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Abstract—A sequential Bayesian approach to density evolution
for sparse source reconstruction is proposed and analysed which
alternatingly solves a generalized LASSO problem and its dual.
Waves are observed by a sensor array. The waves are emitted by
a spatially-sparse set of sources. A weighted Laplace-like prior
is assumed for the sources such that the maximum a posteriori
source estimate at the current time step is the solution to a
generalized LASSO problem. The posterior Laplace-like density
at step k is approximated by the corresponding dual solution.
The posterior density at step k leads to the prior density at k+1
by applying a motion model. Thus, a sequence of generalized
LASSO problems is solved for estimating the temporal evolution
of a sparse source field.

Index Terms—sequential estimation, Bayesian estimation, spar-
sity, generalized LASSO.

I. INTRODUCTION

In this contribution, the online estimation of sparse signals
is solved from noisy data samples that become available
sequentially in time [2], [3], [4]. The proposed online estimator
alternatingly solves a generalized LASSO problem and its
dual. Besides the actual reconstruction, we are also interested
in the probability density of the source amplitudes and their
temporal evolution.

Previously, the Bayesian approach [5], [6], [7] was extended
to sequential Maximum A Posteriori (MAP) estimation for
sparse signals [3], [1]. A sequential MAP filter which pre-
serves sparsity was approximated based on [9]. It uses a single
new measurement snapshot in each step.

The theory is formulated so that it is applicable to sparse
source estimation in higher spatial dimensions.

II. DUAL PROBLEM TO THE GENERALIZED LASSO

The generalized LASSO as introduced in [8] penalizes a
weighted sum of the optimization variables

min

x

�
ky �Axk22 + µkDxk1

�
, (1)

where A is the complex-valued dictionary, x,y are complex-
valued vectors and µ > 0. We seek solutions x with given
sparsity degree s 2 N,

kxk0 = s . (2)

The financial support by the Austrian Federal Ministry of Economy,
Family and Youth and the National Foundation for Research, Technology
and Development is gratefully acknowledged.

The regularization parameter µ is chosen to satisfy (2).

Following [11], the generalized complex-valued LASSO
problem is re-written as

min

x,z

�
ky �Axk22 + µkzk1

�
subject to z = Dx , (3)

but now we restrict D to be diagonal with real, positive
entries. This substitution provides a Lagrangian multiplier for
each element in x, and in fact these Lagrangian multipliers
will update the corresponding hyperparameters later on.

The dual problem to the generalized LASSO (3) is [8],
[10],

max

u2CM
y

H
y � kAA

+
y � 1

2

�
DA

+�H
uk22 (4a)

subject to kuk1  µ, (4b)
(DU)

H
u = 0 , (4c)

where A

+ denotes the Moore-Penrose inverse of the dictio-
nary A. Having solved the primal problem, the corresponding
dual solution is easily computed with the help of the following
theorem [10].

Theorem 1. The dual vector u is the output of a weighted
classical beamformer (weighted matched filter) acting on the
vector of residuals, i.e.,

u = 2(D

H
)

�1
A

H
(y �Ax`1) , (5)

where x`1 - the solution to the primal problem (17) - is such,
that the box constraint

kuk1  µ (6)

is fulfilled.

Built upon Theorem 1 the following corollary was proven
in [10].

Corollary 1. If the mth primal coordinate is active, i.e.
x`1,m 6= 0 then the box constraint (6) is tight in the mth
dual coordinate. Formally, for any choice � > 0,

|x`1,m| > � ) |um| = µ, (m = 1, . . . ,M) . (7)

Informally, we say that the mth dual coordinate hits the
boundary when the mth primal coordinate becomes active.



We define the active set M as the set of all indices m with
|x`1,m| > �,

M = {m
�� |x`1,m| > �}. (8)

III. DIRECTION OF ARRIVAL ESTIMATION

For the numerical examples, we model a uniform linear
array (ULA) which is described with its steering vectors
representing the incident wave for each array element.

Let x = (x1, . . . , xM )

T be a vector of complex-valued
source amplitudes. We observe time-sampled waveforms on
an array of N sensors which are stacked in the vector y. The
following linear model for the narrowband sensor array data
y at frequency ! is assumed,

y = Ax+ n . (9)

The mth column of the transfer matrix A is the array steering
vector am for hypothetical waves from direction of arrival
(DOA) ✓m. All columns are normalized such that their `2

norm is one. The transfer matrix A is constructed by sampling
all possible directions or arrival, but only very few of these
correspond to real sources. Therefore, the dimension of A is
N ⇥ M with N ⌧ M and x is sparse. The linear model
equations (9) are under-determined.
The nmth element of A is modelled by

