Chapter 1

ESTIMATION OF TRANSMISSION LOSS
AND ITS UNCERTAINTY

Peter Gerstoft, Chen-Fen Huang, and W.S. Hodgkiss

Marine Physical Laboratory
Scripps Institution of Oceanography
University of California San Diego
La Jolla, CA 92093-0701, USA

Abstract

A weakness in sonar performance prediction has been the lack of a means
for quantifying the impact of uncertainty in estimates of the ocean envi-
ronment. This paper describes the estimation of transmission loss and
its statistical properties based on observations of ocean acoustic data.
This problem is solved by first finding an ensemble of relevant environ-
mental model parameters and then using all of these models to map
into the transmission loss domain. In this mapping each environmental
model is weighted according to its likelihood function.

This algorithm is illustrated on vertical array data acquired dur-
ing the ASIAEX 2001 East China Sea experiment. The environmental
parameters are first estimated. Based on the likelihood that each of
these environmental models fits the ocean acoustic data, each model is
mapped into transmission loss. This enables us to compute a full prob-
ability distribution for the transmission loss in both range and depth.

Introduction

A weakness in sonar performance prediction has been the lack of a
means for quantifying the impact of uncertainty in estimates of the ocean
environment. Figure 1.1 offers an overview of posterior estimation of
transmission loss from ocean acoustic data. Ocean acoustic data d is
observed on a vertical or horizontal array. The inverse problem is first
solved using Bayes rule to compute the posterior distribution p(m|d) of
environmental parameters m. We are not interested in the environment
itself but rather in better estimates of the transmission field, the usage
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Figure 1.1. An observation d is mapped into a distribution of environmental param-
eters m that potentially could have generated it. The environmental parameters are
then mapped into the usage domain u.

domain u(m). Based on the posterior distribution p(m|d), the distri-
bution of p(u(m)) is obtained via Monte Carlo simulation. From this
transmission-loss distribution, all relevant statistics of the transmission
loss can be obtained.

The principle of the inversion is indicated in Fig. 1.1. Based on the
ocean acoustic data d we statistically characterize transmission loss (the
usage domain u). The vector d represents the acoustic data observed at
N hydrophones and the vector u represents transmission loss at range
and depth. As shown in Fig. 1.1, this is mapped via a set of M envi-
ronmental parameters m. The approach involves a number of steps as
outlined below:

1 Determine a model for the ocean acoustic environment and select
an appropriate propagation model. These two form the mapping
d(m) from the parameter space m to data space d.

2 Determine the mapping u(m) from the parameter space to usage
space. Except for a change in geometry (source depth), here this
is similar to d(m), but could be any other model (e.g., some other
metric of sonar performance).

3 Find acceptable models m from the data. As indicated in Fig. 1.1,
a region around the data can map into several acceptable solutions
in the model domain.

4 Map the acceptable models into the usage domain. Several models
can map into the same usage region.
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As indicated in Fig. 1.1, the mapping from data to usage domain is
non-unique. There are many environmental models that give about the
same goodness-of-fit. The maximum likelihood (ML) estimate of the en-
vironmental model gives the best fit. Instead of using just one estimated
environment, it is proposed to describe the environmental solution prob-
abilistically. This probability is then mapped into the usage domain.
Knowing the posterior probability distribution in the usage domain is
preferable to having a single point estimate such as the usage domain
result corresponding to the ML-solution.

1. INVERSE PROBLEM FRAMEWORK

In the Bayesian paradigm, the solution to determining parameters
of interest m given an observation d is characterized by the posterior
probability p(m | d). First, the prior information of the model parameter
vector is the probability density p(m). Then, this information is com-
bined with the likelihood function p(d|m) provided by the combination
of data and the physical model to give the posterior probability density
p(m|d) of the model parameters. A clear discussion of inverse theory
from a probabilistic point of view is given by Tarantola [1]. Additional
details of Monte Carlo sampling of posterior probabilities can be found
in Ref [2,3,4,5]. The solution to the inverse problem is then

p(mld) = % , (1.1)

where the probability of the data p(d) is independent of the environ-
mental model and here can be neglected (set to unity). The posterior
distribution p(m|d) contains all relevant information and from this dis-
tribution all of the relevant features of the environment can be found
such as the maximum a posteriori (MAP) estimator.

We are not interested in the environment itself but rather better es-
timates in the information usage domain u(m). Based on the posterior
distribution p(m|d), the distribution of p(u(m)) is obtained and from
this distribution all relevant statistics of the usage space can be obtained.
In the present application the usage domain is transmission loss.

The posterior distribution of p(m) is first obtained and from this the
probability distribution of u is obtained

p(w)=/ dlu(m) - ulp(m) dm (1.2

where M represents the model space. This integral is implemented nu-
merically by using samples from the model space m based on the poste-
rior distribution p(m|d) and then binning u(m). From the distribution
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Figure 1.2. Marginal scatter diagrams of the SAGA search for the model parameters.
The vertical axis represents the attained misfit on a linear scale. The thick line is the
sensitivity curve of the multi-frequency misfit function using the best-fit model as a
baseline.

p(u) all relevant statistical features of the usage domain, e.g., trans-
mission loss, can be obtained, as for example the mean and variance of
u.

Assuming a simple linear data model as detailed in Ref [2], we obtain
the Bartlett objective function ¢(m) and likelihood function £(m),

T m m
$(m) = trC—%, (1.3)
N Y[ ()
L(m) [mﬁ(mML)] e p[ N¢(mML)] . (1.4)

where C is the data covariance matrix, N number of sensors, and ML
refers to the maximum likelihood estimate.



