 where

m(r, z) = n(r, z)e(z/a) ≃ n+
z

a
, 0 ≤ n− 1 ≪ 1, z ≪ a (1.26)

M(r, z) =
[
n(r, z) − 1 +

z

a

]
× 106 (1.27)

m2 − 1 ≃ 2(m− 1) = 2M(r, z) × 10−6. (1.28)

Although not critical for our case, a final improvement in (1.25) is obtained by

using a slightly improved wide angle approximation given in [13]. This will finally

result in the split-step FFT parabolic equation used throughout this dissertation

with a marching step given by

u(r + △r, z) = exp
[
iko△rM(r, z)10−6

]
× (1.29)

F−1
{

exp
[
i△r

(√
k2 − p2 − k

)]
F {u(z, r)}

}
.

A normalized Gaussian antenna pattern is used here as the starter field with

U(ro, p) = e−p2w2/4 (1.30)

w =

√
2 ln 2

k sin
(

αBW

2

) (1.31)

where αBW is the half power beamwidth. A launch angle other than the horizontal

is achieved by simply replacing U(ro, p) with U(ro, p− po), with po = ksinαo.

It should be noted that at high altitudes the earth flattening transforma-

tion given here becomes less accurate. Moreover, the modified index of refraction
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becomes large at high altitudes making the narrow-angle scheme inaccurate at

more than a few kilometers. However, the form given in (1.29) totally satisfies all

accuracy needs of the lower atmospheric narrow-angle ducted propagation envi-

ronments simulated in this work.

1.3.2 Radar Sea Clutter Calculation Under Non-Standard Propagation

Conditions

Using the classical radar equation, received radar clutter power can be

written as

Pc =
PtG

2
tλ

2F 4σ

(4π)3R4
, (1.32)

where Pt is the transmitter power, Gt is the transmit antenna gain, λ is the wave-

length, σ is the sea surface radar cross section (RCS), R is the range, and F is the

propagation factor (ratio of the electric field at a point to that which would have

been created by the same system operating in free space with the on-axis gain of

the antenna) [15]. After F is calculated at the effective scattering height given as

0.6 times the mean wave height [16], the one-way propagation loss L then can be

written as

L = Lfs/F
2 (1.33)

Lfs =
(4πR)2

λ2
, (1.34)

where Lfs is the free space loss. Sea surface RCS can be written as σ = Acσ
o,

where Ac is the illuminated area (proportional to R at small grazing angles) and

σo is the normalized sea surface radar cross section (RCS). Then the clutter power

can be written as

Pc =
PtG

2
t4πAcσ

o

L2λ2
(1.35)

Pc =
CσoR

L2
(1.36)

Pc,dB = −2LdB + σo(R)dB + 10 log10(R) + CdB, (1.37)
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where C accounts for all the constant terms [17].

In reality, both σo and F are functions of grazing angle, the effective

clutter height (which itself is a function of average wave height at the sea), range

and duct parameters. Hence, they can only be accurately calculated after the

forward model run with the additional knowledge of wind speed and direction.

There are various models such as the Georgia Institute of Technology model (GIT)

and hybrid model (HYB) and in present codes such as the Advanced Refractive

Effects Prediction System (AREPS), a modified GIT is used [1, 16, 18].

The grazing angle Ψo dependence for vertical polarization is still an active

research subject. It is not easy to determine the exact nature of the dependence

of the sea surface RCS to the grazing angle and dependencies between Ψ0
o and Ψ4

o

are reported in the literature [19,20]. However, one main problem is that many of

these studies are done under conditions where either there is no ducting or where

there is no information about the duct. In his evaporation duct height inversion

paper [21], Rogers et al. report that while the data did not provide a definitive

answer to the grazing angle dependency problem, the use of σo ∝ Ψ0
o generated

the best results in his duct height estimation algorithm.

One interesting difference of a ducted environment relative to the stan-

dard atmospheric conditions is that, as the electromagnetic wave gets trapped and

propagates inside the duct, the surface grazing angle converges to a constant value.

This phenomenon is very unlike the 1/R variation of Ψo with respect to the range

that would be observed in a low-angle non-ducting atmosphere. Hence, regardless

of the assumed dependence of the sea surface RCS on the grazing angle, the grazing

angle and hence σo will become constant under ducting conditions after a certain

range value. This assumes similar conditions such as the wind profile throughout

the desired range interval. To show this, an electromagnetic ray-tracing is per-

formed to observe the dependence of Ψo on the ducting conditions as a function of

range as given in Fig. 1.5. It can clearly be seen that for long ranges the grazing

angle is almost constant and the minimum range where one can assume a constant
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Ψo decreases as the strength of the duct increases.

Combining this fact with the observations given in [21] (that σo ∝ Ψ0
o, i.e.

independent, or at most weakly dependent), one could arguably state that range-

dependence of σo in (1.37) can be dropped if only the power clutter at ranges larger

than a Rmin is used in the inversion. This value is selected to be 12 km in [21] and

a value of 10 km has been used throughout this dissertation.

One other practical problem is the level of the clutter signal at longer

ranges. The Space Range Radar (SPANDAR) used to measure the radar clutter in

the Wallops Island experiments used in this thesis is a high power, high gain system

relative to a sea-borne naval radar. It can achieve typically a 40 dB clutter-to-noise

ratio (CNR) at 10 km range with CNR dropping to 0 dB anywhere between 30 to

50 km for an evaporation duct environment depending on various other conditions

such as the wind and ducting strength. An average naval system will probably

have a 0 dB CNR at 20-25 km. This value is typically much higher in surface-

based duct cases. This limits the maximum range of the clutter that can be used in

the inversion. Rmax values of 25 km and 60 km (the main reason for the selection

of 60 km in the SBD case is because the helicopter measurements are limited to

0-60 km range, not the lack of clutter power) are selected for the evaporation and

surface-based ducts, respectively, throughout this dissertation.

To summarize, the main issue here in a practical system will be the se-

lection of ranges which will be used in the inversion. Short ranges are preferred

since at close ranges the returned clutter is larger (high CNR), whereas constant

grazing angle assumption is more accurate at longer ranges. The selected values

will also strongly depend on the radar parameters, especially its height, power and

gain and the mean environment the radar will be operating in. Depending on

the system, GIT or modified GIT clutter models may be more accurate than the

assumptions used in this work. Ranges between 10-25 km and 10-60 km are used

in this dissertation for the evaporation duct inversions and the surface-based duct

inversions, respectively.
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Figure 1.5: Sea surface grazing angle as a function of range for different evaporation
duct heights computed using ray-tracing.

1.4 Statistical Estimation and Tracking

A Bayesian framework was adopted throughout this dissertation. All the

environmental parameters were selected as random variables with posterior prob-

ability density functions (pdf’s). This statistical estimation allowed the projection

of the environmental probabilities into the pdf’s of parameters-of-interest as shown

in Fig. 1.6. Measured data d, which is the radar clutter return, is mapped into a

posterior distribution p(m|d) of environmental duct parameters m. The environ-

mental parameters are then mapped into the usage domain U as p(u|d) via Monte

Carlo integration. u typically constitutes the propagation factor (F ) or the one-

way transmission loss (L) so that p(u|d) can be used in radar calculations such as

the detection probability (PD), two-dimensional coverage diagrams and the false
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alarm rate.

Environmental

domain

Utility u

Data domain

Usage domain
m

d

u

Figure 1.6: An observation d is mapped into a distribution of environmental pa-
rameters m that potentially could have generated it. These environmental param-
eters are then mapped into the usage domain u.

The list of techniques used in this work are given as below. Each of these

techniques is summarized in their prospective chapters.

• Genetic Algorithms (GA)

• Simulated Annealing (SA)

• Metropolis-Hastings (MCMC) Sampler

• Gibbs (MCMC) Sampler

• Hybrid GA-MCMC Sampler

• Extended Kalman Filter (EKF)

• Unscented Kalman Filter (UKF)

• Sequential Importance Resampling Particle Filter (SIR-PF)

1.5 Scope of This Dissertation

The major contents of this dissertation consist of three chapters, Chapters

2 to 51. The first two of these chapters deals with the statistical estimation of the

1Each chapter is essentially a full or partial reprint of papers that are published, accepted, or submitted

to a professional journal. Therefore, each has been written in a paper format and is self-contained.
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atmospheric index of refraction while Chapter 5 covers the spatial and temporal

tracking of it.

Chapter 2 is devoted to the analysis of the RFC inversion problem using

different Markov chain Monte Carlo samplers (MCMC) [22]. A typical range-

independent tri-linear surface-based electromagnetic duct is estimated statistically

using Metropolis-Hastings [23] and Gibbs [24] samplers. The main purpose is esti-

mating statistically the uncertainties in the environmental parameters and project-

ing these into the posterior probability densities of transmission loss and propaga-

tion factor using Monte Carlo integration that can be used to predict and in some

cases correct the radar performance operating in such an environment. The results

are checked with exhaustive search and compared with previous studies conducted

using genetic algorithms [17]. The methods are then successfully tested on data col-

lected during the Wallops Island 1998 experiment conducted by the Naval Surface

Warfare Center, Dahlgren Division that included both range-dependent environ-

mental refractivity measurements using the helicopter provided by the Applied

Physics Laboratory, John Hopkins University and radar clutter maps obtained

during the operation of the Space Range Radar (SPANDAR). The results showed

that these methods can accurately compute the required Monte Carlo integrations

but needed high number of forward model runs which are composed of propagating

the electromagnetic signal in these complex environments using the split-step FFT

PE method and hence are not suitable for a real or near-real time statistical RFC

estimator. Moreover, inclusion of range-dependence results in an increase in the

number of environmental parameters to be estimated and an increased dimension

of the parameter state-space, making these algorithm even less suitable for real-

time applications. This resulted in a search for techniques that would necessitate

fewer forward model runs with a minimal degradation in the MCMC performance.

This problem is addressed in Chapter 3. A hybrid genetic algorithms

(GA) – Markov chain Monte Carlo method [25] based on the nearest neighbor-

hood algorithm proposed in [26, 27] is implemented. This method uses a Voronoi
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decomposition scheme that divides the entire state space into Voronoi cells, effec-

tively discretizing the entire multi-dimensional state space. These cells are centered

around the set of samples obtained from the entire set of generations of popula-

tions of the preceding genetic algorithms run. This creates an approximation to

the environmental posterior density, which subsequently is resampled by a MCMC

sampler such as the Gibbs algorithm to accurately compute the necessary MC

integrals. This method removes computation of the forward model during the re-

sampling MCMC phase and can result in a large reduction in the forward model

runs required. The hybrid method is compared with the classical MCMC samplers

used in the previous chapter. The results showed that accurate MC integrals can

be computed using much smaller set of GA samples. Then the method is suc-

cessfully used to estimate an range-dependent inversion of the environment in the

Wallops Island 1998 experiment data.

Chapter 4 treats the RFC problem as a real-time tracking problem [28–

31]. The purpose is to perform a real-time tracking of the three dimensional envi-

ronment within a circular radius centered on the radar system. This requires both

temporal and spatial tracking of the environmental parameters. The problem is

non-linear due to the split-step FFT PE and usually non-Gaussian due to the prior

densities obtained from either inversions performed in Chapters 2 and 3 or from

some other source such as the regional statistics or COAMPS forecasts. More-

over, the strength of the non-linearity depends on the environment. For example,

surface-based and mixed type ducts show highly nonlinear electromagnetic propa-

gation characteristics whereas evaporation ducts result in only mild non-linearities.

This necessitates implementation and comparison of different types of tracking fil-

ters for different scenarios that are commonly encountered in maritime regions.

The advantages and drawbacks of each filter and selection of the best possible fil-

ter for various environmental conditions are addressed. Three filters, namely the

extended Kalman (EKF), unscented Kalman (UKF), and particle filters (PF), are

used [32]. The Sequential Importance Resampling (SIR) algorithm is used in the
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implementation of the PF. Both Kalman filters performed poorly in surface-based

duct environments with high-nonlinearities. On the contrary, the PF performed

well in these environments with a mean square error (MSE) converging to that

predicted by the posterior Cramér-Rao lower bound (PCRLB). The Kalman filters

performed much better in evaporation duct tracking applications.

Finally, Chapter 5 addresses the conclusions of this dissertation and sug-

gestions for possible future work.
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Estimation of Radio Refractivity

from Radar Clutter Using

Bayesian Monte Carlo Analysis

This paper describes a Markov Chain Monte Carlo sampling approach

for the estimation of not only the radio refractivity profiles from radar clutter but

also the uncertainties in these estimates. This is done by treating the Refractivity

From Clutter (RFC) problem in a Bayesian framework. It uses unbiased Markov

Chain Monte Carlo (MCMC) sampling techniques, such as Metropolis and Gibbs

sampling algorithms, to gather more accurate information about the uncertain-

ties. Application of these sampling techniques using an electromagnetic split-step

fast Fourier transform parabolic equation propagation model within a Bayesian

inversion framework can provide accurate posterior probability distributions of

the estimated refractivity parameters. Then these distributions can be used to

estimate the uncertainties in the parameters-of-interest. Two different MCMC

samplers (Metropolis and Gibbs) are analyzed and the results are compared not

only with the exhaustive search results but also with the genetic algorithm (GA)

results and helicopter refractivity profile measurements. Although it is slower than

global optimizers, the probability densities obtained by this method are closer to

30
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the true distributions.

2.1 Introduction

An accurate knowledge of radio refractivity is essential in many radar

and propagation applications. Especially at low altitudes, radio refractivity can

vary considerably with both height and range, heavily affecting the propagation

characteristics. One important example is the formation of an electromagnetic

duct. A signal sent from a surface or low altitude source, such as a ship or low-

flying object, can be totally trapped inside the duct. This will result in multiple

reflections from the surface and they will appear as clutter rings in the radar PPI

screen (Fig. 2.1). In such cases, a standard atmospheric assumption with a slope

of modified refractivity of 0.118 M-units/m may not give reliable predictions for a

radar system operating in such an environment.

Ducting is a phenomenon that is encountered mostly in sea-borne ap-

plications due to the abrupt changes in the vertical temperature and humidity

profiles just above large water masses, which may result in an sharp decrease in

the modified refractivity (M-profile) with increasing altitude. This will, in turn,

cause the electromagnetic signal to bend downward, effectively trapping the signal

within the duct. It is frequently encountered in many regions of the world such

as the Persian Gulf, the Mediterranean and California. In many cases, a simple

tri-linear M-profile is used to describe this variation. The coverage diagram of a

trapped signal in such an environment is given in Fig. 2.2.

The first attempt in estimating the M-profile from radar clutter returns

using a maximum likelihood (ML) approach was made in [1] and was followed by

similar studies, which used either a marching-algorithm approach [2] or the global-

parametrization approach [3, 4]. The later is adopted in this work. The main

purpose of these studies is to estimate the M-profile using only the radar clutter

return, which can readily be obtained during the normal radar operation, without
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requiring any additional measurements or hardware. A near-realtime estimation

can be achieved with a sufficiently fast optimizer. Moreover, information obtained

from other sources can be easily incorporated into the Bayesian formulation, e.g.

the statistics of M-profiles in the region, meteorological model simulation results,

helicopter, radiosonde or some other ship-launched in situ instrument measure-

ments.

Reflectivity image: April 02, 1998  Map # 040298−12  18:00:00.3
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Figure 2.1: Clutter map from Space Range Radar (SPANDAR) at Wallops Island,
VA.

To address the uncertainties in the M-profile parameter estimates, deter-

mination of the basic quantities such as the mean, variance and marginal posterior

probability distribution of each estimated parameter is necessary. They can be

computed by taking multi-dimensional integrals of the posterior probability den-
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sity (PPD), which can be accomplished by a Markov Chain Monte Carlo (MCMC)

sampling method within a Bayesian inversion structure. MCMC is selected be-

cause it provides unbiased sampling of the PPD, unlike global optimizers such

as the genetic algorithm, which usually over-sample the peaks of the PPD and

introduce a bias [5].

Bayesian inversion is a likelihood-based technique which, when combined

with a powerful sampling algorithm such as MCMC, can be an effective tool in

the estimation of uncertainty in non-linear inversion problems such as the elec-

tromagnetic refractivity from clutter (RFC) inversion. An alternative approach,

which does not make use of likelihood is given in [6]. The likelihood formulations

are based on those used in [7]. The MCMC sampler employs a split-step FFT

parabolic equation code as its forward propagation model.

2.2 Theory

The M-profile is assumed range-independent and a simple tri-linear profile

is used to model the vertical M-profile (Fig. 2.3). An M-profile with n parameters

is represented by the vector m, with the element mi being the value of the ith

parameter. Each of these environmental parameters is then treated as an unknown

random variable. Therefore, an n-dimensional joint posterior probability density

function (PPD), can be defined using all of the parameters. All of the desired

quantities such as the means, variances and marginal posterior distributions can

be found using the PPD. A summary of the notation used is given in Table 2.1.

