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Abstract— This paper describes the estimation of propagation
loss and it statistical properties based on observations of radar sea
clutter data. This problem is solved by first finding an ensemble
(about

�����
models) of relevant refractivity model parameters

and then using all these models to map into the propagation
loss domain. In this mapping each refractivity model is weighted
according to its data likelihood function.

I. INTRODUCTION

Historically, the vertical profile of atmospheric refractivity
of a “standard atmosphere” has been used as a basis for
radar performance predictions. Since the mid-1980’s it has
become common practice to improve this profile with surface
observations of air temperature, sea temperature, wind speed
and relative humidity, in conjunction with an atmospheric
surface-layer model to estimate the refractivity profile within
the marine atmospheric surface layer [1]. The refractivity
profile above the surface layer is not characterized by the
surface layer models and is usually characterized by weather-
balloons or rocket-sondes [2]. But whereas the surface layer
measurements can be made continuously, weather-balloons or
rocket soundings are expensive in both use of expendables and
manpower. An alternative means for estimating refractivity for
the purpose of radar performance assessment is to use radar
clutter (e.g., Fig. 1) as described by the authors in [3], [4].

A general weakness of all methods employed in estimating
radar performance has been the lack of a means for quantifying
the impact of uncertainty in the estimates of refractivity that
the performance estimates are based on. This might be a
particular concern when using radar clutter for the charac-
terization. Consider Fig. 2: A pattern of radar clutter over tens
of kilometers on a given azimuth is observed. Unknown to
us, however, are how random processes in individual range
bins, and colored processes in range (i.e., horizontal gradients
in wind speed, hence the sea clutter radar cross section) have
affected the pattern. In the context of our forward modeling,
though, this makes the observation somewhat uncertain. Many
different realizations of refractivity—possibly from disjoint
regions in the environmental parameter space—map into the
region of uncertainty surrounding our observation.

The principle of the inversion is indicated in Fig. 2. From the
observed radar clutter data or the data-space � , a prediction of
propagation loss, the information usage domain � , is searched.
The vector � represents the obseved radar data at N range

Reflectivity image: April 02, 1998  Map # 040298−12  18:00:00.3
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Fig. 1. Clutter map from SPANDAR corresponding to Wallops Run 12.

bins and the vector � represents a vector of propagation loss
at certain height and range bins. This involves a number of
steps as outlined below:
(1) Determine a model for the refractive environment (Ap-
pendix of [3]) and select an appropriate propagation model
(e.g., TPEM [5]). These two form the mapping ���
	�� from the
parameter space 	 to data space � . The vector 	 represents
the unknown environmental parameters.
(2) Determine the mapping ���
	�� from the parameter space
to information usage space. Except for a change in geometry
(receiver height), this is similar to ���	�� .
(3) Find acceptable models 	 from the data. As indicated in
Fig. 2, a region around the data can map into several acceptable
solutions in the model domain.
(5) Map the acceptable models into the data usage domain.
(6) The posteriori results, both in parameter 	 and data
utility � domains should be interpreted probabilistically.

As indicated in Fig. 2, this mapping is non-unique. There are
many solutions that give about the same goodness-of-fit. The
maximum likelihood (ML) is the best fit of all. In particular
we can associate cost (or risk) from errors in the solution—a
reasonable assumption in this problem—and the uncertainty of
the solution is non-uniform in the data usage space. Knowing
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Fig. 2. Mappings between observed radar clutter data � , environmental
parameters � and the propagation loss usage domain ������� .
the posteriori distribution or part thereof is preferable to having
a single point estimate such as the ML solution.

A. Replica generation

The replica clutter return ���	�� is modeled as follows:
1. An environmental model maps the environmental parame-
ters 	 into modified refractivity as a function of range � and
height � .
2. A combined radar and propagation model maps modified
refractivity into radar observations �����
	�� .

For solving of the inverse problem, a large number (about
90.000) realizations of the replica have to be generated.

II. INVERSE PROBLEM FRAMEWORK

In the Bayesian paradigm, the solution to determining pa-
rameters of interest 	 given an observation � is characterized
by the posteriori probability p ����	 �!�"� . A clear discussion on
on inverse theory from a probabilistic point of view is given by
[6]. Additional details of Monte Carlo sampling of posteriori
probabilities is given by [7], [8], [9], [10], [11].

Following Mosegaard and Tarantola [10], represent the
inverse problem as conjuncture of information. The posteriori
distribution p � ��	$#%��� is given by

p� ��	&#'�"�)( p *+�
	&#%��� p ,-�
	&#%���.# (1)

where p , ��	$#%��� is the prior probability and p * �
	&#%��� is the
probability obtained from the experiment. We note that this is
quite similar to the Bayesian approach.