ESTIMATION OF TRANSMISSION LOSS AND ITS UNCERTAINTY 5

2. ASTAEX INVERSION

Data from the 2001 East China sea experiment (see Ref [6]) are used
to illustrate the method. A 16-element vertical array was deployed in
105-m deep water. For the inversion (Fig. 1.2), a source towed at 48.5-
m depth is used. Matched-field geoacoustic inversion using the selected
frequencies 195, 295, and 395 Hz was carried out at T = 29 min over
a parameter space of 13 parameters including geometrical, geoacoustic,
and ocean sound speed EOF coefficients. Based upon the GPS position
of R/V Melville, the source was approximately 1.7-km away from the
VLA.

Figure 1.2 shows the marginal dot diagrams for the model parameters.
The vertical axis is the Bartlett objective function (Eq. (1.3) normalized
with trC) with respect to the parameters sampled during the SAGA
inversion [5] with the normal mode code SNAP as a forward model.
The thick line superimposed on each scatter plot was obtained by using
the best-fit model corresponding to the optimal value of the objective
function as a baseline and computing the sensitivity for the optimized
parameter. We see that the sampled values for the array bow and tilt
parameters (b and ) are spread mainly inside the sensitivity curve and
align mostly with the best-fit values. A similar behavior is observed for
the ocean sound speed EOF coefficients but with a wider span. The sen-
sitivity curves is smooth except for Ac and d. The non-smoothness of the
curves are due to the number of propagating modes changing when vary-
ing the geoacoustic parameters. The consistency between the local (line)
and global (dots) searches shows that this set of parameters is weakly
correlated with the other parameters. For the geoacoustic parameters,
most sampled values wander outside the curve. This reveals the more
complicated structure of the multi-dimensional search space. Note that
the sampled values for the source range (SR) and the water depth (WD)
are spread uniformly throughout the range of the parameter interval.
This is due to the strong coupling between these two parameters.

A second inversion is now carried out to determine the uncertainty
for two of the most important model parameters. For simplicity, we
assume that only water depth and sediment sound speed have any asso-
ciated uncertainty. All other parameters are fixed at the optimal values
found in the inversion detailed above. Varying only the above two pa-
rameters gives posterior probability indicated in Fig. 1.3. It is based on
the likelihood formulation, Eq. (1.4) and using the same data as in the
inversion.
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Figure 1.83. Marginal probabilities for water depth and bottom sound speed. The
contour plot shows the 2D distribution. The red vertical arrow indicates the ML
solution (saga best fit). Note, that the maximum in the marginal distribution might
not correspond to the ML maximum.
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Figure 1.4. Prior (top) and posterior (bottom) probability distributions for trans-
mission loss versus range at 50-m depth.
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Figure 1.5. Posterior (solid) and prior (dashed) probabilities at 830-m range and
50-m depth. These correspond to a cut (white lines) though the contours in Fig. 1.4.
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Figure 1.6. Median transmission loss (dB) based on prior (top) and posterior (bot-
tom) distributions of environmental parameters (water depth and sediment sound
speed).
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Figure 1.7. Range (dB) between 5th and 95th percentiles of the transmission loss
for prior (top) and posterior (bottom) probabilities.

2.1 ASTAEX TL Prediction

The posterior probability (Fig. 1.3) is used to compute the posterior
probability of u(m) using a frequency of 500 Hz and a source depth
of 20 m. Except for water depth (bounds 100 to 120 m) and bottom
sound speed (bounds 1550 to 1750 m/s), we keep the environment fixed
at the values found in the inversion. In the present application, we
evaluate p(u(m)) using grid integration (summing the values at discrete
grid points). First the probability for TL at midwater depth (50 m)
is evaluated, Fig. 1.4. The prior probability assumes even weighting of
all the explored environmental models with the same bounds as above.
The prior distribution (top) is spread out over a wide range but the
posterior distribution (bottom) is more narrow. For the first 200 m, the
propagation is only little influenced by the waveguide parameters and
thus there is little difference between posterior and prior distributions.
We then examine the probability at one point (50-m depth and 830-m
range). This is done by taking a cut trough the contour plots in Fig.
1.4 at 830-m range (indicated by a white line, corresponding to a peak
in TL curve), as shown in Fig. 1.5. The posterior (solid) is much more
concentrated than the prior (dashed).

Contours of the median TL then are computed for the prior and pos-
terior fields, Fig. 1.6. A good way to understand the uncertainty is to
plot the 5th to 95th percentile ranges (gray area) of the prior and pos-
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Figure 1.8. The median TL (red) at 50-m depth (dashed) based on all (a) prior
samples and (b) posterior samples. The gray area indicates the range between the
5th and 95th percentiles.

terior fields, Fig. 1.7. Close to the source, there is little uncertainty for
both prior and posterior fields as the sound field is not influenced by the
waveguide parameters. Further away from the source, the prior uncer-
tainty increases earlier in range than the posterior does, as the waveguide
parameters are less well determined. It also is seen that around the nulls
of the median fields, Fig. 1.6, the variations in the fields are the largest,
Fig. 1.7.

The uncertainty is easily conveyed by plotting the median TL (red)
combined with the 5th and 95th percentiles (represented by the gray
area), see Fig. 1.8. Clearly, the posterior spread has decreased signifi-
cantly.

3. CONCLUSIONS

An algorithm for estimating the statistical properties of transmission
loss based on the output from a geoacoustic inversion has been described
using a likelihood formulation. The likelihood function is developed as-
suming the error in the observed data is Gaussian. The examples pre-
sented here used data on vertical arrays, but any data could be used. The
approach taken here then maps the environmental parameters via their
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probability distributions into a probability distribution of transmission
loss.

In the transmission loss domain, we can compute the full poste-
rior distribution at all frequencies, ranges and depths. In the exam-
ples, we demonstrated how to use the full transmission loss probability
distribution and extracted characteristic features such as median and
lower /upper percentiles from this distribution.
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