The n-parameter refractivity model m is given to a forward model, an

electromagnetic split-step FFT parabolic equation, along with the other necessary

input parameters such as frequency, transmitter height, beamwidth, antenna beam

pattern [8,9]. The forward model propagates the field in a medium characterized by

m and outputs the radar clutter f(m). This is then compared with the measured

clutter data d and an error function φ(m) is derived for the likelihood function.
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In previous global-parametrization approaches, this error function was used by a

global optimization algorithm such as the genetic algorithm (GA), which would

minimize φ(m) and reach the maximum likelihood (ML) solution. Instead of GA,

a likelihood function based on φ(m) can be used in a Metropolis or Gibbs sampler.

This makes it possible to get not only the ML solution but also better estimates

for the uncertainties in terms of variances, marginal and multi-dimensional PPD’s.

2.2.1 Bayesian Inversion

RFC can be solved using a Bayesian framework, where the unknown en-

vironmental parameters are taken as random variables with corresponding 1-D

probability density functions (pdf) and a n-dimensional joint pdf. This probabil-

ity function can be defined as the probability of the model vector m given the

experimental data vector d, p(m|d), and it is called the posterior pdf (PPD). m

with the highest probability is referred to as the maximum a posteriori (MAP) so-

lution. For complex probabilities, global optimizers such as the genetic algorithm

or simulated annealing can be used to find the MAP solution. An alternative to

this is minimizing the mean square error between clutter data d and the recon-

structed clutter f(m). It is referred to as the Bayesian minimum mean square

error (MMSE) estimator and can easily be shown to be equal to the vector mean

of p(m|d) [10]. Both estimates are calculated in this work. Due to the fact that

a non-informative prior is used, MAP and ML solutions are the same and will be

referred simply as ML from now on. The posterior means, variances and marginal

probability distributions then can be found by taking n- or (n − 1)-dimensional

integrals of this PPD.

µi =

∫
. . .

∫

m
′

m
′

ip(m
′ |d)dm

′

(2.1)

σ2
i =

∫
. . .

∫

m
′

(m
′

i − µi)
2p(m

′ |d)dm
′

(2.2)

p(mi|d) =

∫
. . .

∫

m
′

δ(m
′

i −mi)p(m
′ |d)dm

′

(2.3)
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Posterior density of any specific environmental parameter such as the M-deficit or

the duct height can be obtained by marginalizing the n-dimensional PPD as given

in (2.3). Joint probability distributions can be obtained using similar integrations.

For further details about Bayesian inverse theory see [10, 11].

The posterior probability can be found using Bayes’ formula:

p(m|d) =
L(m)p(m)

p(d)
(2.4)

with

p(d) =

∫

m

p(d|m)p(m)dm. (2.5)

The likelihood function L(m) will be defined in the next section. The prior p(m)

represents the a priori knowledge about the environmental parameters, m, before

the experiment. Therefore, it is independent of the experimental results and hence,

d. The evidence appears in the denominator of the Bayes’ formula as p(d). It is

the normalizing factor for p(m|d) and it is independent of the parameter vector

m. A non-informative or flat prior assumption will reduce (2.4) to

p(m|d) ∝ L(m) (2.6)

2.2.2 Likelihood Function

Assuming a zero-mean Gaussian-distributed error, the likelihood function

can be written as

L(m) = (2π)−NR/2|Cd|−1/2 (2.7)

× exp

[
−(d − f(m))TC−1

d (d − f(m))

2

]
,

where Cd is the data covariance matrix, (·)T is the transpose and NR is the num-

ber of range bins used (length of the data vector, d). Further simplification can

be achieved by assuming that the errors are spatially uncorrelated with identical

distribution for each data point forming the vector d. For this case, Cd = νI,
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where ν is the variance and I the identity matrix. Defining an error function φ(m)

by

φ(m) = |d− f(m)|2 =

NR∑

i=1

|di − fi(m)|2, (2.8)

the likelihood function can be written as

L(m) = (2πν)−NR/2 exp

[
−φ(m)

2ν

]
. (2.9)

Therefore, recalling (2.6), the posterior probability density can be expressed as

p(m|d) ∝ exp

[
−φ(m)

2ν

]
. (2.10)

The calculation of probabilities of all possible combinations along a predetermined

grid is known as the exhaustive search and practically can be used for up to 4 –

5 parameters, depending on the forward modeling CPU speed. However, as n

increases further it becomes impractical. Therefore, there is a need for an effective

technique that can more efficiently estimate not only the posterior probability

distribution but also the multi-dimensional integrals given in (2.1) – (2.3).

2.2.3 Markov Chain Monte Carlo Sampling

MCMC algorithms are mathematically proven to sample the n-dimensional

state space in such a way that the PPD obtained using these samples will asymp-

totically be convergent to the true probability distribution. There are various

implementations of MCMC such as the famous Metropolis-Hastings (or simplified

Metropolis version) algorithm, which was first introduced in [12] and Gibbs sam-

pling, which was made popular among the image processing community by [13].

They are extensively used in many other fields such as geophysics [11] and ocean

acoustics [5, 14, 15].

To have asymptotic convergence in the PPD, a Markov chain sampler

must satisfy the “Detailed Balance” [16]. Markov chains with this property are

also called reversible Markov chains and it guarantees the chain to have a station-

ary distribution. MCMC samplers satisfy this detailed balance. Moreover, we can
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set up the MCMC such that the desired distribution (PPD) is the stationary distri-

bution. Hence, the sample distribution will converge to the PPD as more and more

samples are collected. Global optimizers do not satisfy detailed balance and they

usually over-sample the high probability regions since they are designed as point

estimators, trying to get to the optimal solution point fast, not to wander around

the state space to sample the distribution. On the contrary, an unbiased sampler

following MCMC rules will spend just enough time on lower probability regions

and the histogram formed from the samples will converge to the true distribution.

Metropolis and Gibbs samplers are selected as the MCMC algorithms to

be used here. The working principle for both methods is similar. Assume the

ith sample is mi = [mi
1 m

i
2 . . . m

i
n]. In the n−dimensional parameter space, new

MCMC samples are obtained by drawing from n successive 1-D densities. Selection

of the next MCMC sample mi+1 = [mi+1
1 mi+1

2 . . . mi+1
n ] starts with fixing all

coordinates except the first one. Then the intermediate point [mi+1
1 mi

2 . . . m
i
n] is

selected by drawing a random value from a one-dimensional distribution around

mi
1. The new point, [mi+1

1 mi
2 . . . m

i
n] is then used as the starting point to update

the second parameter by drawing a value for m2. The next sample mi+1 is formed

when all the parameters are updated once successively. The difference between the

two methods lies in the selection of the 1-D distributions.

Metropolis Algorithm

In the more general Metropolis-Hastings algorithm, the 1-D distribution

can be any distribution. However, in the simplified version, called the Metropolis

algorithm, the 1-D distribution has to be symmetric. The most common ones

used in practice are the uniform and Gaussian distributions (A variance of 0.2 ×
search interval is used) centered around the mi. Likelihood is assumed to be zero

outside the search interval. After each 1-D movement, the Metropolis algorithm

acceptance/rejection criterion is applied. The criterion to update the jth parameter
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can be given as:

a =
p(mproposed

j )

p(mi
j)

(2.11)

mi+1
j =





mproposed
j (Accept), if a > rand[0,1]

mi
j (Reject), else.

The probability p(m|d) for any model vector m can be calculated using (2.10).

Gibbs Algorithm

For Gibbs sampling, the 1-D distribution is not any random distribution

but the conditional pdf at that point itself with all other parameters fixed. There-

fore, the jth parameter mi+1
j is drawn from the conditional pdf p(mj |mi+1

1 mi+1
2 . . .

mi+1
j−1m

i
j+1 . . .m

i
n). For example, the first intermediate point [mi+1

1 mi
2 . . . m

i
n] is

selected by drawing from the conditional 1-D pdf obtained by fixing all m except

m1, p(m1|mi
2m

i
3 . . . m

i
n).

There are two possible advantages in this method. First of all, this

method is especially powerful in applications, where 1-D conditional pdf’s are

known. Secondly, since the samples are selected from the conditional pdf’s instead

of some random distribution, Metropolis-Hastings acceptance/rejection criterion

will always accept any selected point. Unfortunately, these pdf’s are not known

here and are found using exhaustive search, which makes this method less attrac-

tive in RFC applications. For further details see [17] and [18].

Once the algorithm converges (see Section 3.3), we will have a set {m1,m2,

m3, . . . ,mN} of N samples that will be used to form the PPD and any other desired

quantity as explained in the next section.
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2.2.4 Monte Carlo Integration

Monte Carlo integration method can be used to evaluate (2.1) – (2.3).

Notice that all of those equations are of the form

I =

∫
g(x)p(x)dx, (2.12)

where x is a random variable with a pdf of p(x), and g(x) is some function of x.

Monte Carlo integration [16] states that if a large enough set of random x values

are drawn from its own pdf, {x1, x2, x3, . . . , xN}, the integral can be estimated as:

I ≈ 1

N

N∑

i=1

g(xi). (2.13)

One of the biggest advantages of using an MCMC sampler comes from the ease at

which the MCMC and the MC integration can be combined. Remembering that

MCMC actually samples the n-dimensional posterior distribution, p(m|d), it will

be clear that once MCMC converges, the set of MCMC samples can be directly

used to calculate these multi-dimensional integrals.

2.3 Implementation

The most attractive property of the MCMC algorithm is that the result is

guaranteed to converge to the true distribution when a large enough set of samples

is collected. However, classical Metropolis/Gibbs sampling can be slow computa-

tionally and some modifications are needed to make it faster without affecting the

end results. There are two main drawbacks of MCMC’s that decrease their speed

and they are discussed in the following two sections.

2.3.1 Burn-in Phase

The first drawback is related to the distance between the starting point

and the high probability regions. Without any prior information, the algorithm

would start from a random m, which may be far from the high probability regions.
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(a) (b)

Figure 2.4: Full implementation of the MCMC algorithm: (a) burn-in and initial
sampling phases in the original parameter space, and (b) two parallel-running
samplers operating on the new parameter landscape after coordinate rotation.

This is a concern since, unlike a global optimizer, it may take a considerable number

of iterations for the MCMC to reach the high probability regions. Hence, it must

be correctly guided or initialized before the sampling is started. The classical

MCMC can be modified to include an initialization phase, which is commonly

referred as the “burn-in” phase (Fig. 2.4(a)). In most cases, the burn-in section

itself is actually a global optimizer. A genetic algorithm (GA) or a fast cooling

simulated annealing (SA) algorithm can be good candidates. Both were used here

and gave good results. If a fast cooling SA is to be used, the temperature T should

be lowered until it reaches T = 1 so that the Boltzmann distribution used for SA

actually becomes the likelihood function itself at that temperature [16].

pSA(m) = exp

[
−φ(m)

2νT

]
=⇒ L(m) (2.14)

2.3.2 Initial Sampling and Coordinate Rotation

The second drawback is based on the effects of inter-parameter correla-

tion. Recalling that there is freedom of movement only in the directions parallel to
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parameter axes, it is hard to sample highly correlated PPD’s (Fig. 2.4(a)). With

only vertical and horizontal movements allowed, it will take many samples to move

from one end to the other of the slanted high probability areas, whereas it can be

done with a much smaller number of samples in an uncorrelated case.

The remedy lies in a rotation of coordinate in the n-dimensional parame-

ter space [19]. Instead of applying Metropolis sampling in the correlated parameter

space, a new set of uncorrelated parameters are defined by applying an orthogonal

coordinate transformation that diagonalizes the model covariance matrix Cm. The

rotation matrix R is found by eigenvalue-eigenvector decomposition of Cm :

Cm = R Λ RT , m̃ = RT m (2.15)

where Λ is a diagonal matrix containing the eigenvalues of the covariance matrix,

R is the orthonormal rotation matrix, whose columns contain the eigenvectors of

Cm and m̃ is the rotated model vector. The model covariance matrix is found

using samples drawn from the PPD after the burn-in phase. Only a small number

of MCMC samples (about 1000) are enough to find Cm due to its fast converging

nature [5, 14]. This is referred as the initial sampling phase. After this phase, the

parameter space is rotated before the final sampling phase starts.

2.3.3 Final Sampling Phase and Convergence

The final sampling phase simply is composed of two independent, parallel-

running Metropolis (or Gibbs) samplers in the rotated space, sampling the same

PPD (Fig. 2.4(b)). The algorithm uses a convergence criterion based on the

Kolmogorov-Smirnov (K-S) statistic function D of the marginal posterior distri-

butions [20]. p(mj |d)’s are calculated using (2.3) as each new sample is drawn. A

pair of p(mj|d), one from each sampler, is calculated for each parameter mj . Then

the K-S statistic is calculated for each parameter as:

Dj = max
mj

∣∣P2(mj |d) − P1(mj|d)
∣∣, (2.16)
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where P1(mj |d) and P2(mj|d) represent the cumulative marginal distribution func-

tions for the two parallel-running samplers. The simulation is assumed to have

converged when the largest Dj term is less than ǫ (ǫ = 0.05 is used here). After

the convergence criterion is met, these two independent sets are combined to form

a final set twice as large so that the difference between the true distribution and

the estimated one is expected to be even less.

To use the likelihood equation (2.9), the error variance ν must be esti-

mated. In this paper, an estimate for ν is calculated using an ML approach. To

find the ML estimate of the variance, ∂L/∂ν = 0 is solved and evaluated at the

ML model estimate m̂. This results in

ν̂ = |d− f(m̂)|2/ NR. (2.17)

m̂ itself is estimated using a global optimizer, usually the value obtained at the

end of the burn-in phase.

Equation (2.17) assumes the measurements at different ranges are uncor-

related, which may not be the case. Gerstoft and Mecklenbräuker [7] suggested

replacing NR with Neff , number of effectively uncorrelated data points. More de-

tailed discussion can be found in [14, 15].

Received clutter power can be calculated as given in [3], in terms of the

one-way loss term L in dB as:

f(m) = −2L+ 10 log(r) + C, (2.18)

where C is a constant that includes wavelength, radar cross-section (RCS), trans-

mitter power, antenna gain, etc. If these values are known, they can be included

into the equation. However, one or more may be unavailable such as the mean

RCS or transmitter specifications. An alternative, which is used here, is discard-

ing these constant terms, which is done by subtracting both the mean of the replica

clutter f(m) from itself and the mean of the measured clutter d from itself before

inserting them into the likelihood function.
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2.3.4 Post-Processing

After the MCMC sampler converges with a set of refractivity parameters

{m1,m2,m3, . . . ,mN}, a post-processing section is needed to convert the uncer-

tainty in the M-profile into other parameters of interest that could be used by the

radar operator, such as the propagation factor and the one-way propagation loss.

Assume an end-user parameter u, which can be expressed as a function

of model parameters u = g(m). The posterior probability distribution of u, PPDu

can be simply calculated by drawing a large amount of samples of m from its own

PPD and calculating g(.) for each one. Then this set of g(m) can be used to

obtain the PPDu or perform any other uncertainty analysis of u using (2.1) – (2.3)

and MC integration.

Since the usage of an MCMC sampler guarantees that {m1,m2,m3, . . . ,

mN} is a large enough set drawn from its own PPD, this set can readily be used

to obtain the statistics of u.

2.4 Examples

This section is composed of both synthetic and experimental examples.

Four different algorithms, two of which are MCMC, are first tested using synthetic

data generated by Terrain Parabolic Equation program (TPEM) [8]. Then the data

gathered during the Wallops’98 Space Range Radar (SPANDAR) measurement is

analyzed using the Metropolis sampler and GA.

2.4.1 Algorithm Validation

To validate the MCMC algorithms, a comparison with the true distri-

bution is necessary. The true distribution can be obtained by using exhaustive

search, however, it is extremely inefficient and demands a large number of forward

model runs. Even if only 25 discrete possible values are assumed for each of the

4 parameters used for the model in Fig. 2.2, the state space consists of 254 =
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3.9×105 (390k) possible states. A simple range-independent tri-linear model with

only 4 parameters is used since an exhaustive search would need around 10000k

forward model runs for 5 parameters. The number of forward model runs needed

for MCMC is proportional to the dimension size so as dimension size increases it

requires much fewer samples than the exhaustive search. The selected parameters

are the slope and height of the base layer (c1 & h1) and the slope and thickness

of the inversion layer (c2 & h2) as shown in Fig. 2.3. Their test case values and

the search bounds are given in Table 2.2. A standard atmosphere with a vertical

refractivity gradient (top layer slope) of 0.118 M-units/m is assumed above the

inversion layer. Parameters are selected in terms of the heights and slopes instead

of the classical heights and widths (such as the frequently used inversion thickness

and M-deficit) due to their relatively smaller inter-parameter correlation.

The synthetic data is generated by TPEM at a frequency of 2.84 GHz,

antenna 3dB beamwidth of 0.4o, source height of 30.78 m and a radar clutter

standard deviation of 10 dB, a typical value reported also in [21]. Inversion is done

using four different methods for a range of 10-60 km.