Anm =

1p
N

exp [�j(n� 1)⇡ sin ✓m] . (10)

Here ✓m =

⇡(m�1)
M �⇡/2 is the DOA of the mth hypothetical

DOA to the nth sensor element of the sensor array.
The additive noise vector n is assumed to be spatially uncor-

related and follows the zero-mean complex normal distribution
with diagonal covariance matrix �

2
I .

For the observation y according to the linear model (9), the
conditional probability density given the source vector x is

p(y|x) =
exp

�
� 1

�2 ky �Axk22
�

(⇡�

2
)

N
. (11)

For the source vector x, a prior probability density is assumed
in form of a multivariate complex Laplace-like density [12],

p(x) =

MY

m=1

pm(xm), with pm(x) =

(�m)

2

2⇡

e

��m|xm|
,

(12)
with associated hyperparameters �m > 0 modelling the source
signal strength at location ✓m. xm = |xm|ej'm is the complex
source signal at hypothetical source location ✓m. Note that (12)
defines the joint distribution for |xm| = rm and 'm with the
phases uniformly distributed on [0, 2⇡), for m = 1, . . . ,M .
The prior mean and variances are

E{x} = 0, E{xxH} = 6diag

�
�

�2
1 , . . . ,�

�2
M

�
. (13)

Taking the logarithm of (12) gives

� ln p(x) =

MX

m=1

�m|xm|� 2

MX

m=1

ln�m +M ln 2⇡ . (14)

input generalized LASSO update step

z

�1

prediction step

outputs

y[k] u[k]

x`1 [k]

�[k|k]

w[k + 1] �[k + 1]

Fig. 1. Signal flow diagram for sequential Bayesian estimation at step k

For the posterior probability density function (pdf) p(x|y),
Bayes’ rule is used for obtaining the generalized LASSO
Lagrangian [8], [1]

1

�

2
ky �Axk22 + µ kWxk1 (15)

with bounded weights kwk1 = 1

W = diag(w) =

1

µ

diag(�) . (16)

Equivalently to (15), this is reformulated as

ky �Axk22 + µ kDxk1 , (17)

with
D = �

2
W . (18)

The minimization of (17) constitutes a strictly convex opti-
mization problem. Minimizing the generalized LASSO La-
grangian (17) with respect to x for given µ, and w =

(w1, . . . , wM )

T , � = µw, gives a sparse MAP source estimate
x`1 . This minimization problem promotes sparse solutions in
which the `1 constraint is weighted by giving every source
amplitude its own hyperparameter wm.

IV. SEQUENTIAL BAYESIAN ESTIMATION

In [1], a sequential Bayesian sparse source reconstruction
was proposed and analyzed which is now interpreted as solving
both the generalized LASSO problem (3) and its dual (4a)–
(4c) at step k. In the following, the dependency of time is
denoted explicitly in all relevant variables, e.g. y[k] to denote
the data at step k.

First, the history of all previous array observations is
summarized in Y [k � 1] = (y[1], . . . ,y[k � 1]). Given the
history Y [k�1] and the new data y[k], we seek the maximum
a posteriori (MAP) source estimate x`1 [k] for the linear model

y[k] = Ax[k] + n[k] , (19)

at step k under the `1–constraint. The additive noise n[k] is
assumed to be both spatially and temporally white,

E

(n[k]n

H
[k + l]) =

⇢
�

2
I, for l = 0,

0 otherwise. (20)

The algorithm in [1] is reformulated in terms of the vector of
dual variables in Table I and shown schematically in Figure
1. It is actually the vector of dual variables which carries
the sequential information from each step, and not the primal
variables as customary in sequential filtering [14].



A. Update Step

In [1] two approximations were introduced in order to relate
the posterior weight vector �[k|k] to the prior weight vector
�[k] in the form of (12). By means of Theorem 1 and Corollary
1, both approximations for the posterior weight vector are
expressible by the dual solution. In the sequel we express the
superior approximation, the mean fit, by the dual vector.
In the complement of the active set, the relation between
posterior and prior weight vector is given as

�m[k|k] = �m[k]

 
1�

��
a

H
m

2
�2 (y[k]�Ax`1)

��2

�

2
m[k]

!

8m 62 M[k], (21)

and in the active set the posterior weight vector must be zero.

�m[k|k] = 0, 8m 2 M[k] (22)

By Theorem 1 we express the numerator of (21) by the dual
vector u and the weights w. Corollary 1 links Equations (21)
and (22), as (21) is zero for |um| = µ .