The joint prior theoretical probability is constructed as
follows: First the marginal prior probability p ��	�� is used
to generate samples of 	 and then via the forward model/ ��	�� the joint prior probability distribution p �
	&#%���	��!� . It
should be noted that this is not just a simple mapping as ���	��
contains additional noise and shifting of the clutter in range
has been added to the clutter return via Markov chains. Note,
that the construction does not involve any observed data and
thus can be precomputed.

The experimental probability is based on the likelihood
formulation in Sect. III. The objective function 0"�
�1#'���
	��!�
is a squared error (Sect. III).

From the joint posteriori distribution p � ��	$#%��� , we obtain
the posteriori distribution p � ��	�� of the environmental param-
eters

p� ��	��)( 2�3 p � �
	&#%���"45�76 (2)

This distribution contains all relevant information and from
this distribution all relevant features of the environment can
be found as the most common value of 	 in p �8�
	�� is the
maximum a posteriori (MAP) estimator.

We are not interested in the environment itself but rather
better estimates of the parameters in the information usage
domain ���
	�� . Based on the posteriori distribution p �9��	�� , the
distribution of p �8�
���
	��!� is obtained and from this distribution
all relevant statistics of the usage space can be obtained.

A. Probability of utility information �
Both the experimental data � and the utility data � are

related to 	 via forward models :;�
	�� and <;��	�� cor-
responding to ���	�� and ���
	�� . Thus formally we have�=(><;��:@?BAC�
�"�%� . However, this direct mapping is ill posed
and is instead interpreted based on conjuncture of information
whereby we can also include prior information. Similar to
Eq. 1 the posteriori probability is obtained

p �8�
�1#'	&#%���)( p * ����#%	&#'�"� p , ����#%	&#'�"�.6 (3)

Often the prior probabilities are independent and the above
equation can be simplified

p� �
�1#'	&#%���)( p *�����#%	&#'�"� p ,-����� p ,-��	�� p ,-�����D6 (4)

We obtain the marginal posteriori distribution p � �
�"�
p� �����E( 2�3F2-G p� ����#%	&#'�"�"4�	H45�$6 (5)

Often the posteriori distribution of p ����	�� is first obtained
and from this the probability distribution of the propagation
loss is obtained

p�8I / ���+#%�-�KJL( 2 / �M�+#'�9#'	�� p����	��"4�	 (6)

From this distribution all relevant statistical features of the
propagation loss can be obtained, as for example the mean
and variation of the propagation lossN I / ���+#%�-�OJL( 2 / �M�+#'��� p� I / �M�+#%�-�KJP4 / (7)Q)RCS I / �M�+#'���KJT( 2 � / �M�+#%�-�"U N I / �M�+#%�-�KJV�XW p �8I / �M�+#%�-�KJP4 / (8)
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III. LIKELIHOOD AND OBJECTIVE FUNCTION

The likelihood and the objective function are derived as-
suming a simple linear model�Y(7Z)���
	��T[H\Y6 (9)

the scalar Z represents unknown radar strength and calibration
constants. � and ���	�� represents measuered and modelled
data organized into a vector of ] data points, corresponding to
each range bin. 	�� repensent the ^ environmental parameter
to be determined. Assuming the errors \ to be Gaussian
distributed with mean Z)���
	�� and standard deviation _ . The
errors represent all features that are not modeled in the data
as noise, theoretical errors, and modeling errors. This is a
reasonable model for high signal-to-error ratio, but for low
signal-to-error ratio this is not a good assumption [8]. The
likelihood function is` �
	��)(=��a1� _b� � ?PcYdfe8gih UjI �kUlZ)���	��KJMm'_ ?TA I �nUlZE���
	��KJMob6

(10)
where N is the number of data points. As usual, we assume_p(rq8s The source Z can be estimated in closed form by
requiring tvuxw5y `z tTZY(|{ , wherebyZ)}�~;( � m ���	��� ���	 � W (11)

It is seen that Z depends on 	 but not on q . The likelihood
function is then` �
	��)(=��a�q�� ?Lcnd�e-g �!U�0"��	�� z q�� (12)

where 0��
	��E(&� W U�� � m ���
	��� ���	 ��� W # (13)

is the objective function. The likelihood estimate of the noiseq }�~ can be estimated in closed form by solving t�u�w�y `�z tTq�({ , q8}�~i(70��
	�� z ]�6 (14)

Reinserting this into the likelihood function gives` �
	��)( � ]a d 0"��	�� � c 6 (15)