The convergence characteristics of both MCMC algorithms are similar.

The results of the initial sampling phase is given in Fig. 2.4.1 in terms of a con-

vergence plot for the model covariance matrix Cm. The percent error is calculated

as the average absolute percent change in all matrix entries of Cm as the matrix is

recalculated while new samples are taken. The matrix converges quickly and for

this case, only 250 samples were sufficient to have a good estimate of Cm.

After the rotation matrix is obtained, two independent Metropolis/Gibbs

algorithms run during the final sampling phase until the convergence criterion given

in Section 3.3 is met (Fig. 2.6). Dosso [5] reported convergence in 7×105 (700k)

forward models with a Gibbs sampler and around 100k with a fast Gibbs sampler

(FGS). Similarly, Battle et al. [15] reported convergence in 63k models using a

less strict convergence criterion, again with a FGS. Due to the modifications in

the Metropolis/Gibbs algorithms used here, they also can be classified as “fast”
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Figure 2.5: Initial sampling phase - convergence of the model covariance matrix in
terms of percent error. Cm later will be used for coordinate rotation.

samplers. Therefore, a typical value of 100k models is in agreement with the

previous applications of MCMC algorithms. During the simulations, values as low

as 20k models and higher than 150k models were encountered.

The marginal distributions of the four parameters are given Fig. 2.7.

Except for exhaustive search, the results for all others are calculated using the MC

integration. The exhaustive search result (Fig. 2.7(a)) is obtained with 25 discrete

values per parameter and 390k samples whereas both Metropolis (Fig. 2.7(b))

and Gibbs (Fig. 2.7(c)) samplers use approximately 70k samples and the genetic

algorithm (Fig. 2.7(d)) uses less than 10k samples. The results of the Metropolis

algorithm and GA are also summarized in Table 2.2. The MATLAB GA toolbox

[22] is used for GA results. It uses 3 isolated populations of size 40 each with a
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Figure 2.6: Final sampling phase - Kolmogorov-Smirnov statistic D for each pa-
rameter. Used for the convergence of the posterior probability density.

migration rate of 0.025 per 10 generations, a mutation rate of 0.10 and a cross-over

fraction of 0.8.

All four algorithms have almost identical ML estimates for the parame-

ters. However, it should be noted that MCMC samplers converged after collecting

nearly 7 times more samples than GA. On the other hand, the distributions ob-

tained from the MCMC samplers are closer to the true distributions given by

exhaustive search.

Marginal and 2-D posterior distributions obtained by the Metropolis sam-

pler are given in Fig. 2.8. The diagonal pdf’s are the 1-D marginal pdf’s and the

off-diagonal plots are the 2-D marginal pdf’s, where the 50, 75, and 95% highest

posterior density regions (HPD) are plotted, with the ML solution points (white
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Figure 2.7: Marginal posterior probability distributions for the synthetic test case.
Vertical lines show the true values of the parameters. (a) exhaustive search, (b)
Metropolis algorithm, (c) Gibbs algorithm, and (d) genetic algorithm.

crosses). In Bayesian statistics, credibility intervals and HPD regions are used to

analyze the posterior distributions. They are very similar to the confidence interval

and their definitions can be found in [23].

2.4.2 Wallops Island Experiment

The Metropolis sampler is used to analyze the data collected from the

Wallops Island 1998 experiment conducted by Naval Surface Warfare Center,

Dahlgren Division (Fig. 2.9). The radar clutter data gathered by Space Range
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Figure 2.8: Both 1-D marginal (diagonal) and 2-D marginal (upper diagonal)
PPD’s for the synthetic test case obtained by the Metropolis algorithm. Vertical
lines (in 1-D plots) and crosses (in 2-D plots) show the true values of the parame-
ters.

Radar (SPANDAR) is inverted using the Metropolis algorithm and the results are

compared with helicopter measurements. Data used in the inversion was taken

during a surface-based ducting event on April 2, 1998 [3,24] at a frequency of 2.84

GHz, power of 91.4 dBm, 3dB beamwidth of 0.4o, antenna gain of 52.8 dB, an MSL

height of 30.78 m, VV polarization and with 600 m range bins. Only data between

10-60 km are used in the inversion. The results are summarized in Table 2.3.

The same 4-parameter model used in the synthetic test case is selected.
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Helicopter Refractivity

Profile Measurement

Figure 2.9: Wallops ’98 Experiment: SPANDAR radar and the helicopter mea-
surements (37.83◦ N, 75.48◦ W)

The marginal distributions obtained by Metropolis and GA in Fig. 2.10 use 80k

and 10k samples respectively. Fig. 2.11 shows the 1-D and 2-D marginal PPD

plots obtained by the Metropolis algorithm.

The helicopter measurements at different ranges can be seen in Fig. 2.12(a).

Profiles measured at 10, 20, 30, 40, and 50 km are all plotted in Fig. 2.12(b) to-

gether with HPD regions obtained from the post-processing of the 80k Metropolis

samples. These HPD regions show the regions where the values of the tri-linear

M-profile at various altitudes are expected to be. Therefore, it roughly can be

compared to the mean of the helicopter M-profiles measured at different ranges.

This mean helicopter profile is plotted together with the ML solution obtained

from the Metropolis sampler in Fig. 2.12(c).

The improvement obtained by the inversion is analyzed in Fig. 2.13. The
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Figure 2.10: Marginal posterior probability distributions obtained using SPAN-
DAR data. (a) Metropolis algorithm and (b) genetic algorithm. Vertical lines
show the estimated optimum values of the parameters.

coverage diagrams (dB) in Fig. 2.13 (a)-(c) are obtained using a standard atmo-

spheric assumption, helicopter refractivity profile measurements, and the Metropo-

lis inversion results. Fig. 2.13 (d)-(e) are difference plots and are calculated by sub-

tracting the dB coverage diagrams obtained by two different methods. Fig. 2.13

(d) is the difference between the standard atmosphere and the helicopter results,

whereas Fig. 2.13 (e) is the difference between the Metropolis inversion and the

helicopter results. The improvement inside the duct (h < 60 m) easily can be no-

ticed. However, the results outside the duct are not as good. This is an expected

result since the inversion is done using the radar measured sea surface reflected

clutter caused by the electromagnetic duct. No signal outside the duct is used and

hence the inversion algorithm has poor accuracy outside the duct.

In Fig. 2.14, the clutter power vs. range plots are given. The relative
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Figure 2.11: Both 1-D marginal (diagonal) and 2-D marginal (upper diagonal)
PPD’s obtained from the SPANDAR data obtained by the Metropolis algorithm.
Vertical lines (in 1-D plots) and crosses (in 2-D plots) show the optimum values of
the parameters.

clutter return measured by SPANDAR is plotted together with the clutter found

using the Metropolis ML estimate, m̂, and the clutter obtained using the range-

varying helicopter profile. Surface layer evaporation ducting was appended to the

bottom of the helicopter refractivity profiles, with the evaporation duct heights

being less than 5 meters. Then, this profile (Fig. 2.12 (a)) is simulated using

the parabolic equation model to estimate the helicopter clutter. Misfits can be

explained by the range independent assumption of the simple tri-linear M-profile,

which cannot exactly duplicate the real radar clutter. Details of errors associated
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Figure 2.12: M-profiles 0-60km: (a) helicopter measurements at different ranges,
(b) helicopter profiles (dashed) at 10, 20, 30, 40, 50 km together with 50% and
75% HPD regions for the range independent model, and (c) range-independent
maximum likelihood solution (dashed line) and mean of the profiles measured at
different ranges (solid line).

with the range independent assumption can be found in [25].

The PPD of the environmental parameters can be used to get PPD’s

of parameters-of-interest. This easily can be done by post-processing the 80k

Metropolis samples of the refractivity model parameters. Posterior densities for

propagation factor (F) at a range of 60 km with height values above MSL of 28 m

and 180 m are given in Fig. 2.15 (a) and (b), respectively. These two height values

specifically are selected to compare the quality of estimates inside and outside of
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Figure 2.13: Coverage diagrams (dB). One-way propagation loss for: (a) standard
atmosphere (0.118 M-units/m), (b) helicopter-measured refractivity profile, and
(c) Metropolis inversion result. The difference (dB) between (d) helicopter and
standard atmosphere results and (e) helicopter and Metropolis inversion results.

the duct. As expected, F in case (a), which is inside the duct, has a much smaller

variance, whereas the uncertainty in case (b) is much larger.

Finally, Fig. 2.15 (c) shows the effects of uncertainty in the environmental

parameters on establishing a successful communication link. Assume that the

transmitter-receiver pair requires a propagation loss less than 135 dB to attain the
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Figure 2.14: Clutter power vs. range plots. Clutter measured by SPAN-
DAR (solid), the predicted clutter obtained using the Metropolis ML solution
m̂ (dashed), and the predicted clutter obtained using the helicopter-measured re-
fractivity profile (dotted).

necessary SNR to operate in this environment. The diagram shows the probability

of establishing a successful link in an environment known to an accuracy of p(m|d)

as a coverage area HPD plot. The results are given as 70, 80, and 90% HPD regions.

As expected, the link can be maintained over an extended range inside the duct.

2.5 Conclusion

A method for estimation of the radio refractivity from radar clutter using

Markov Chain Monte Carlo (MCMC) samplers with a likelihood-based Bayesian

inversion formulation has been introduced. This approach enables us to obtain full

n-dimensional posterior probability distributions for the unknown parameters as

well as the maximum likelihood solution itself.

Comparisons with exhaustive search and genetic algorithm results show

that MCMC samplers require more samples than a classical global optimizer but
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Figure 2.15: PPD for propagation factor F at range 60 km with altitudes of (a)
28 m and (b) 180 m above MSL. (c) PPD of the coverage area for the given
communication link.

are better in estimating probability distributions. The need for a relatively large

number of forward model runs limits its usage as a near-real time M-profile estima-

tor. However, it can be used together with a fast global optimizer, which will do

the near-real time inversion. The MCMC sampler will then provide the credibility

intervals and the uncertainties, which may not be needed frequently.

One immediate benefit of the method is the ability to assess the quality of

the inversion and obtain highest posterior density (HPD) plots for other parameters

that could be of interest to an end-user, such as the one-way propagation loss,

propagation factor for different heights and ranges, or variability in the coverage

diagrams. They easily can be obtained by post-processing the Metropolis samples
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of the refractivity parameters.
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Table 2.1: Notation
d Measured radar clutter data vector
m Refractivity (M-profile) model parameter vector
f(·) Forward model (split-step FFT parabolic equation)
f(m) Replica radar clutter vector that would be observed

in an environment characterized by m
φ(m) Error function
n Number of model parameters
NR Number of data points collected at different ranges
N Number of Metropolis/Gibbs samples
Neff Number of effective data points
Cd Data covariance matrix
ν Error variance
ν̂ Error variance estimate
m̂ Model vector GA estimate
D Kolmogorov-Smirnov (K–S) statistic
p(m|d) Posterior probability density, PPD
L(m) Likelihood function
p(m) Prior function
p(d) Evidence function
P(mi|d) Cumulative marginal distribution function
Cm Model covariance matrix
Λ Diagonal matrix containing eigenvalues, λi

R Rotation matrix
m̃ Rotated model parameter vector
T Simulated annealing temperature
r Range
L One-way propagation loss
F Propagation factor
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Table 2.2: Synthetic data case: GA estimates and Metropolis algorithm results

Search Limits True GA Metropolis 90% Credib. Interv.
Parameter Units L. U. Value Estimate ML Estimate Mean STD L. U.

c1 M-units/m 0 0.25 0.13 0.132 0.128 0.1363 0.019 0.111 0.171
c2 M-units/m −3.5 −1 −2.5 −2.504 −2.503 −2.47 0.077 −2.59 −2.34
h1 m 25 50 40 39.93 40.05 39.80 0.147 39.938 40.488
h2 m 0 50 20 19.86 19.96 29.65 9.184 18.375 46.750

Table 2.3: Wallops island experiment (clutter map 17): GA estimates and Metropolis algorithm results

Search Limits GA Metropolis 90% Credibility Intervals
Parameter Units Lower Upper Estimate ML Estimate Mean STD Lower Up-

per
c1 M-units/m −1 0 −0.603 −0.604 −0.444 0.186 −0.79 −0.11
c2 M-units/m −1 1 −0.014 −0.010 −0.180 0.475 −0.61 0.89
h1 m 10 75 31.00 30.98 33.76 11.95 16.79 59.63
h2 m 0 75 24.63 22.93 34.41 20.50 4.69 68.66
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3

Statistical Maritime Radar Duct

Estimation Using a Hybrid

Genetic Algorithms – Markov

Chain Monte Carlo Method

This paper addresses the problem of estimating the lower atmospheric

refractivity (M-profile) under non-standard propagation conditions frequently en-

countered in low altitude maritime radar applications. This is done by statisti-

cally estimating the duct strength (range and height-dependent atmospheric index

of refraction) from the sea-surface reflected radar clutter. These environmental

statistics can then be used to predict the radar performance.

In previous work, genetic algorithms (GA) and Markov chain Monte Carlo

(MCMC) samplers were used to calculate the atmospheric refractivity from re-

turned radar clutter. Although GA is fast and estimates the maximum a posteriori

(MAP) solution well, it poorly calculates the multi-dimensional integrals required

to obtain the means, variances and underlying posterior probability distribution

functions (PPD) of the estimated parameters. More accurate distributions and in-

tegral calculations can be obtained using MCMC samplers, such as the Metropolis-

63
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Hastings (M-H) and Gibbs sampling (GS) algorithms. Their drawback is that they

require a large number of samples relative to the global optimization techniques

such as GA and become impractical with increasing number of unknowns.

A hybrid GA-MCMC method based on the nearest neighborhood algo-

rithm (NA) is implemented in this paper. It is an improved GA method which

improves integral calculation accuracy through hybridization with a MCMC sam-

pler. Since the number of forward models is determined by GA, it requires fewer

forward model samples than a MCMC, enabling inversion of atmospheric models

with a larger number of unknowns.

3.1 Introduction

In many maritime regions of the world, such as the Mediterranean, Per-

sian Gulf, East China Sea, and California Coast, atmospheric ducts are common

occurrences. They result in various anomalies such as significant variations in the

maximum operational radar range and increased sea clutter. Hence, radar systems

operating in these environments would benefit from knowing the effects of the envi-

ronment on their system performance. This requires knowledge of the atmospheric

refractivity, which is usually represented by the modified refractivity (M-profile)

in the radar community [1].

Evaporation and surface-based ducts are associated with increased sea

clutter due to the heavy interaction between the sea surface and the electromag-

netic signal trapped within the duct. However, this unwanted clutter is a rich

source of information about the environment and can be used to determine the

local atmospheric conditions. This can be a valuable addition to other more con-

ventional techniques such as radiosondes, rocketsondes, microwave refractometers

and meteorological models such as the Coupled Ocean/Atmospheric Mesoscale

Prediction System (COAMPS) that give M-profile forecasts [1–4]. In a Bayesian

framework, the results of one or several of these techniques and regional duct statis-
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tics [5] can be coupled with the clutter inversion to improve the overall estimation

quality. An attractive feature of inferring refractivity from sea surface clutter is

that it does not use additional hardware or extra meteorological/electromagnetic

measurements. It extracts the information from the radar clutter obtained during

normal radar operation, which usually is readily available both as a function of

range, direction and time. For a fast inversion algorithm, a near-real-time M-profile

structure is obtained. The need for a fast algorithm that updates the environmen-

tal estimates at intervals of 30 min. or less is evident from [6], where the RMS error

in propagation factor exceeds 6 dB after 30 min., due to temporal decorrelation.

Various techniques that estimate the M-profile using radar clutter return

are proposed by [7], [8, 9], [10], [11], [12], and [13]. Most of these refractivity from

clutter (RFC) techniques use an electromagnetic fast Fourier transform (FFT)

split-step parabolic equation (SSPE) approximation to the wave equation [14,15],

whereas some also make use of ray-tracing techniques. While the paper by [7]

exclusively deals with evaporation duct estimation, other techniques are applicable

to both evaporation, surface-based and mixed type of ducts that contain both

an evaporation section and an surface-based type inversion layer. [13] exploits

the inherent Markovian structure of the FFT parabolic equation approximation

and uses a particle filtering approach, whereas [10] uses rank correlation with ray

tracing to estimate the M-profile.