Theorem 2. With the mean fit approximation, the posterior
weight vector �[k|k] is related to the prior weight vector �[k]
by the dual solution u[k] at step k,

�m[k|k] = �m[k]

✓
1� |um[k]|2

µ

2
[k]

◆
. (23)

Due to Theorem 1 and Corollary 1, µ is equal to the max-
norm of u and Theorem 2 is expressible solely by the dual
vector u

�m[k|k] = �m[k]

 
1� |um[k]|2

ku[k]k21

!
. (24)

Equation (24) shows that the dual coordinate equals µ and
the posterior weights become zero at source positions m 2
M. Outside the active set, the probability of finding a source
depends on the relative sidelobe power level of the beamformer
of the LASSO residuals, cf. Theorem 1.

B. Prediction Step

In sequential estimation, typically the prior for the upcoming
step k + 1 is calculated from the current posterior and a
state-transition probability density function (“motion model”).
In a Markovian stochastic framework this is based on the
Chapman-Kolmogorov equation [14]. For Brownian motion
the state-transition probability density satisfies the diffusion
equation. Our prediction step is therefore based on a diffusion
model. Where diffusion occurs just in the neighbourhood of
active sources.

1) Neighborhood of an active source: The index
neighborhood of m is denoted as Nm = {j

��
m�l, . . . ,m+l}.

If any �j [k|k] 2 Nm is less than the threshold �0 then a
source is active in the neighborhood of m with high
probability.

The motion model is defined via the complementary

cumulative distribution function (ccdf) of the neighborhood
magnitudes,

P

⇢
|xm[k + 1]| > �

����x[k]
�

=

lX

j=�l

↵j P {|xm+j [k]| > �} ,

(25)
with non-negative coefficients ↵j and

P
j ↵j = 1. The

ccdf, after a polar coordinate transformation xm = rme

i'm ,
evaluates to

P

⇢
|xm[k + 1]| > �

����x[k]
�

= (26)

=

lX

j=�l

↵j

⇡Z

�⇡

d'm+j

2⇡

1Z

�

�

2
m+j

[k|k]e��m+j [k|k]rm+j
rm+j drm+j

=

lX

j=�l

↵j (�m+j [k|k] � + 1) e

��m+j [k|k] �
,

and by taking the negative derivative w.r.t. �, we obtain the
magnitude’s probability density

� @

@�

P

⇢
|xm[k + 1]| > �

����x[k]
�

=

= 2⇡�

lX

j=�l

↵j
(�m+j [k|k])2

2⇡

e

��m+j [k|k] � (27)

which is a mixture of Erlang-2 distributions with variances
2(�m+j [k|k])�2, cf. Eq. (12).

We approximate the mixture by a Laplace-like density of the
form (12). We choose to fit the variance of the Laplace-like
density such that

1

(�m[k + 1])

2
=

lX

j=�l

↵j
1

(�m+j [k|k])2
. (28)

We note that (28) is ill-behaved whenever a posterior weight
�m+j [k|k] = 0. In this case, a small offset " > 0 is added to
stabilize (28) numerically. The predicted �[k+1] is the product
of the regularization parameter µ[k+1] and the weights w[k+

1]. As µ[k+1] is not yet known at step k, we need to assume
that the regularization parameter remains constant between k

and k + 1, i.e.,

1

(�m[k + 1])

2
=

1

(µ[k + 1]wm[k + 1])

2
⇡ 1

(µ[k]wm[k + 1])

2
.

(29)
The predicted weights wm[k+1] are then calculated from the
weighted harmonic mean, i.e.,

(wm[k + 1])

2
=

0

@
lX

j=�l

↵j

(wm+j [k])
2

1

A
�1

. (30)

The weighted harmonic mean is a special instance of the
weighted Hölder mean [13], see Sec. V. To express the
uncertainty of the prediction, the weights are increased by an
offset w0 > 0, similar to process noise in Kalman filtering.



Implementation of density evolution procedure:
Given constants: A 2 CN⇥M , w[1] 2 [0, 1]M , s 2 N

1: for k = 1, 2, 3, . . .
2: Input: y[k] 2 CN

w[k] = w[k]/kw[k]k1
3: D[k] = �2

diag(w[k])
4: x`1 [k] = s-sparse solution to generalized LASSO (3) at k
5: u[k] = corresponding dual solution via Theorem 1
6: µ[k] = ku[k]k1
7: Update �[k|k] via Theorem 2
8: w[k + 1] = motion model prediction(�[k|k])
9: Output: x`1 [k] 2 CM , �[k|k] 2 CM

10: end

TABLE I
PRIMAL/DUAL FORMULATION OF SEQUENTIAL BAYESIAN SPARSE SIGNAL

RECONSTRUCTION

2) Not in the neighborhood of an active source: The
posterior �j [k|k] exceeds the threshold �0 which indicates
that it is improbable for a source to be near DOA ✓j . At step
k+1, we penalize the DOA j by adding a multiple of weight
uncertainty w0, i.e., wm[k + 1] = wm[k] + cw0 with c > 1.
In the simulations, w0 = 0.01 and c = 10.