The ML solution 	 }�~ is obtained by maximizing the
objective function over all 	 . Finally, an overall estimate for
the error power q is obtained from (14) at the environmental
ML solution: q }�~ �
	 }�~ � and can be re-inserted into the
likelihood function. For simplicity, we consider the error as
known and only keep the free argument 	 of the objective
function 0 . This approach leads to [8]� ��	���(�� ]a�0"��	 }�~ ��� c dfe8g ��U�] 0"��	��0��
	 }�~ ��� 6 (16)

However, posteriori densities also can be based on (15).
The expressions (15) and (16) differ in their error estimates: In
(15), the error power is estimated for each geoacoustic model
vector 	 . In (16) the global ML estimate of the error power

Model parameter Lower bound Upper bound
Base height, �'� (m) 0 400
M-deficit, ��� (M-units) 0 250
Thickness, �%�V��� �V� (m) 0 150
Slope (M-units/m) � 1 0.13
Evaporation duct height (m) 0 50

TABLE I

INVERSION MODEL WITH PARAMETER SEARCH BOUNDS. THESE

PARAMETER BOUNDS WERE USED BOTH AT THE INITIAL RANGE ( �)�F� )
AND AT THE FINAL RANGE ( ���Y !��� KM). FOR ALL RANGES EACH

PARAMETER WAS LINEARLY INTERPOLATED.
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Fig. 3. The refractivity profile (a) used to generate the data, and (b) the
propagation loss data.

(which was found from optimization) is posteriori estimated
and then is (as a prior) applied to all model vectors 	 [8].

The above derivation assumes that the error in each sample
is uncorrelated with the next sample. In practice these are
strongly correlated and therefore the number of samples ]
in the above equations must be replaced with the effective
number of samples, ]¢¡K£ .

IV. EXAMPLE

The data are generated based on the helicopter measured
range-dependent refractivity profiles (Run 7) for the Wallops
98 experiment [3]. These profiles were interpolated using the
LARRI program [12]. A range interval from 10-100 km is
used. A simple trilinear model is used for the refractivity
profile as outlined in the Appendix of [3]. We then search for
refractivity parameters at 0 and 100 km range with unknown
parameters as given in Table I. To obtain refractivity profiles at
other ranges the parameters are interpolated linearly. The first
3 parameters were given a uniform distribution but the slope
was given a non-uniform distribution as indicated in Fig 4
(left bottom). This is because a negative slope is only likely
for shallow ducts.

Using this environmental model, 90,000 replicas are pre-
computed. To compute the prior distribution of the envi-
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Fig. 4. Prior (left) and posteriori (right) distributions of the parameter
estimates.

ronmental parameters all samples are weighted evenly (left
column Fig. 4). The smoothness of these indicate that the prior
is well sampled. To compute the posteriori distribution (right
column Fig. 4) Eqs. (3) and (16) are used. We note that the
overall behavior seems reasonable. A more robust convergence
criterium [9] will indicate that the distributions are not yet
completely converged.

The important issue is to be able to estimate statistics of
posteriori propagation loss. Figs. 5–9 illustrate this estima-
tion. We compute the priori propagation loss based on an
even weighting of the propagation loss from each generated
refractivity model. The posteriori probability distribution of
the propagation loss is based on weighting the propagation loss
from each refractivity model with the posteriori probability,
Eq. (6).

The average prior propagation loss and the posteriori
propagation loss are shown in Fig. 5b and c. It is seen that the
posteriori propagation loss identifies a ducting environment as
observed in the data, Fig. 5a, but the prior does not.

The probability distribution of the field then is computed.
Both prior field (Fig. 6) and the posterior field (Fig. 7) are
calculated at 10 and 100 m height as a function of range.
Figure 8 shows the probability distribution at 50 km range
and 10 m height. This corresponds to a simple cut though the
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Fig. 5. The propagation-loss field based on (a) the true environment
(from Fig. 3a), based on (b) prior information, and (c) posteriori information
(bottom).
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Fig. 6. Prior probability distribution for propagation loss versus range at 10
m (top) and 100 m (bottom) height.

contour plots in Figs. 6 and 7.
Based on the distribution of propagation loss, the mean and

standard deviation are computed as a function of range (10–
100 km) in the duct (12-m height) or above the duct (102-m
height), see Fig. 9. Clearly, the posteriori distribution is much
more compact for the lower height than for the higher height
— a behavior that is expected given that the input data is
effectively a (somewhat) contaminated direct measure of the
propagation loss at the surface.

V. SUMMARY

An algorithm for estimating statistical properties of prop-
agation loss based on refractivity from radar clutter has
been described using a likelihood formulation. The likelihood
function is developed assuming the error in the data to be
Gaussian.
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Fig. 7. Posteriori probability distribution for propagation loss versus range
at 10 m (top) and 100 m (bottom) height.
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