In contrast, [8,9] and [12] use global parameterization within a Bayesian

framework. Since the unknown model parameters are defined as random vari-

ables in a Bayesian framework, the inversion results will be in terms of the means,

variances and marginal, as well as the n-dimensional joint posterior probability

distributions, where n represents the number of unknown duct parameters. This

gives the user not only the ability to obtain the maximum a posteriori (MAP)

solution, but also the prospect of performing statistical analysis on the inversion

results and the means to convert these environmental statistics into radar perfor-

mance statistics. These statistical calculations can be performed by taking multi-
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dimensional integrals of the joint PPD. [8] uses genetic algorithms to estimate the

MAP solution. However, no statistical analysis is performed since classical GA

is not suitable for the necessary integral calculations. While [9] uses importance

sampling, [12] uses Markov chain Monte Carlo (MCMC) samplers to perform the

MC integration [16, 17]. Although they provide the means to quantify the impact

of uncertainty in the estimated duct parameters, they require large numbers of

forward model runs and hence they lack the speed to be near-real-time methods

and are not suitable for models with large numbers of unknowns.

In this paper, a hybrid GA-MCMC technique is implemented. The method

reduces the number of forward model runs required to perform the RFC inver-

sion, while still being able to perform MC integration. It is first tested on the

synthetic data used by [12] with a four-parameter, range-independent, tri-linear

M-profile model (Fig. 3.1). Then data collected during the 1998 Wallops island ex-

periment (Wallops’98) [8] is analyzed using a sixteen-parameter range-dependent

atmospheric model to show the capabilities and limitations of the method. An

evaporative duct structure is not appended in this work but it can be done by in-

troducing a Jeske-Paulus (JP) [18,19] or Liu-Katsaros-Businger (LKB) [20] profile

using one or more extra evaporation duct parameters, depending on the conditions.

3.2 Model Formulation

For electromagnetic propagation purposes, the environment can be uniquely

represented by the range and height-dependent index of refraction, which itself is a

complex function of temperature, humidity, and pressure [21]. Therefore, the term

environmental parameters will be used exclusively for the M-profile parameters

henceforth. To formulate the problem, a classical Bayesian framework is adopted,

where the M-profile model and the radar measured sea-surface clutter data are de-

noted by the vectors m and d, respectively. An electromagnetic FFT-SSPE is used

to propagate the field in an environment given by m and obtain synthetic clutter
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Figure 3.1: Four-parameter range-independent tri-linear M-profile.

returns f(m). Since the unknown environmental parameters m are assumed to

be random variables, the solution to the inversion is given by their joint posterior

probability distribution function (PPD or p(m|d)). Bayes’ formula can be used to

write the PPD as

p(m|d) =
L(m)p(m)∫

m
′ L(m′)p(m′)dm′

, (3.1)

where p(m) is the prior probability distribution function (pdf) of the parameters.

Any information obtained from other methods and regional duct statistics can be

incorporated in this step as a prior belief. Since this paper investigates the ability

to infer M-profiles using RFC, a uniform prior is used. However, it is possible to

include statistical meteorological priors from studies such as [5], for some of the

parameters (e.g. the duct height).

Assuming a zero-mean Gaussian error between the measured and modeled

clutter, the likelihood function is given by

L(m) = (2π)−NR/2|Cd|−1/2 (3.2)

× exp

[
−(d − f(m))TC−1

d (d − f(m))

2

]
,
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where Cd is the data error covariance matrix, (·)T is the transpose and NR is the

number of range points used (length of the data vector, d). Further simplification

can be achieved by assuming that the errors are spatially uncorrelated with iden-

tical distribution for each data point forming the vector d. For this case, Cd = νI,

where ν is the variance and I the identity matrix. Then the equation can be

simplified to

L(m) = (2πν)−NR/2 exp

[
−φ(m)

2ν

]
, where (3.3)

φ(m) = (d− f(m))T (d− f(m)) . (3.4)

The maximum likelihood (ML) estimate for the error variance can be found by

solving ∂L/∂ν = 0, which results in

ν̂ML =
φ(m)

NR
. (3.5)

After inserting it back into the likelihood function, L(m) finally can be reduced to

L(m) =

[
NR

2πeφ(m)

]NR/2

, and (3.6)

p(m|d) ∝ p(m)

[
NR

2πeφ(m)

]NR/2

. (3.7)

Having defined the posterior density, any statistical information about

the unknown environmental and radar parameters can now be calculated by taking

these multi-dimensional integrals:

µi =

∫
. . .

∫
m

′

ip(m
′ |d)dm

′

(3.8)

σ2
i =

∫
. . .

∫
(m

′

i − µi)
2p(m

′ |d)dm
′

(3.9)

p(mi|d) =

∫
. . .

∫
δ(m

′

i −mi)p(m
′ |d)dm

′

(3.10)

where µi, σ
2
i , p(mi|d) are posterior means (Bayesian minimum mean square error

(MMSE) estimate), variances, and marginal PPD’s of M-profile parameters.

Probability distributions of parameters of interest to a radar operator

are calculated in a similar fashion. Assume that u is such a parameter-of-interest
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(e.g. propagation factor), which naturally is some function u = g(m) of the radar

environment m. A statistical analysis of u can be carried out by transformation

of random variables. The classical transformation formula

p(u|d) =
p(m|d)

|J(m)| , (3.11)

where J(m) represents the Jacobian of the transformation, can be written in inte-

gral form [22]

p(u|d) =

∫
. . .

∫
δ(u− g(m

′

))p(m
′ |d)dm

′

, (3.12)

in the same form as (3.8)–(3.10). This form is preferred since it enables the eval-

uation of desired quantities with MC integration.

3.3 The Hybrid GA-MCMC Method

To improve the lack of accuracy in GA and lack of speed in MCMC,

a hybrid method based on the nearest neighborhood (NA) algorithm [23–26] is

adopted here. This method effectively converts the samples gathered during a

typical global optimization run (e.g. GA) into a form that can be used in MC

integration. Then it uses a fast MCMC to compute these integrals.

3.3.1 Monte Carlo Integration and Genetic Algorithms

Notice that all of the integrals in (3.8)–(3.10) and (3.12) are of the form

I =

∫
g(x)p(x)dx, (3.13)

where x is a random variable with a pdf of p(x), and g(x) is some function of x.

These multi-dimensional integrals can be estimated numerically using the Monte

Carlo integration technique [16]. Assuming a large number of random x values are

drawn from a sampling distribution ps(x), {x1, x2, x3, . . . , xNs}, the integral I can

be estimated as

I ⋍

∑Ns

i=1
p(xi)g(xi)

ps(xi)∑Ns

i=1
p(xi)
ps(xi)

. (3.14)
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By introducing a weight function the integral can be approximated as

w(xi) ,
p(xi)

ps(xi)
, (3.15)

I ⋍

∑Ns

i=1w(xi)g(xi)
∑Ns

i=1w(xi)
. (3.16)

This is the well known importance sampling formula, where ps(x) is usually selected

to be a uniform or Gaussian density. The main drawback of this approach is

the slow convergence and relatively low accuracy resulting from the difference

between the parameter pdf p(x) and the sampling pdf ps(x). The best result is

obtained if ps(x) = p(x), which is used by MCMC techniques such as Metropolis-

Hastings [27, 28] and Gibbs samplers [29].

Importance sampling is used for RFC inversion by [9], where the prior

p(m) is used as the sampling density. However, the results depend on how close

p(m) is to p(m|d). Both Metropolis and Gibbs samplers are used by [12] with

ps(m) = p(m|d). A drawback of these techniques is the necessity to run many

forward modeling runs. Many global optimizers such as the classical GA do not

have a ps(x). Every run will result in a different distribution concentrated around

the higher density regions. However, due to its speed, it is desirable to use GA in

MC integration. Such an approach requires a technique that estimates the integrals

(3.8)–(3.10) and (3.12) using an ensemble of GA samples without a ps(x).

3.3.2 Voronoi Decomposition

A sampling density ps(x) that is an approximation to p(m|d), is created

using the information gathered from the ensemble of GA samples. Then this

approximate PPD p̂(m|d) is used to calculate the Bayesian integrals by replacing

(3.15)–(3.16) with

w(mi) =
p(mi|d)

p̂(mi|d)
⋍ 1 (3.17)

I ⋍
1

NS

Ns∑

i=1

g(mi). (3.18)
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p̂(m|d) is obtained by using Voronoi decomposition (or Dirichlet tessellation) of

the n-dimensional model space [30,31]. It creates a convex n-dimensional polytope

(a polygon if n = 2, a polyhedron if n = 3) called a Voronoi cell (or Dirichlet

domain) around the nearest neighborhood of each GA point. For a given set of

GA samples there exists a unique set of corresponding Voronoi cells that tessellates

the model space. This structure is adaptable and if points are changed, removed

or added, the cells rearrange themselves, shrink and enlarge to reflect the changes.

Therefore, even if the ensemble of GA samples change with every independent

simulation, Voronoi lattice will adjust and likely provide accurate Bayesian integral

calculations.

For nearest neighborhood calculations a weighted L2-norm is used to

compute the distances. The weight removes the units of the parameters, specifically

between the M-layer slopes (M-units/m) and layer thicknesses (m). If available,

the prior model covariance matrix can be used as the norm weight. Since no a

priori information is used, the weight is only used to scale each parameter so that

all parameters lie within [0,1] range, contributing equally to norm calculations.

Therefore, with an initial set of GA samples {m1,m2,m3, . . . ,mNGA} without a

ps(m),

‖m −mi‖2

W = (m −mi)TW(m −mi), (3.19)

Vi =
{
m : i = argmin

i′
‖m −mi′‖W

}
, (3.20)

p̂(m ∈ Vi|d) = p(mi|d), (3.21)

where W is the weight and Vi is the ith Voronoi cell centered at the ith GA

sample mi. p̂(m|d) is constant inside the cell, effectively discretizing the original

PPD into NGA possible levels. Similar to an A/D converter, it will convert the

true “analog” PPD into a “digitized” approximation. The only difference is that,

this A/D converter is n-dimensional, and hence, discrete levels are n-dimensional

polytopes.

With this assumption, p̂(m|d) is known at any point anywhere in the
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entire search space and there is no need for any further forward model runs.

3.3.3 MCMC (Gibbs) Resampling

Now that a sampling density ps(m) = p̂(m|d) is defined, the next step is

drawing samples from this PPD to compute (3.18) for any desired function g(·).
Unlike classical MCMC, this MCMC sampler will not suffer from the high number

of forward model runs required for MCMC because it operates on the approximate

PPD, requiring no forward modeling.

The perfect MCMC sampler for this task is the Gibbs sampler (GS) [12,

16, 29] and is also used in the neighborhood algorithm [24]. Therefore, the term

GS will be used instead of the MCMC henceforth. GS gets samples by updating

one parameter at a time in a circulatory fashion and it uses the local conditional

1-D PPD to update each parameter. After all of the parameters are updated once,

the result will form the next Gibbs sample. This is a particularly fast algorithm

since the Metropolis acceptance/rejection criterion used in MCMC samplers is

always met and every proposed point is accepted. The difficulty is that, it requires

the knowledge of conditional 1-D PPD’s, which often are not available for many

inversion problems. However, here the conditional is available via Voronoi cells.

A simple example in Fig. 3.2 illustrates the approach with only two un-

known parameters. Voronoi cells are constructed around each GA sample (stars)

to create the approximate PPD where p̂(m|d) is constant in each polygon. To ob-

tain the next Gibbs sample (diamonds) first the local 1-D conditional probability

density is calculated along the line intersecting the original Gibbs sample. The

local conditional density p(m1|m2,d) for the first Gibbs sample (PPD along AA′)

is plotted above the Voronoi diagram. Since the conditional PPD only changes at

the cell boundaries, computation of the intersection points with AA′ is sufficient

to extract the local PPD. This lets us use the Voronoi decomposition without ac-

tually having to estimate the Voronoi cell structures or calculate their vertices.

Afterwards, a sample is drawn from this simple 1-D PPD and the parameter m1 is
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updated accordingly. To complete the cyclic updating of each parameter, param-

eter m2 is also updated using the local conditional PPD p(m2|m1,d) (PPD along

BB′), plotted on the right-hand side of the Voronoi diagram.

The intersection between Voronoi cells and the conditional line is calcu-

lated using the procedure given by [23]. Two neighboring Voronoi cells Vi and

Vj intersecting the conditional line are given in Fig. 3.3. They are created around

their corresponding cell centers (GA samples mi and mj) and Gibbs sampler is up-

dating along the kth-axis by sampling from p̂(mk|∀ml l 6= k,d). The boundary can

be calculated using the fact that the distances from both cell centers mi and mj

to the boundary point bij must be same by the definition of nearest neighborhood.

Hence, using W = I,

‖mi − bij‖2
= ‖mj − bij‖2

, (3.22)

(
di
⊥

)2
+

(
mi

k − bijk
)2

=
(
dj
⊥

)2
+

(
mj

k − bijk
)2
, (3.23)

bijk =
1

2

[
mi

k +mj
k +

(di
⊥)

2 −
(
dj
⊥

)2

mi
k −mj

k

]
, (3.24)

where d⊥’s represent the distances of the cell centers (GA points) to the current

conditional line, subscripts show the current axis components of the n-dimensional

vectors, superscripts show the Voronoi cell index (or GA point index), and bijk is

the kth component of the boundary point bij , defined by the intersection of Vi,

Vj , and the local conditional line. The method is summarized by the following

steps:

1. GA: Run a classical GA, minimizing the misfit φ(m), save all the popula-

tions (sampled model vectors) and their likelihood values. MAP solution is

obtained as the best fit model vector.

2. Voronoi Decomposition and Approximate PPD: Using the GA samples {mi}
and their corresponding p(mi|d) construct the Voronoi cell structure and

create the approximate PPD, p̂(m|d).
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3. Gibbs Resampling: Run a fast GS on the approximate PPD. No forward

modeling is needed.

4. MC Integral Calculations: Calculate the Bayesian minimum mean square es-

timate (MMSE), variance and posterior distributions of desired environmen-

tal parameters, statistics for the end-user parameters, such as propagation

loss L, propagation factor F, coverage diagrams, statistical radar performance

prediction, such as the probability of detection and false alarm using (3.8) –

(3.10), and (3.12) in the form of (3.18) as a MC integration.

The accuracy of the results depends mostly on the quality of the approx-

imate PPD, which means that, GA should gather enough samples from the entire

n-dimensional search space to allow the hybrid algorithm to construct an adequate

n-dimensional mesh. Due to the approximation of the PPD, the method can not

guarantee convergence unlike MCMC samplers which are guaranteed to converge

as more samples are collected.

3.4 Examples

3.4.1 Synthetic Data

The method is first tested on the synthetic data given by [12]. In that

paper, the PPD was estimated using exhaustive search, GA only, and MCMC only.

Radar system and environmental parameters are given in Table 3.1. A typical four-

parameter range-independent tri-linear profile (Fig. 3.1) is used with the unknown

environment parameters and the selected upper and lower limits given in Table 3.2.

The unknown model parameters are the slope and height of the base layer (c1 and

h1) and the slope and thickness of the inversion layer (c2 and h2). Since the

RFC is insensitive to the M-profile parameters above the duct, the top layer slope

corresponds to standard atmosphere.

1-D marginal model parameter PPD’s are given in Fig. 3.4 for (a) ex-

haustive search, (b) Metropolis-Hastings sampler (conventional MCMC), (c) pure
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Table 3.1: System Parameters

Simulation Parameter Value
Frequency 2840 MHz

3dB beamwidth 0.4o

Source height 30.78 m
Polarization VV
Duct type SBD only

Top layer slope 0.118 M-units/m
Range bin width 600 m

Environmental Model: Synthetic data
Number of parameters 4
M-profile model type Range independent

Inversion range interval 10–60 km
Clutter standard deviation 10 dB

Environmental Model: Wallops’98 data
Number of parameters 16
M-profile model type Range dependent

Inversion range interval 10–70 km
M-profile defined at 0, 20, 40, 60 km

Table 3.2: Synthetic data case: Model Parameters

Model Lower Upper
Parameter Units True Value Bound Bound

c1 M-units/m 0.13 0 0.25
c2 M-units/m −2.5 −3.5 −1
h1 m 40 0 50
h2 m 20 0 50



76

Figure 3.2: Voronoi cells and a single GS step for a simple 2 parameter search
space. Conditional PPD’s used in the Gibbs step for the given conditional cut
lines (AA’ and BB’) are shown on the top and to the right of the Voronoi diagram.
GA and Gibbs samples are represented by (∗) and (�) , respectively.

GA, and (d) hybrid GA-MCMC method, respectively. Exhaustive search results

are assumed to have a dense enough grid to give the true distributions and will

be used as the benchmark. As expected, the Gibbs sampler results are close to

the true distribution but requires 70x103 (70k) samples to converge. The GA uses

15k samples (5k is enough to get the MAP solution). The distributions are clearly

not accurate, however, as a global optimizer it does its job of minimizing φ(m)

and obtaining MAP very fast. The GA sample histograms presented here are not
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Figure 3.3: Two adjacent Voronoi cells Vi and Vj intersecting a conditional line in
the kth dimension. mi and mj are the corresponding GA samples. The conditional
approximate PPD which is constant except for the cell boundary intersection is
given above the Voronoi cell structure.

unique. Every GA run will result in a different set of curves, without any specific

sampling density ps(m|d). The hybrid method actually uses the 15k GA sam-

ples obtained in (c) to perform the Voronoi decomposition. When a fast Gibbs

resampling is performed on the approximate PPD, results comparable to the con-

ventional MCMC solution is obtained. A Gibbs resampling of just 20k samples is

sufficient to calculate the MC integral accurately (40k is used in (d)). It should be

noted that (d) is extracted using the forward model samples obtained in (c). All

information about the search space comes from the GA samples and the hybrid

method makes the information hidden in the GA set available for MC integration

through Voronoi decomposition.