To guarantee that the weights remain upper bounded by
1, the weighting vector is normalized to kwk1 = 1.
The Bayesian procedure is formalized in Table I as a loop
over time step k which processes the single snapshot array
observation y[k] when it becomes available. In line 3, the
weighting coefficients for the generalized LASSO problem
(3) are defined for the current step k. The s-sparse solution
in line 4 is implemented via the LASSO path [1], [10]. Next,
the corresponding dual solution is evaluated by weighted
beamforming of the residuals. Finally, the posterior weighting
coefficients are evaluated in line 7 which are needed for the
prediction step in line 8.

V. CONSERVATIVE CHOICE OF THE WEIGHTS

The weighted harmonic mean (30) is a pessimistic mean
as low values have stronger impact on the mean. Generally,
it tends to broaden the low weight region. This broad low
weight region leads to a jitter of the DOA estimate. To mitigate
this undesirable effect, we investigate alternative rules for the
predicted weights.
A weighted Hölder mean is defined as [13]

Mp(w
2
1, . . . , w

2
n) =

0

@
lX

j=l

↵j

�
w

2
j

�p
1

A

1
p

,

lX

j=l

↵j = 1 .

(31)

For the choice of power p = �1, the weighted Hölder
mean coincides with the weighted harmonic mean (30). The
following inequality holds for weighted Hölder means,

Mp < Mq, for p < q . (32)

Any Hölder mean with p > 0 will not be dominated by
lower weights and the arithmetic mean (p = 1) is the tightest

conservative choice of weighting coefficients for Laplace-like
prior. [9] has used a max-log approximation instead of (28)
which amounts to picking M+1, the least tight bound.

VI. SIMULATIONS

A. Weight Evolution

We investigate the weight evolution from step k = 1 to
k = 100, where the generalized LASSO of Table I is solved
by CVX [15] at each step. The ULA is equipped with N = 30

sensors and the angular space is sampled equidistantly with
half degree spacing between �90

� and 90

�.
In Figure 2 the weight evolution of sources with trivial motion
model, l = 0 and ↵0 = 1 is shown. In Figure 3 movement is
modelled with a uniform motion model (l = 2, ↵j =

1
2l+1 =

0.2). Observe the trade off between having precise estimates
for the static sources and a good quality estimate of the moving
source.
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Fig. 2. Weight evolution for 3 sources at DOA 20

�, 0�,�20

�, the third
source moves with 0.5� per time step; w0 = 0.01, c = 1, SNR = 20dB

10 20 30 40 50 60 70 80 90 100

−80

−60

−40

−20

0

20

40

60

80

timestep k

D
O
A

(d
eg
)

Weight Evolution l = 2

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Weight evolution for 3 sources at DOA 20

�, 0�,�20

�, the third
source moves with 0.5� per time step; w0 = 0.01, c = 10, SNR = 20dB



A reasonable compromise of capturing the motion of a
source while still improving the estimate of the static sources
is to use an l > 0 and a conservative choice of the weights.
Figure 4 uses the same motion model as in Fig. 3, but the
weighted arithmetic mean is used, i.e. Equation (31) for power
parameter p = 1. For the arithmetic mean, the low weight
region of the static sources is narrower than for the harmonic
mean. This comes at the expense of the traceability of the
moving source.
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Fig. 4. Conservative weight evolution for 3 sources at DOA 20
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B. Comparison of the Tracking Results

The proposed DOA tracking procedure from Table I is com-
pared to ”Compressive Sensing on Kalman filtered residuals
(KF-CS)” [17] in Figure 5. For KF-CS µ is chosen non-
adaptively analogous to the value given in [18]:Algorithm 1.
The density evolution approach with p = �1 mean recovers
the static sources worse than the Kalman filter and the con-
servative (p = 1) approach, but in return the moving source is
traced well.

VII. CONCLUSION

A sequential reconstruction procedure was proposed which
uses both the primal and the dual solution to the generalized
LASSO. The dual variable is propagated to the update step,
which approximates the posterior distribution with a Laplace-
like distribution (see Fig. 1). From the approximated posterior
and a motion model, the prior for the next step is derived
and the procedure is ready for the next step. Without the
prediction step, the proposed procedure is fully equivalent
to the procedure in [1]. By including the motion model and
prediction step, we show superior performance by means of a
synthetic example.

REFERENCES
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