Figs. 3.5 provides further comparison between the benchmark exhaustive

search and the hybrid method results. The off-diagonal plots are the 2-D marginal

posterior densities, while 1-D parameter PPD’s are given in diagonal plots. The

results are given in terms of highest posterior density (HPD) regions [32]. Full
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Figure 3.4: Marginal posterior probability distributions for the synthetic test case.
Vertical lines show the true values of the parameters. (a) Exhaustive search, (b)
Metropolis sampler (MCMC), (c) GA, and (d) hybrid GA-MCMC using 15k GA
and 40k Gibbs samples.

Bayesian solutions in terms of posterior densities may be important in many cases

and give information about the inversion quality. These marginal distributions and

the inter-parameter correlations shown in 2-D plots may also help in understanding

the underlying physics. For example the last parameter, inversion layer thickness,

shows a highly non-Gaussian behavior with a high posterior probability from 15

m to 50 m. The physical explanation is that, since the selected inversion layer is

very strong it will trap all of the EM signal provided that the layer has at least a

certain thickness (25 m in these plots). Therefore, having an environment with a

thicker inversion layer will not affect the sea clutter, so any model with h2 > 25

m appears as equally likely in the plot. Hence, just using the mean (MMSE) or

MAP solutions may be misleading and can have significant errors. Also notice how
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some parameters are strongly correlated, such as the inversion layer slope c2 and

the base layer height h1.
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Figure 3.5: Both 1-D marginal (diagonal) and 2-D marginal (upper diagonal)
PPD’s for the synthetic test case obtained by (a) exhaustive search and (b) hybrid
GA-MCMC. Vertical lines (in 1-D plots) and crosses (in 2-D plots) show the true
values of the parameters.

One drawback of the hybrid method is a lack of rigorous convergence

criterion. Because of its MCMC nature, the resampling converges to the sampling
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density. However, it is sampling the approximate density p̂(m|d), not the real

p(m|d). Therefore, two separate conditions must be met simultaneously for the

convergence of the hybrid method:

1. Convergence in GA: The set of GA samples converges when p̂(m|d) obtained

from the Voronoi decomposition of the GA sample set is close enough to the

real PPD to yield sufficiently accurate MC integral calculations, assuming a

perfect Gibbs resampling.

2. Convergence in GS: The set of Gibbs samples obtained during the resampling

phase converges if the sample histograms obtained by this set is close to

p̂(m|d).

Hence, a poor Gibbs resampling after a perfect Voronoi decomposition or a perfect

Gibbs resampling on a poor Voronoi lattice may both end up with poor estimates.

Fig. 3.6 shows how the estimated 1-D marginal PPD’s evolve to their

true distributions with increasing GA samples for a fixed number of Gibbs samples

(40k). The metric (D) used to check the quality of the inversion result is calculated

for each parameter as:

Dj = max
mj

∣∣P(mj |d) − PTRUE(mj |d)
∣∣, (3.25)

where P(mj |d) and PTRUE(mj |d) represent the cumulative marginal distribution

functions of the jth model parameter for the hybrid method and the exhaustive

search result, respectively. This metric is similar to the Kolmogorov-Smirnov test

statistic [33]. Similarly, Fig. 3.7 explores the effect of the number of Gibbs samples

in the resampling phase for a fixed Voronoi decomposition obtained from 15k GA

points. Note how quickly the 1-D marginals obtained by GS converge to the

approximate marginal PPD (about 5k is enough) as long as p̂(m|d) is a good

Voronoi approximation to the real PPD.

The convergence plots for the hybrid method are given on Fig. 3.8. Fig. 3.8

(a) is obtained by performing multiple inversions using GA sample sizes varying
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from 10 to 25k. For each GA size the inversion is repeated 40 times and the mean

D value is used. Note how D improves as GA sample size is increased. Since

an adequate number of Gibbs samples are used in the resampling phase, most of

the error comes from the difference between the true and the approximate PPD’s.

Fig. 3.8 (b) shows the convergence in GS with different Gibbs sample sizes vary-

ing from 10 to 200k. Again each simulation is repeated 40 times and the mean

D is used. Given enough samples, the Gibbs sampling converges to the Voronoi-

approximated PPD. Due to the inherent residual between the Voronoi approximate

and the real PPD, increasing the GS sample size (here past about 20k) will not

improve convergence.
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Figure 3.6: Convergence in GA: Effect of GA sample size on 1-D marginal posterior
densities for a 40k Gibbs sample size. Distributions calculated using (a) exhaustive
search (true distribution) and the hybrid method with (b) 1k, (c) 5k, and (d) 15k
GA samples. Vertical lines represent the true values.
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Gibbs samples. Vertical lines represent the true values.

3.4.2 Wallops’98 Data

To further demonstrate the capabilities and limitations of the hybrid

method, a range-dependent environmental model comprising of sixteen parameters

is employed during the inversion of the 1998 Wallops island experiment data col-

lected by the Naval Surface Warfare Center, Dahlgren Division. The radar clutter

was gathered by the Space Range Radar (SPANDAR). Radar and environmental

model parameters are both provided in Table 3.1. Range dependent M-profiles

were measured by a helicopter provided by the Johns-Hopkins University, Applied

Physics Laboratory (JHU–APL). Data used in the inversion was taken during a

surface-based ducting event on April 2, 1998 [7, 8].

A range dependent inversion is achieved by defining vertical, four pa-



83

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

GA samples

D

c
1

c
2

h
1

h
2

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

Gibbs samples

D

c
1

c
2

h
1

h
2

(a)

(b)

Figure 3.8: Convergence of the hybrid method. D for each parameter as a function
of (a) GA sample size for a 40k Gibbs sample size and (b) Gibbs sample size for a
15k GA sample size .

rameter tri-linear M-profiles at certain ranges (0, 20, 40, and 60 km) and linearly

interpolating the parameters in between, see Fig. 3.9. Slopes for both the first

and the second layers can be negative and positive to give more flexibility in the

modeling. Hence, they are only referred to by their layer numbers. Layer slopes at

different ranges can vary independent of each other. On the contrary, a Markovian

structure is used for the layer heights with a maximum of 30 m variation relative

to the height value at the previous range.

It has been shown by [34] that for ranges larger than 30 km, the lat-

eral homogeneity assumption can result in significant errors. They suggest using

multiple profiles for long range applications. In the paper by [35], it is suggested
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Figure 3.9: An example of range-dependent sixteen parameter M-profile with four
parameters per 20 km. Vertical profile at any given range is calculated by linear
interpolation of both the slopes and the layer thicknesses.

that a range independent assumption for long ranges leads to significant errors in

propagation factor 40% of the time and the results by [34] are optimistic. Hence,

in this work a range-dependent approach with multiple profiles, each 20 km apart,

is adopted. The parameters and their bounds are given in Table 3.3 along with the

MAP solution obtained by GA. Lower and upper bounds are selected in consistency

with [6] and [36].

Inversion results are given in Figs. 3.10 – 3.13. Estimated range-dependent

M-profile (MAP solution) is given in Fig. 3.10(a). This solution is similar to the

ones obtained by [8] and [13] and agrees well with the helicopter measured pro-

file (Fig. 3.10(a)). Although the helicopter profiles give a good approximation to

the environment, they might not represent ground truth at the time the clutter is

measured. These profiles are collected while the helicopter flies in and out radially

along 150o azimuth with a saw-tooth up-and-down motion to measure the range-

height dependent refractivity. Each measurement takes about 25 min., comparable

to the 30 min.-limit by [6]. For the analyzed case the helicopter fly-time is between

13:19–13:49pm EST and the clutter return is measured at 13:40pm EST. The sharp

gradient around 60 km range disappears at the next helicopter measurement taken
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Figure 3.10: Inversion results for the Wallops island experiment. (a) estimated
(dashed lines) and helicopter measured (solid lines) profiles at various ranges and
(b) clutter measured by SPANDAR together with the clutter that would have
been obtained from the estimated range-dependent and range-independent envi-
ronments.

between 13:51–14:14pm EST [8]. So there are discrepancies between helicopter-

measured and clutter-inferred profiles. In fact, the absolute mean error at 0–70

km between the helicopter and SPANDAR clutter is quite large (11.9 dB). This

error value drops to 6.8 and 2.6 dB, respectively between the SPANDAR and the

range-independent profile and between the SPANDAR and the range-dependent

profile clutter returns. As expected, the range-dependent profile matches the rel-

ative clutter power of the SPANDAR radar (Fig. 3.10(b)) better than the range

independent inversion [12] due to the increased degrees of freedom.

The environmental posterior density is given in Fig. 3.11(a). Since the
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full PPD is 16-D, only 1-D (diagonal plots) and 2-D (upper diagonal) marginal

densities calculated using (3.10) are given. Some of the parameters such as m10,

m13, and m14 have a highly non-Gaussian marginals, while others such as m2, m3,

andm9 have Gaussian-like features. The highly skewed 1-D marginals given form10

and m14 are encountered frequently with the refractivity slope pdf’s. The reason is

that the slope very rarely exceeds values such as 0.3–0.4 M-units/m and usually is

concentrated around values such as 0.118 M-units/m (standard atmosphere) and

0.13 M-units/m. This creates a sharp peak for the positive end of the spectrum

since the negative slope values can be in excess of the −2 M-units/m, usually

with a quickly decreasing probability. The result is a pdf structure similar to the

ones obtained here. In fact [9] uses such a pdf as prior density to do importance

sampling.

Only 13 out of 16 parameters are given in Fig. 3.11(a). The height pa-

rameters of the second layers m8, m12, and m16 are omitted, as they are not

important (see discussion about Fig.3.4. Since clutter is mostly due to the EM sig-

nal trapped inside the duct, it mostly contains information about the parameters

inside the duct, making the second layer heights poorly determined except for very

close ranges. To demonstrate this, normalized error function φ(m)/φ(mMAP ) for

various conditional planes are given in Fig. 3.11(b). These curves are obtained by

fixing other parameters to their MAP values and calculating φ(m) while varying

only two parameters at a time. Except for the bottom plots all the plots show

quickly varying complex patterns whereas the last ones are flat since the horizon-

tal axis for these is either m8, m12, or m16 (second layer heights). Some plots such

as m1 vs. m12 have zero likelihood regions since the height parameters which are

∆h at 20, 40, and 60 km cannot be less than values that would make the actual

layer thickness negative.

Therefore, only 13 parameters are used in the resampling phase. This

decreases computation time and reduces misleading results. For a uniformly dis-

tributed parameter the hybrid method will require much larger numbers of initial
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GA samples. This can be explained using the conditional plot of m1 vs. m16 in

Fig. 3.11(b). Assume we have only two samples on the plane with [m1
1, m

1
16] =

[−1.5 −20] and [m2
1, m

2
16] = [−0.5 20]. The first sample m1 has a low likelihood

whereas m2 has a much higher value, entirely due to the difference in m1. Hence,

resampling after Voronoi decomposition of this sparsely sampled space will result

in a non-uniform marginal for m16. An interesting observation is that the other

parameter m1 is affected much less severely and indeed increasing the number

of samples slightly will be enough to obtain an accurate PPD for m1, whereas

m16 will require much denser Voronoi cell structures. This can be problematic as

the dimension size is increased. A sparse mesh will result in poor results for the

uniformly distributed parameters with minimal effect on the results for other pa-

rameters. However in RFC, due to the physics of the inversion problem, we know

a priori the uniformly distributed parameters and do not include them.

The environmental statistics can be projected into statistics for user pa-

rameters (see Section II). One typical parameter of interest to an end-user is the

propagation factor F. The results in Fig. 3.12 are obtained from the parameter

PPD in Fig. 3.11. It shows the PPD for F at ranges (a) 18, (b) 40, and (c) 60

km. Contour plots show the PPD of F for height values between 0–200 m, with

the MAP solution (dashed white). Horizontal lines represent the three altitudes

analyzed in detail in the small plots shown next to the color plots. Comparison of

plots at the same range and different altitudes reveals some important aspects of

RFC.

First, the propagation factor PPDs inside the duct (at 20 m) are sharper

than those outside the duct (100 and 180 m). This is expected since we used the

sea clutter which is usually affected only by the lower portions of the atmosphere

to infer the environment. The PPDs do also become flatter with increasing range.

Note how the error made by using the standard atmospheric assumption (black

dashed lines) increases with range, especially inside the duct. At [H, R] = [20

m, 18 km] all three curves (MAP, helicopter profile, and standard atmosphere)
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Figure 3.11: Marginal and conditional distributions. (a)1-D (diagonal) and 2-
D (upper diagonal) posterior probability distributions in terms of percent HPD,
for the range-dependent SPANDAR data inversion. 13 parameters (m1−7, m9−11,
m13−15) out of 16 are given . Vertical lines in the 1-D plots show the GA MAP
solution. (b) Normalized error function for various conditional planes. Each 2-D
plot is obtained by fixing the other 14 parameters to their MAP values.

are almost identical whereas standard atmospheric assumption leads to more than

40 dB error for [H, R] = [20 m, 60 km] while MAP and helicopter profile comply

with the underlying PPD. Finally, the difference between the helicopter profile and

MAP tends to be larger outside the duct.

Similar results are obtained for F at two altitudes in Fig. 3.13 at (a) 20

m and (b) 100 m, inside and outside the duct, respectively. Color plots again show
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Figure 3.12: Posterior probability densities for propagation factor F at three different ranges: (a) 18, (b) 40, and (c) 60 km.
Color plots show the PPD of F for height values between 0 m and 200 m in terms of percent HPD, with the MAP solution
(dashed white). Horizontal lines represent the three altitudes analyzed in detail in the small plots shown next to the color
plots at heights 180, 100, and 20 m, respectively from top to bottom. Vertical lines in the small plots represent the values
of F at the corresponding height and range for the MAP solution (blue line with circles), helicopter measurement (red), and
standard atmospheric assumption (black).
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Table 3.3: Wallops’98 Experiment: Model Parameters

Model MAP Lower Upper
Parameter Units Estimate Bound Bound
m1: c1 at 0 km M-units/m −0.404 −2 0.4
m2: c2 at 0 km M-units/m −0.721 −2 0.4
m3: h1 at 0 km m 29.98 0 100
m4: h2 at 0 km m 21.94 0 100
m5: c1 at 20 km M-units/m −0.185 −2 0.4
m6: c2 at 20 km M-units/m −0.895 −2 0.4
m7: ∆h1 at 20 km m −5.03 −30 30
m8: ∆h2 at 20 km m 3.02 −30 30
m9: c1 at 40 km M-units/m −0.391 −2 0.4
m10: c2 at 40 km M-units/m 0.060 −2 0.4
m11: ∆h1 at 40 km m 13.18 −30 30
m12: ∆h2 at 40 km m 9.94 −30 30
m13: c1 at 60 km M-units/m −0.373 −2 0.4
m14: c2 at 60 km M-units/m −0.098 −2 0.4
m15: ∆h1 at 60 km m −14.25 −30 30
m16: ∆h2 at 60 km m −14.27 −30 30

the PPD of F for ranges between 0 km and 90 km in terms of percent HPD, with

the dashed white line showing the MAP solution. The increase in the variance of F

as a function of range can clearly be seen for both inside and outside the duct cases.

The variance of 100 m case is also larger than the 20 m case as also witnessed in

Fig. 3.12. It should be noted that the helicopter and MAP solution results almost

always conform with the underlying density even when they are not same. Plots

such as these can be used by the radar operator to update radar performance or

even be included in detection algorithms as a fluctuation in the returned signal

due to the atmosphere, similar to the Swerling models [1].

3.5 Conclusion

A hybrid genetic algorithm – Markov chain Monte Carlo (GA-MCMC)

method has been used for statistical maritime radar performance estimation under

non-standard propagation conditions. Statistical refractivity-from-clutter (RFC)
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inversion is used to gather information about the environment, such as the range-

dependent vertical structure of the atmospheric index of refraction, and then these

environmental uncertainties are used to estimate parameters-of-interest to be used

by the radar operator.

As a forward model, a fast Fourier transform split-step parabolic equa-

tion (FFT-SSPE) approximation to the wave equation was used to propagate the

electromagnetic signal in complex environments. The hybrid method uses fewer

forward model calculations than a classical MCMC while obtaining more accu-

rate distributions than GA. This enables inclusion of more unknown parameters

and range-dependent atmospheric models. The capabilities of the technique were

illustrated for a sixteen dimensional range-dependent inversion.
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Figure 3.13: Posterior probability densities for propagation factor F at (a) 20 and
(b) 100 m altitudes. Color plots show the PPD of F for ranges between 0–90 km
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4

Tracking Refractivity From

Clutter

This paper addresses the problem of tracking the spatial and temporal

lower atmospheric variations in maritime environments. The evolution of the range

and height-dependent index of refraction is tracked using the sea clutter return

from sea-borne radars operating in the region. A split-step fast Fourier transform

based parabolic equation approximation to the wave equation is used to compute

the clutter return in complex environments with varying index of refraction. In

addition, regional statistics are incorporated as prior densities, resulting in a highly

nonlinear and non-Gaussian tracking problem. Tracking algorithms such as the

extended Kalman, unscented Kalman and particle filters are used for tracking

both evaporative and surface-based electromagnetic ducts frequently encountered

in marine environments. The tracking performances and applicability of these

techniques to different types of refractivity-from-clutter problems are studied using

the posterior Cramér-Rao lower bound. Track divergence statistics are analyzed.

The results show that while the tracking performance of the Kalman filters is

comparable to the particle filters in evaporative duct tracking, it is limited by

the high non-linearity of the parabolic equation for the surface-based duct case.

Particle filters, on the other hand, prove to be very promising in tracking a wide

96
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range of environments including the abruptly changing ones.

4.1 Introduction

Non-standard electromagnetic propagation due to formation of lower at-

mospheric sea ducts is a common occurrence in maritime radar applications. Under

these conditions, some fundamental system parameters of a sea-borne radar can de-

viate significantly from their original values specified assuming standard-air (0.118

M-units/m) conditions. These include the variation in the maximum operational

range, creation of regions where the radar is practically blind (radar holes), and

increased sea surface clutter. Therefore, it is important to predict the real-time

3-D environment the radar is operating in so that the radar operator will at least

know the true system limitations and in some cases even compensate for them.

The environment is characterized by the modified refractivity profile (M-

profile) and there are many techniques that measure or predict the lower atmo-

spheric index of refraction. Some of the conventional techniques include radioson-

des and rocketsondes that estimate the index of refraction by measuring the vertical

temperature, humidity and pressure profiles, microwave refractometers that mea-

sure the index of refraction using cavity resonators, and meteorological models such

as the Coupled Ocean/Atmospheric Mesoscale Prediction System (COAMPS) that

give M-profile forecasts [1–3]. There also are other techniques that can refer the

refractivity using lidar [4] and GPS [5] measurements.

However, it also is possible to predict the duct properties using the radar

itself. When launched at a low elevation angle, the electromagnetic signal will be

trapped within the duct which can be taken as a range-dependent leaky waveguide

bounded from below by the sea surface. This will result in multiple reflections

and strong interaction with the surface which in turn will result in an increase

in the sea clutter, forming clutter rings. This normally unwanted portion of the

received signal then can be used to infer the environment that gives such a clutter
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structure. These techniques can be classified as refractivity-from-clutter (RFC)

techniques [6–14]. More detailed discussions about the differences between various

RFC schemes can be found in [12, 13].

This paper is a natural extension to these previous RFC methods which

compute the 2-D range and height-dependent M-profile for a given azimuth direc-

tion. Instead of inverting the environmental parameters for a given azimuth and

time, the emphasis here is on tracking both the temporal and spatial evolutions

of duct parameters. Throughout this paper, the term spatial evolution is used to

represent the evolution of the 2-D M-profile with the rotating azimuth angle of the

radar. This is achieved by employing tracking filters. The problem is formulated

in a Kalman framework, where the clutter for a given environment is calculated

using a split-step fast Fourier transform (FFT) based parabolic equation (PE) ap-

proximation to the wave equation [15]. This introduces a high level of nonlinearity

in the measurement equation. The problem then is solved by using the following

three algorithms [16–18]:

1. Extended Kalman filter (EKF), where the measurement equation is linearized

using the first order Taylor series expansion.

2. Unscented Kalman filter (UKF), where the nonlinearity in the parabolic

equation is kept but the probability density functions (pdf) are restricted

to be Gaussian.

3. Particle filter (PF) or sequential Monte Carlo (SMC), which uses a sequential

importance resampling (SIR) or bootstrap filter to track the nonlinear, non-

Gaussian system.

4.2 Theory

Two equations are necessary to fully characterize the dynamic system;

one that describes the evolution of the lower atmosphere and another that governs
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the propagation of the electromagnetic signal in this environment. At a time step

k, these equation can be given as:

xk = Fxk−1 + vk−1 (4.1)

yk = h (xk) + wk (4.2)

where F is a known linear function of the state vector xk, h(·) is a known non-

linear function of the measurement vector yk, vk and wk are the process and the

measurement noise vectors, respectively with

E{vkv
T
i } = Qkδki E{vkw

T
i } = 0 ∀ i, k

E{wkw
T
i } = Rkδki. (4.3)

The state vector xk is composed of the nx parameters that describe the complex

environment at the step index k. The state vector is constructed depending on

the type of the duct (evaporation/surface-based duct (SBD)/mixed) and the ap-

propriate model (range-dependent/independent). The process noise vk is taken as

a zero-mean Gaussian pdf. The prior density p(xo) usually is constructed using

the regional statistics. This density must be Gaussian for the Kalman filters. It

can be any distribution for the PF. For temporal tracking, k usually is in terms

of minutes and for spatial tracking it is in terms of azimuth angle of the rotating

radar.

Equation (4.1) is the state equation for the stochastic environmental

model. F is the linear state transition matrix which will be taken as the iden-

tity matrix following Section 4.2.2. The main assumption is that the environment

is changing slowly compared to the step index. Although the M-profile is not ex-

pected to vary considerably in short intervals, sudden fluctuations can occur and

the filters will require larger Qk to perform adequately in these environments.

Equation (4.2) is the measurement equation and it relates the environ-

ment given by xk to the radar clutter power yk through a highly nonlinear h(·)
function which uses a split-step FFT-PE, see Section 4.2.3. Usually, the nonlinear-

ity is less severe for evaporative ducts, however the degree of nonlinearity and hence
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the filter performance still heavily depends on the current location of xk on the

state-space. wk is the logarithm of the sea surface clutter radar cross section (RCS).

There are many successful models for the sea clutter distribution. The selection of

the appropriate model depends mainly on the grazing angle, radar resolution and

sea roughness. Some of the commonly used models include the Rayleigh, Weibull,

log-normal and K-distributed sea clutter [19, 20]. Since the Kalman framework

requires Gaussian distributions, the model can only be constructed if the RCS is

selected as log-normal even if this may not be the most suitable selection among

the densities mentioned above. The PF does not have such restrictions and any pdf

can be used. However, since it is desirable to compare these filters under the same

set of assumptions, sea clutter is taken as log-normal. Note that no other noise

terms are used, so all the variation in the signal is represented by the additive wk

in the logarithmic domain. This assumption is made due to the dominant effect

of the increased sea clutter resulting from the entrapment of the electromagnetic

signal inside the duct. However, this assumption may have to be modified for a

low SNR system. Alternatively, one can use a measurement equation based on the

formulation given in [12].

4.2.1 Creation of the 2-D Modified Refractivity Profile from State

Variables

Surface-based ducts (SBD) are represented by the commonly used tri-

linear M-profiles. Each tri-linear profile requires four parameters: slope and thick-

ness of the base (c1, h1) and inversion layers (c2, h2). The top layer slope is taken

to be constant at 0.118 M-units/m. For range-dependent profiles, the M-profile

parameters are defined at nr range intervals and the values at other ranges are

calculated using a cubic fit. Hence, the number of state parameters nx = 4nr. The
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2-D M-profile is calculated using the following procedure:

xk =
[
mT

1 mT
2 . . . mT

nr

]T
(4.2.4)

mi =
[
c1(ri) c2(ri) h1(ri) h2(ri)

]T
, i = 1, . . . , nr (4.2.5)

M(z, r) = M0 +





c̃1z if z ≤ h̃1

c̃1h̃1 + c̃2(z − h̃1) if h̃1 ≤ z ≤ h̃2

c̃1h̃1 + c̃2h̃2 if z ≥ h̃2

+0.118(z − h̃1 − h̃2),

(4.2.6)

where M0 is the base refractivity usually taken as 330 M-units/m, mi represent

the trilinear profiles at nr different ranges defined in the state vector, c̃1, c̃2, h̃1,

and h̃2 parameters obtained by a cubic fit for range r.

Evaporative ducts are represented using only the evaporative duct height,

which is true when the air and sea temperatures are almost identical with a neu-

trally buoyant boundary layer. Range-dependence is similarly achieved by defin-

ing the duct height at various ranges and interpolating in between using cubic fit.

Hence, the number of state parameters nx = nr for evaporative duct problems. The

2-D evaporative duct is constructed using the log-linear evaporative duct formula

given in [21]:

xk = [hd(r1) hd(r2) . . . hd(rnr
)]T (4.2.7)

M(z, r) = M0 + co

(
z − h̃d log

z + zo

zo

)
, (4.2.8)

where h̃d represents the duct height obtained by a cubic fit at range r, the constant

co and the roughness factor zo are taken as 0.13 and 1.5 × 10−4, respectively.

State vector for a mixed type range-dependent/independent duct is cre-

ated using 4+1 (SBD+evaporation) parameters at each of the nr ranges. Then the

evaporative M-profile is appended to the bottom of the trilinear SBD profile.

4.2.2 State Equation – Environmental Model

The spatial and temporal evolution of the environmental parameters are

taken as a first order autoregressive (AR) process with an exponentially decay-
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ing autocorrelation function. This structure is selected after the analysis of the

helicopter data collected during the Wallops’98 experiment. A helicopter from

John Hopkins University (JHU) measured the 2-D M-profile on a fixed path at

150◦ azimuth from the Space Range Radar (SPANDAR) several times on April

02, 1998 and these measurements are processed into 10 2-D helicopter profiles.

Each helicopter profile takes about 24 minutes to measure and is composed of

vertical M-profiles every 1.852 km (1 nautical mile) out to 60 km. Therefore, the

variation in the M-profiles unfortunately is a combination of both spatial and tem-

poral fluctuations. The variation in two successive M-profiles in range in any given

helicopter profile is assumed to be purely spatial to obtain an approximation to

the spatial autocorrelation. In other words, the mean helicopter flight time of 40

seconds between two successive M-profiles is ignored.

The best trilinear fit for each of these vertical M-profiles is computed

(Fig. 4.1) for each helicopter profile. The autocorrelation for each parameter is

calculated using the Yule-Walker method. It also is assumed that these param-

eters are stationary random processes and hence the spatial autocorrelation only

depends on the distance between the two vertical profiles. For the spatial and

temporal step sizes used in this paper, the results provided an autocorrelation

between 0.97 and 1 for both the layer slopes and thicknesses. The standard devi-

ation for the layer slopes and thicknesses are also observed to vary between 5-100

M-units/km and 1-10 m, respectively for these 10 profiles. However, it should be

noted that these values are by no means general. From many previous experiments

such as the Variability of Coastal Atmospheric Refractivity (VOCAR) [22], it is

known that these values are strong functions of region, season, time of the day and

mesoscale atmospheric processes. For example, experiments indicate that Santa

Ana-induced (warm and dry offshore winds in Southern and Baja California) SBDs

typically have higher spatial variability than the subsidence-induced SBDs [23]. It

has been known that duct parameters such as the duct height can stay stable for

days, followed by rapid fluctuations [24]. Spatial variability also has similarly chal-
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lenging and dynamic patterns as shown during the Wallops’2000 experiment [25].

Hence, different environmental models may be necessary for different applications

or regions. One solution can be using multiple models created by observing the

most common patterns in the region of interest.
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Figure 4.1: Ten 2-D M-profiles measured by JHU helicopter, Wallops’98 experi-
ment (gray) and best trilinear profile fit for each measurement (black).

4.2.3 Measurement Equation – Propagation Model

The measurement equation provides yk, the radar clutter power in dB,

for an environment described by the state vector xk. First the field is propagated
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in range using the following recursive split-step FFT PE formula [26]

uk(z, r + △r) = exp
[
iko△rM(xk)10−6

]
× (4.2.9)

F−1
{

exp
[
i△r

(√
k2

o − k2
z − ko

)]
F {uk(z, r)}

}

where uk(z, r) is the vertical electromagnetic field at range r at step index k, ko

and kz are the wavenumber and its vertical component, △r is the range increment

in PE, F and F−1 are the Fourier and inverse Fourier transforms and M(xk) is the

2-D M-profile M(z, r) computed in Section 4.2.1. Following [7], the clutter power

Pc for low grazing angles can be calculated using

Pc = cL−2(xk)rσ
o (4.2.10)

where c accounts for the constant terms in the radar equation, L(xk) is the one

way propagation loss obtained from the electromagnetic field uk(z, r) calculated at

the effective scattering height given as 0.6 times the mean wave height [27] and σo

is the normalized sea surface RCS.

The measurement equation (4.2) can be obtained by representing (4.2.10)

in dB with the following definitions

yk = 10 log(Pc) wk = 10 log(σo) (4.2.11)

h (xk) = −20 logL(xk) + 10 log(cr) (4.2.12)

where the measurement noise wk is additive Gaussian since σo is the sea surface

RCS with log-normal pdf. For tracking the environment there probably will be

periods of minutes between two measurements and the quantities above actually

will be averaged over the interval, which may reduce significantly the log-normal

measurement noise.
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4.3 Tracking Algorithms

4.3.1 Extended Kalman Filter

Since the tracking problem given in (4.1)–(4.2) is nonlinear with non-

Gaussian densities, a Kalman filter (KF) cannot be used. Instead, an extended

Kalman filter (EKF) [28] is used by locally linearizing the equations using the

first terms in the Taylor series expansions of the nonlinear transformations (such

as h) and hoping that the nonlinearities are mild enough that EKF will perform

well. Since the pdfs are Gaussian and equations are linearized, it is necessary

to propagate only the mean and covariance as in the KF. However, due to this

approximation, the EKF cannot claim the optimality enjoyed by the KF for linear-

Gaussian systems. The EKF has been implemented successfully in a large number

of applications such as radar and sonar target tracking applications and its speed

and ease of implementation makes the EKF the filter of choice. Therefore, the

EKF is the first filter tested in the RFC tracking problem.

Extended Kalman Filter Equations

For EKF used in this dissertation, the mean and covariance of the under-

lying Gaussian density is recursively calculated as follows:

x̂k|k−1 = Fx̂k−1|k−1 (4.3.13)

Pk|k−1 = Qk−1 + FPk−1|k−1F
T (4.3.14)

x̂k|k = x̂k|k−1 + Kk

(
yk − h

(
x̂k|k−1

))
(4.3.15)

Pk|k = Pk|k−1 −KkSkK
T
k , (4.3.16)

where

Sk = ĤkPk|k−1Ĥ
T
k + Rk (4.3.17)

Kk = Pk|k−1Ĥ
T
k S−1

k (4.3.18)

Ĥk =
[
∇xk

hT
(
x̂k|k−1

)]T
. (4.3.19)
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4.3.2 Unscented Kalman Filter

To alleviate some of the linearization problems confronting the EKF, the

unscented Kalman filter (UKF) [29,30] has been introduced. Unlike the EKF which

enforces linearity, this filter approaches the problem from a different perspective

by enforcing Gaussianity and keeping the nonlinearity. This still enables the filter

to carry all the necessary information by propagating only the mean and covari-

ance as does the KF. It uses an unscented transformation (UT) that enables the

propagation of the mean and variance through nonlinear functions. The UKF rep-

resents initial densities using only a few predetermined particles called the sigma

points. These particles are chosen deterministically by the UT algorithm and they

can describe accurately the mean and covariance of a pdf. As the random variable

undergoes a nonlinear transformation, these particles are propagated through this

nonlinear function and used to reconstruct the new mean and covariance using the

UT weights. Hence, unlike the EKF, they can compute accurately the mean and

covariance to at least second order (third if the initial density is Gaussian) of the

nonlinearity. Although it is fast relative to more advanced techniques, derivative-

free, and an improvement over the EKF, there still are two possible weaknesses.

The first is that the nonlinearity may be so severe that it may require an even

higher order accuracy than the UKF can provide to correctly capture the mean

and covariance. The other is that the densities may be highly non-Gaussian so

that the first two moments will not be sufficient even if they can be calculated

correctly. The UKF used throughout this work is summarized in the next section.

Unscented Kalman Filter Equations

The UKF uses the following recursive formulation where 2nx + 1 sigma

points {X i}2nx

i=0 and their corresponding weights W i are generated and used with

the unscented transform (UT) to perform the mean (x̂k) and covariance (Pk)

calculations required in the Kalman framework. The UT weights are given in terms

of the scaling parameter λ = α2(nx + κ) − nx and prior knowledge parameter β
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where α is used to control the spread of the sigma points around the mean and

κ is the secondary scaling parameter. α, β, and κ are taken as 0.1, 2, and 0,

respectively in this paper. UT weights and sigma points are generated using

X 0
k−1 = x̂k−1|k−1 (4.3.20)

W 0
m =

λ

nx + λ

W 0
cov = W 0

m + β + 1 − α2

X i
k−1 = x̂k−1|k−1 ±

(√
(nx + κ)Pk−1|k−1

)
i

(4.3.21)

W i
m = W i

cov =
0.5

nx + λ
i = 1, 2, . . . , 2nx

where
(√

.
)

i
is the ith column of the matrix square root. The prediction step is

composed of

X i
k|k−1 = FX i

k−1, (4.3.22)

Y i
k|k−1 = h

(
X i

k|k−1

)
(4.3.23)

x̂k|k−1 =
2nx∑

i=0

W i
mX i

k|k−1, (4.3.24)

ŷk|k−1 =
2nx∑

i=0

W i
mY i

k|k−1 (4.3.25)

Pk|k−1 = Qk−1 +

2nx∑

i=0

W i
cov

[
X i

k|k−1 − x̂k|k−1

] [
X i

k|k−1 − x̂k|k−1

]T
(4.3.26)

and the update step uses

Pxy =

2nx∑

i=0

W i
cov

[
X i

k|k−1 − x̂k|k−1

] [
Y i

k|k−1 − ŷk|k−1

]T

Pyy =

2nx∑

i=0

W i
cov

[
Y i

k|k−1 − ŷk|k−1

] [
Y i

k|k−1 − ŷk|k−1

]T

Kk = Pxy (Pyy + Rk)
−1 (4.3.27)

x̂k|k = x̂k|k−1 + Kk

(
yk − ŷk|k−1

)
(4.3.28)

Pk|k = Pk|k−1 − Kk (Pyy + Rk)KT
k . (4.3.29)
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4.3.3 Particle Filter

The last algorithm used in this paper is the Sequential Monte Carlo

(SMC) or the particle filter (PF). This filter does not come with any inherent

assumptions and is used for many nonlinear, non-Gaussian tracking problems [31].

The main difference with Kalman type filters is that, since no Gaussian assump-

tion is made, propagating the mean and covariance is not sufficient. Instead the

PF propagates an ensemble of particles to represent the densities. These particles

are selected randomly by MC runs. Compared with the sigma points of the UKF,

a much larger number of particles are needed to represent the pdf. Therefore, the

PF can perform much better than its KF variants but it does this with an order of

magnitude increase in the computational burden. There are many different vari-

ants of the PF such as the regularized particle filter (RPF), Markov chain Monte

Carlo step particle filter (MCMC-PF), auxiliary (ASIR) and classical sequential

importance resampling (SIR) particle filter [32].

The SIR algorithm is used throughout this work. Normally, degeneracy

can be a problem for the SIR algorithm, especially for low process noise systems.

However, due the environmental uncertainty in the model (Section 4.2.2), Qk is

selected relatively large, thus mostly eliminating the need for more complex particle

filters with improved sample diversity. The SIR algorithm [33] is summarized in

the next section.

Sequential Importance Resampling Filter Equations

The SIR algorithm uses N particles {X i}N
i=1 to represent the pdf at each

step k. The filter has the predict and update sections just as in a KF but the

SIR filter will use these sections to propagate the particles instead of mean and

covariance calculations.

The initial set of particles {X i
o}

N
i=1 are sampled from the prior p(xo). The

SIR filter uses the importance sampling density as the transitional prior p(xk|xk−1).

Therefore, the prediction step consists of sampling from this pdf. Then the normal-



109

ized weight W i
k of each particle is calculated from its likelihood function evaluation.

The update step includes the resampling section where a new set of N particles

is generated from the parent set according to the weights of the parent particles.

Hence, a single iteration of the recursive SIR algorithm can be summarized as:

{
X i

k|k−1

}N

i=1
∼ p(xk|xk−1) (4.3.30)

W i
k =

p
(
yk|X i

k|k−1

)

∑N
i=1 p

(
yk|X i

k|k−1

) (4.3.31)

{
X i

k|k

}N

i=1
= Resample

[
W i

k,
{
X i

k|k−1

}N

i=1

]
(4.3.32)

s.t. Pr
{
X i

k|k = X j
k|k−1

}
= W j

k

4.3.4 Posterior Cramér-Rao Lower Bound

It usually is not possible to have an optimal estimator with minimum

mean square error (MMSE) for the nonlinear filtering problems such as RFC. All

the techniques used in this paper also are sub-optimal techniques. Therefore, it is

desirable to have a tool that not only can assess the performances of these sub-

optimal techniques but also provide a limit to achievable performance for a given

environment.

In a classical non-Bayesian framework, the Cramér-Rao Lower Bound

(CRLB), which is the inverse of the Fisher information matrix (FIM), is commonly

used. In a Bayesian framework this instead can be replaced by the posterior

Cramér-Rao Lower Bound (PCRLB) introduced by van Trees [34]. Since this

paper exclusively works with PCRLB, it will henceforth be referred to simply as

CRLB.

Any filter that achieves a mean square error (MSE) equal to the CRLB

is called an efficient estimator. For a linear and Gaussian system, the Kalman

filter is an efficient estimator. It may not be possible to attain the CRLB for a

nonlinear, non-Gaussian system.
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Let Jk be the inverse of the CRLBk as a (nx × nx) filtering information

matrix so that the MSE of any filter estimate at tracking step index k will be

bounded as

E
{(

x̂k|k − xk

) (
x̂k|k − xk

)T
}
≥ J−1

k , (4.3.33)

where x̂k|k is the estimate of xk given its previous history {xo,x1, . . . ,xk−1} and

the set of measurements {y1,y2, . . . ,yk}. A computationally efficient way of com-

puting this CRLB recursively for discrete-time nonlinear filtering problems is [35]:

Jk = D22
k−1 −

[
D12

k−1

]T (
Jk−1 + D11

k−1

)−1
D12

k−1 (4.3.34)

where

D11
k−1 = −E

{
∇xk−1

[
∇xk−1

log p (xk|xk−1)
]T

}
(4.3.35)

D12
k−1 = −E

{
∇xk

[
∇xk−1

log p (xk|xk−1)
]T

}
(4.3.36)

D22
k−1 = −E

{
∇xk

[∇xk
log p (xk|xk−1)]

T
}

− E
{
∇xk

[∇xk
log p (yk|xk)]

T
}
. (4.3.37)

Note that the computations only require (nx × nx) matrices and the computation

cost is independent of the step index k.

The RFC tracking problem with the system of equations defined in (4.1)

– (4.2) has a linear state equation and both of the random noise sequences v and

w are additive and Gaussian. Therefore, the above equations can be reduced to

D11
k−1 = FTQ−1

k−1F

D12
k−1 = −FTQ−1

k−1

D22
k−1 = Q−1

k−1 + E
{
HT

k R−1
k Hk

}
, (4.3.38)

where

Hk =
[
∇xk

hT (xk)
]T

(4.3.39)
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is the Jacobian of h(x) evaluated at its true value xk. Unfortunately the expec-

tation in (4.3.38) has to be evaluated numerically. The recursion in (4.3.34) is

initiated by using the prior probability p(xo) to compute Jo as

Jo = −E
{
∇xo

[∇xo
log p (xo)]

T
}

= P−1
o , (4.3.40)

where Po is the covariance of the prior density, assuming it is Gaussian.

4.4 Examples

This section is composed of three examples covering tracking of both

the evaporative and surface-based ducts. Throughout the examples, issues such as

the performance limitations, filter efficiencies, divergence characteristics, and CPU

time comparisons are addressed. These three case studies are:

1. Temporal tracking of a fixed path, range-independent surface-based duct

(SBD) for performance comparison of the EKF, UKF, and PF with respect

to the CRLB.

2. Divergence analysis of the EKF, UKF and PF for a typical temporal range-

independent SBD tracking problem.

3. Temporal tracking of a range-dependent littoral evaporation duct. Compar-

ison with the SBD tracking.

4.4.1 Case Study I: Temporal Tracking of a Range-Independent Surface-

Based Duct

This example is used to compare the tracking performances of the EKF,

UKF and PF and compute their efficiencies using the numerically computed CRLB.

The range-independent SBD is selected from the environmental library of the

Advanced Refractive Effect Prediction System (AREPS) [36]. The Bahrain ra-

diosonde station in the Persian Gulf is used for the simulation (Fig. 4.2). The
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Table 4.1: Case Study I: Comparison of Tracking Algorithms and CRLB Ra-
diosonde Station Bahrain, Persian Gulf

Station Environment

Longitude 50o36′E Duct Type Surface-based Duct

Latitude 26o18′N Month Mar/Apr/May Average

Elevation 2 m Time Day/Night Average

Marsden Square 103 Occurrence 59% Day / 75% Night

Radar c1 0.050 M-units/m

Frequency 2.84 GHz c2 -0.221 M-units/m

Height 15 m h1 43 m

Range Bin 600 m h2 77 m

Simulation Parameters

Monte Carlo Runs 100

Track Length, kmax 30 min – 1 measurement/min

Initial Covariance Po = diag{(10 M-units/km)2, (3 m)2}
State Noise Covariance Qk = diag{(3 M-units/km)2, (1 m)2}
Measurement Noise Rk = diag{(5 dB)2}, log-normal RCS

station, average environment, radar and simulation parameters are given in Ta-

ble 4.1. The state vector x has four parameters representing the layer thicknesses

and slopes of the range-independent SBD M-profile as defined in Section 4.2.1.

The layer slopes are given in M-units/m while the RMS errors and standard de-

viations in the slope estimates are given in M-units/km. The fact that the SBD

(excluding evaporative and elevated ducts) is present 67% of the time makes the

estimation and tracking of these atmospheric ducts a high priority in the Persian

Gulf. The same frequency as that of the Space Range Radar (SPANDAR) [7, 25]

is used. The height is set to 15 m, a typical value for a naval radar. New clutter

data is provided every minute (∆k=1 min.) and an overall track length of 30 min.

is used. The log-normal sea clutter is assumed to have a standard deviation of

5 dB [19]. The values of Qk, Po, Rk are selected in accordance with the values

obtained in Section 4.2.2.
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The CRLB and the filter performances are calculated using Monte Carlo

analysis. First, 100 environmental parameter trajectories are created from the

state equation (4.1) with starting values randomly selected from the prior density.

Then, D22
k−1 in (4.3.38) is calculated using

D22
k−1 = Q−1

k−1 +
1

NMC

NMC∑

j=1

∇h
(
xj

k

)
R−1

k

[
∇h

(
xj

k

)]T
. (4.4.41)

Each of these 100 environmental trajectories also is tracked using the EKF, UKF

and PF. The results are given in Fig. 4.2 and Table 4.2. The performance metrics

are:

ηk(i) = J
−1/2
k (i, i) / RMSk(i) (4.4.42)

RTAMS(i) =

[
k2∑

k=k1

NMC∑

j=1

(
x̂j

k(i) − xj
k(i)

)2

(k2 − k1 + 1)NMC

]1/2

(4.4.43)

Improv. =
RTAMSEKF −RTAMSfilter

RTAMSEKF
(4.4.44)

where xj
k(i) is the ith parameter of the true state vector x at time index k for the

jth MC run, RMSk and ηk are the root mean square error and the filter efficiency

at step k, RTAMS is the root time averaged mean square error [32] calculated for

the interval [k1,k2], and (4.4.44) is used to calculate the performance improvement

of a filter with respect to the EKF. RTAMS is calculated for the 5-30 min. interval

so that the initial variation will not affect the performance calculations.

The results in Fig. 4.2 show that Kalman filters suffer due to their inher-

ent approximations. The measurement equation is highly nonlinear for most of the

state space and linearization (EKF) clearly does not work. Since the UKF does not

assume linearity, it enjoys an average of 36% improvement over the EKF results.

However, a pure Gaussian assumption and high nonlinearity also results in poor

UKF estimates with only 12% efficiency. All the particle filters used in this case

perform better than both of the Kalman filters. The PF with 5000 particles has an

average error of only 1.6%, very close to the value of 1.4% predicted by the CRLB.

It is 77% efficient and enjoys a 84% improvement over the EKF. Note that PF
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Table 4.2: Performance Comparison for Case Study I

RMS Error After 30 min. RTAMS Average %

Method c1 c2 h1 h2 Avg. Error Average c1 c2 h1 h2 Improvement

(M-units/km) (m) (%) η (%) (M-units/km) (m) Over EKF

EKF 12.7 20.5 3.36 11.01 14.2 8 11.7 18.8 3.03 9.48 -

UKF 8.5 16.0 2.33 7.64 9.9 12 6.5 11.9 1.87 6.98 36

PF−200 5.5 2.6 0.71 3.72 4.7 30 4.9 2.7 0.73 3.50 71

PF−1000 3.1 1.9 0.38 0.97 2.3 58 3.6 2.2 0.59 1.96 79

PF−5000 2.0 1.7 0.23 0.96 1.6 77 2.9 2.2 0.46 1.20 84
√

CRLB 2.0 1.0 0.21 0.57 1.4 100 2.1 1.0 0.24 0.67 90
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Figure 4.2: Case study I for comparison of the tracking algorithms. (a) Regional
map and the location of the station (×), (b) average spring M-profile, (c) evolutions
of 100 Monte Carlo trajectories, and (d) RMS errors of the EKF (O), UKF (△), and
200-particle PF (�) obtained from the tracking performance of these trajectories
along with the square root of the posterior CRLB (dashed).

requires an order of magnitude more of CPU time. The PF-200 required a factor

of 10 more CPU time than that of the UKF for this scenario. Hence, the PF is a

costly alternative and as a general rule should be avoided as long as the Kalman

framework provides reasonable tracking. However, atmospheric parameters some-

times can fluctuate abruptly. This requires increasing Qk to compensate for the

sudden jumps. Initial tests showed that the Kalman structures are much more

sensitive to these sudden moves and diverge if the sudden jump is large enough,

even after Qk is increased, whereas particle filters showed more robust tracking
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performance. Therefore, it can be concluded that the SBD tracking requires a

particle filter approach even though they are computationally expensive.

Although the results in Table 4.2 show the most frequently encountered

scenario in the SBD tracking, the simulations show that there are three different

cases depending on where you are in the state space. The other two are when the

PF and the UKF works but not the EKF and when all three filters perform well.

However, these are relatively rare cases and occur only when the nonlinearity is

not strong.

An important issue with the particle filters is the selection of the number

of particles Np to be used at each step. The increase in the efficiency of the PF with

increasing Np is given in Fig. 4.3 for this case study. Unfortunately it is hard to

determine an optimum value since this curve is scenario dependent. A tropospheric

propagation code such as the Terrain Parabolic Equation Model (TPEM) [26] can

simulate typically 20 environments per second on a 3 GHz computer. Therefore,

for a filter with a 1 min. update rate, Np < 20× 60 = 1200 can be selected, which

corresponds to an average 2% error in the tracked parameters for this scenario. An

alternative to this is assuming a discrete state space instead of the continuous one

used in this work. Hence, only a finite number of possible environment states needs

to be pre-computed so that a larger number of particles can be used. Due to its

discrete nature, the problem now can be solved using the grid-based methods such

as a Hidden Markov Model (HMM) based tracking filter which employs a Viterbi

algorithm. RFC estimation for a fixed path based on the Viterbi algorithm has

been proposed in [12]. However, this requires a sufficiently dense griding of the

state space, which very quickly will grow as the state dimension increases.

4.4.2 Case Study II: Divergence in Surface-Based Duct Tracking

This example studies the divergence problem in SBD tracking. The height

and slope values (Fig. 4.4) and their variations are selected very similar to the heli-

copter measured real M-profiles obtained in the Wallops’98 experiment [7] (Section
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Figure 4.3: Efficiency of the PF as a function of the number of particles.

4.2.2). All the radar and simulation parameters are kept the same as Case Study I

except Qk for the layer slopes and Rk are taken as (10 M-units/km)2 and (4 dB)2,

respectively. This trajectory is tracked 100 times by each filter to obtain divergent

track probabilities.
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Figure 4.4: Case Study II: Temporal evolution of the range-independent duct.

The evolution of the clutter signal without the addition of noise is given

in Fig. 4.5. This strong nonlinearity of h(xk) results in a high percentage of

track divergence for the Kalman filters. For this scenario, a track is declared as

divergent if any of the slope estimates for c1 or c2 have a RMS error greater than

50 M-units/km or any of the layer thickness estimates for h1 or h2 have a RMS
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error larger than 5 m for any 5 consecutive minutes. A typical track result is

given in Fig. 4.6 for each filter type. The divergence statistics of the filters are

provided in Table 4.3. Similar to Case Study I, the PF performs significantly better

than both the Kalman filters and the UKF is better than the EKF. Both Kalman

filters mostly were able to follow the thickness variations but failed in tracking

the slopes which usually have more effect on the clutter return. Interestingly, the

EKF RTAMS error for the layer thickness is less than that of the UKF. However,

this is more than offset by the fact that after only 10 min, the EKF reached a

47% divergence rate while none of the UKF runs diverged. The PF-200 starts to

diverge after 30 min. with a 17% rate and only 2% of the PF-1000 runs failed to

track the duct after 30 min.
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Figure 4.5: Evolution of the highly nonlinear relative radar clutter yk (dB) com-
puted for the true environment without wk.
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Figure 4.6: Case Study II: Temporal tracking of the range-independent SBD. c1
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and filter estimates (solid) for the EKF, UKF and PF-200.

4.4.3 Case Study III: Range-Dependent Evaporation Duct Tracking in

Coastal Regions

This example is used to compare the tracking performances of the three

filters in an evaporation duct environment. Evaporation duct differs significantly

from the SBD in terms of the nonlinearity of the measurement equation (4.2). The
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Table 4.3: Performance Comparison for Case Study II

Average RTAMS Divergent Track Percentage After

Method M-units/km m 10 min. 20 min. 30 min.

EKF 84.2 2.9 47 69 90

UKF 41.8 3.3 0 29 37

PF−200 27.7 0.9 0 0 17

PF−1000 16.2 0.5 0 0 2

clutter in an evaporation duct environment does not have the complex patterns

of the SBD-induced clutter such as the one in Fig. 4.5. Except for the very thick

ducts which rarely occur, the evaporative duct clutter decreases monotonically with

range and the nonlinearities are very mild [6]. This means that the Kalman filters

will no longer suffer from the nonlinearities which severely limited their usage in

the previous SBD tracking examples.

Eastern Mediterranean is selected for this example. Day time statistics of

July are used. A summary of the selected region, environmental conditions, radar

and simulation parameters are given in Table 4.4. The naval radar is taken to be

located at 25km, looking towards the shore. It should be noted that evaporation

ducts thicker than 10 m exist more than 80% of the time in this region. The

regional statistics of the evaporation duct height (EDH) is given in Fig. 4.7(a)

together with the pdf for the air-sea temperature difference given in Fig. 4.7(b).

The small temperature difference makes possible the representation of the vertical

evaporative M-profile using only the EDH as given in Section 4.2.1.

A complex, temporally evolving, range-dependent coastal evaporation

duct as given in Fig. 4.7(c) is created. Corresponding 2-D M-profiles at t = 0,

60, and 120 min. are shown in Fig. 4.7(d). As a typical coastal duct, it has high

variability near the coastal zones with multiple local disturbances with 10-30 min.

and 2-5 km scales similar to those encountered in [24, 37–39], while it gets more

uniform as the distance from the shore increases. It also includes the formation

and dissipation of a strong offshore evaporative duct (between 60-100 min.) and
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as usual, the duct starts to lose its strength as it gets closer to the land. To better

represent the coastal zones, a denser grid is used for for these regions. The nonuni-

form grid used here has 7 ranges at 1, 3, 5, 7, 10, 13, and 17 km from the shore.

Hence, the state vector is composed of the EDH at these 7 ranges.

The tracking performance of the EKF, UKF, PF-200, are PF-1000 are

given in Table 4.5. A typical EKF track is provided in Fig. 4.7(e). Both Kalman

filters have a high performance with an average RTAMS of around 1 m. Since the

nonlinearity is not severe, the 1st order accurate linearization used by the EKF

is as good as the higher order accurate UKF and overall, the UKF achieves only

1% improvement over the EKF. Unlike the SBD tracking, the 200 point PF is no

match for the Kalman filters, while PF-1000 is now comparable to the EKF and

the UKF.

These above results show that Kalman filters are able to track evaporative

ducts successfully, and can only be outperformed by a very high Np PF which is

computationally much more expensive.

4.5 Discussion

A fundamental question for a real RFC tracking system is the tempo-

ral/spatial step size. The continuous real-time inflow of clutter data enables RFC

techniques to capture much finer details in the local environmental conditions.

Track updates at every minute or two seems to be a reasonable choice for tracking

since the typical RMS error in the propagation factor has been shown to exceed

6 dB after 30 min. due to temporal decorrelation of the environmental parame-

ters [40]. Tracking faster may necessitate a decrease in the number of particles to

be used in the PF which may degrade the track effectiveness.

During the simulations some special cases other than the provided ex-

amples have been noted which can cause track divergence. One of these is when

one of the layer thickness parameters gets very small for a short period of time.
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Table 4.4: Case Study III: Coastal Range-Dependent Evaporation Duct Tracking,
Eastern Mediterranean

Region Radar

Longitude 20oE−30oE Frequency 5 GHz

Latitude 30oN−40oN Height 15 m

Marsden Square 142 Range Bin 100 m

Environment

Duct Type Range-Dependent Evaporation Duct

Month/Time July/Day Time Average

Mean Duct Height 16.4 m

% Time EDH>10 m 81.7%

% Time Air-Sea △T < 1oC 87.2%

Simulation Parameters

Track Length, kmax 120 min – 1 measurement/2 min

Initial Covariance Po = diag{(3 m)2}
State Noise Covariance Qk = diag{(0.707 m)2}
Measurement Noise Rk = diag{(3 dB)2}, log-normal RCS

Table 4.5: Performance Comparison for Case Study III

Average RMS Error Average Avg. % Improv.

Method 1 hr. (m) 2 hr. (m) RTAMS (m) Over EKF

EKF 1.17 0.88 1.08 -

UKF 1.17 0.90 1.07 1

PF−200 1.19 1.93 1.38 -29

PF−1000 1.13 1.42 1.13 -6
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Figure 4.7: Case Study III: Range-Dependent Evaporation Duct Tracking. (a) Evaporation duct height (EDH) statistics and
(b) air-sea temperature difference statistics for the given region/month/time, (c) spatio-temporal evolution of the simulated
EDH, (d) 2-D M-profiles at 0, 60, and 120 min., and (e) the evolution of EDH for the selected range grid that is used to
construct the state vector xk (dashed line as the true value, solid line as the EKF track).
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Since the layer is thin it has minimal effect on electromagnetic propagation so the

slope of this layer does not have any significance on the overall clutter structure.

This leads to major deviations in the slope parameter and when the layer starts

to thicken again, the track diverges since the starting slope value is too far from

the true one. The PF is more resilient to this type of divergence than the Kalman

filters.

The second case is when the overall duct height becomes less than the

antenna height for some range interval (in a range-dependent profile) or for a

short duration. Since the source now is outside the waveguide, the sea clutter

drops possibly resulting in track divergence.

The final case is when the duct becomes very strong for some range inter-

val (in a range-dependent profile) or for a short duration. A strong duct is formed

when the inversion slope is so strong (highly negative) that the entire electromag-

netic field is trapped before it reaches the upper boundary of the inversion layer.

Then any inversion layer thickness value larger than this total entrapment thick-

ness will have the same effect on the clutter, resulting in large deviations in the

inversion layer thickness and as the duct loses its strength, divergence occurs since

the starting value of the inversion layer thickness is too far from its true value.

4.6 Conclusion

The extended and unscented Kalman and particle filters have been stud-

ied for tracking the spatial and temporal evolution of the lower atmospheric index

of refraction using the radar clutter return. The divergence statistics, computa-

tional complexities, and tracking performances of these filters were compared to

each other using the posterior Cramér-Rao lower bound through various case stud-

ies. The results showed that the clutter can be a rich source of information for

real-time tracking of the 3-D environment in which the radar is operating. The

Kalman filters showed that they can be used successfully for various RFC tracking
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cases such as evaporative duct tracking but were limited by the nonlinearity of the

mapping from environmental refractivity to clutter (that uses the split step fast

Fourier transform parabolic equation) and the non-Gaussianity of the environmen-

tal parameter densities, especially for the surface-based duct tracking. In contrast,

the particle filter showed that it can successfully track a wide range of scenarios

although it required much larger computation times relative to the Kalman filters.
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Conclusions and Future Work

5.1 Conclusions

Using the radar itself to be able to infer the environment in which it

is operating is one of the most promising techniques that can offer three dimen-

sional real or near-real time estimates for atmospheric refractivity. The fact that

it requires no extra hardware or measurement and that it only uses the normally

discarded clutter portion of the radar signal is what makes the technique appealing.

The major drawbacks of RFC are: (1) it cannot detect ducts that do not

interact with the surface such as elevated ducts, (2) there can be other non-ducting

related patterns in the clutter structure such as rain and the variation in local sea

state that will affect the estimation, and (3) it may be limited in the maximum

range it can be used due to the lower clutter-to-noise ratios at longer ranges.

The contributions of this dissertation can be classified broadly into the

following two parts.

5.1.1 Statistical Estimation of Refractivity

The first part, which includes Chapters 2 and 3, is devoted to the devel-

opment of a general framework for the statistical estimation of atmospheric radio

refractivity from a radar clutter measurement at a certain azimuth direction and

130
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time. The main contributions and accomplishments on statistical duct estimation

are listed below:

• The problem of inferring the atmospheric M-profile was formulated in a

Bayesian framework so that the environmental parameters could be repre-

sented with their joint posterior probability distribution (PPD).

• Calculation of radar clutter in inhomogeneous lower atmospheric media was

formulated using the very low grazing angle sea surface scattering of the

electromagnetic field obtained by the narrow-angle split-step fast Fourier

transform (FFT) based parabolic equation (PE) approximation to the wave

equation.

• We were ultimately interested in the end-user parameters such as the propa-

gation factor (F ) or the one-way transmission loss (L) that could be used in

radar calculations such as the detection probability (PD), two-dimensional

coverage diagrams and the false alarm rate. Therefore the joint PPD of

the environmental parameters was used in the projection of the environmen-

tal statistics into the PPD’s of parameters-of-interest via multi-dimensional

Monte Carlo (MC) integration.

• These MC integrals, along with the maximum a posteriori (MAP) and the

minimum mean square error (MMSE) estimates of range-independent envi-

ronmental duct parameters were calculated using techniques such as the ge-

netic algorithms (GA), simulated annealing (SA), two different Markov chain

Monte Carlo (MCMC) samplers, namely the Metropolis-Hastings (M-H) and

the Gibbs (GS) samplers and compared with the exhaustive search results.

The analysis showed that GA resulted in the fastest but least accurate MC

integrations whereas the MCMC samplers provided very accurate MC inte-

grations but required a large number of forward model split-step FFT PE

runs which limited their effective usage as a near-real time statistical RFC

estimation technique.
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• A hybrid GA-MCMC method based on the nearest neighborhood technique

that approximates the environmental parameter PPD using a Voronoi decom-

position of the multi-dimensional state space was introduced. This resulted

in significantly reduced number of forward model calculations without sig-

nificantly compromising the accuracy in MC integral calculations that were

obtained using the MCMC samplers.

• The ability to solve large multi-dimensional problems with the hybrid GA-

MCMC method allowed introduction of range-dependent refractivity profile

estimation. This involved defining multiple profiles at certain range inter-

vals and interpolating between them. Ability to use these complex range-

dependent structures resulted in estimation of environmental profiles that

matched very well the measured clutter and provided much more realistic

environmental predictions.

• All of these techniques were tested successfully with the data collected during

the Wallops’98 experiment conducted by the Naval Surface Warfare Center,

Dahlgren Division. The radar clutter data gathered by the Space Range

Radar (SPANDAR) was inverted using both range-dependent and range-

independent environmental profiles and the results were compared with the

helicopter refractivity profile measurements conducted by the Applies Physics

Laboratory of John Hopkins University.

5.1.2 Refractivity Tracking

The second part, which includes Chapter 4, is devoted to the development

of a general framework for the spatial and temporal tracking of the atmospheric

radio refractivity. The main contributions and accomplishments on statistical duct

estimation are listed below:

• The temporal and spatial environmental parameter evolution was formulated

as a first order Markov process after analyzing the helicopter profiles collected
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during the Wallops’98 experiment.

• The problem was formulated in a Kalman framework where the state vari-

ables were the environmental parameters with prior densities selected using

the regional statistics, and the measurement equation was composed of the

highly nonlinear split-step FFT PE and the log-normal distributed sea sur-

face radar cross section (RCS).

• Since the problem proved to be nonlinear and non-Gaussian, three tracking

algorithms, namely the extended Kalman filter (EKF), the unscented Kalman

filter (UKF), and the sequential importance resampling particle filter (SIR-

PF) were analyzed for suitability in various RFC tracking applications.

• Performance calculations of all three filters were carried out using the RMS

errors, filter efficiency calculations obtained using the numerically computed

posterior Cramér-Rao lower bounds, track divergence statistics, and compu-

tation times.

• The effect of increasing the number of particles in a typical RFC tracking

problem was addressed and RMS error predictions were made for a realistic

PF, where the number of particles was dictated by the filter update rates

and the speed of the split-step FFT PE.

• Surface-based and mixed type duct tracking proved to be very challeng-

ing for the EKF and UKF since the underlying Kalman framework used in

these filters proved inadequate to handle the level of nonlinearity and non-

Gaussianity in the clutter and the SBD parameters. On the other hand,

the PF performed well in these environments, attaining much higher filter

efficiencies than the Kalman filters. It was concluded that even the sim-

plest range-dependent SBD tracking would necessitate a particle filter type

formulation.

• Unlike the SBD tracking, evaporation duct tracking results showed that the
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Kalman filters performed remarkably well in these environments. The mild

nonlinearity in the evaporation duct-induced clutter patterns enabled both

the EKF and the UKF track the evaporation ducts better than the PF using

low to medium number of particles. Since high particle numbers are compu-

tationally too expensive and will be impossible to implement in a real-time

tracking system, our analysis showed that the best filter to use in evaporation

duct tracking would be the UKF, closely followed by the EKF.

5.2 Future Work

This section contains some of the possible extensions to the work done

throughout this dissertation.

• It is important to further test the techniques introduced in this dissertation.

This involves performing RFC estimation in different regions of the world

such as the Persian Gulf and the Mediterranean, where significant ducting

occurs. Moreover, previous experiments conducted at Wallops Island were

not designed to test RFC tracking capabilities. Therefore, RFC tracking

currently remains relatively untested.

• Another interesting future work would involve the investigation of the perfor-

mance of RFC in various regions of the world using the existing naval radar

and communication systems. This may be extended to designing the best

RFC system in terms of the radar parameters such as the frequency, height,

pattern, and power that will operate in a given region, taking the regional

statistics and the local conditions into account.

• The ultimate purpose is combining the results of all other methods men-

tioned in Chapter 1. This would involve combining the RFC with the local

atmospheric measurements, mesoscale atmospheric prediction models, lidar

and GPS measurements, and regional statistics in a single Bayesian data as-

similation framework, where likelihood will be dictated by the radar return
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and hence, the RFC. The prior will be the regional statistics for the unknown

parameters and the mesoscale model forecast, updated by other techniques,

will serve both as an initial guess and as an estimator for wind conditions

and direction, enabling the parabolic equation to calculate F and σo more

accurately. Starting with a good initial guess may enable us to linearize the

problem around the solution and use techniques requiring less computation.

• Another important future work will involve the inclusion of land clutter into

the RFC estimation and analysis of the effects of land clutter in RFC cal-

culations. Almost all the previous work in the literature is based on the sea

clutter. However, near the coastal zones the clutter return includes not only

the sea surface reflected clutter but also the much stronger land clutter, with

uniquely different characteristics, which may have significant effects on the

RFC inversion. This introduces significant challenges since the constant sea

surface RCS assumption explained in Section 1.3.2 no longer will work in

a land clutter case, which would require a new formulation that will most

likely necessitate a prior information about the current wind and sea condi-

tions, topography and type of land (forest, open grassland, heavy vegetation,

residential areas, farmland, snow covered land, desert) for accurate land and

sea surface RCS measurements.

• It is possible to perform RFC using different transmitter configurations such

as the multiple frequency, multiple launch angle, and multiple source height

configurations. It is therefore desirable to predict the effects of these trans-

mitter configurations on the RFC estimation and tracking performance.

• Another interesting area of investigation is the tracking of quickly chang-

ing environments. Throughout this thesis, it was assumed that the changes

were gradual relative to the update rates. However, studies on the spatio-

temporal duct evolution resulted in some observations with abruptly chang-

ing refractivity profiles. Therefore, it is desirable to extend tracking perfor-
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mance predictions of the EKF, UKF, and the PF for these rapidly fluctuating

environments.

• Finally, it may be possible to improve significantly the RFC tracking by de-

signing higher order tracking algorithms that can handle different situations

such as the calm and highly fluctuating evaporation ducts, SBD, and the

mixed type ducts, all at the same time. This likely will require multiple

state models which includes regime parameters that will be added to the

environmental parameters. Some proposed filters are static multiple-model

(MM) filters, different kinds of dynamic MM filters such as the interactive

multiple-model (IMM) filter, multiple model particle filters (MMPF), and

the Gaussian sum particle filters (GSPF).


