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Abstract—In an acoustic backscattering model of a stationary
field of volume inhomogeneities, a stochastic description of the
field is more useful than a deterministic description due to the
complex nature of the field. A method based on linear inversion
is employed to infer information about the statistical properties
of the scattering field from the obtained cross-spectral matrix.

I. INTRODUCTION

Determination of the statistical properties of volume re-
verberation is crucial for dictating the level of false alarm in
the design of detection methods [1], [2] and for correlating
the acoustic return to the characteristics of known sediments
in remote sediment classification [3]–[5]. Hence, substantial
effort has been focused on modeling weak scattering [6]–[9].
High-frequency active sonars provide high-resolution measure-
ments and improve volume backscattering models by means
of detection of small scale structure as individual scatterers
play a more important role in determining scattering param-
eters [1]–[5]. Typically, volume reverberation is described by
the statistical distribution of the backscattering strength, which
is defined as the ratio of the scattered intensity to the incident
intensity per unit volume in dB [3], [10]–[13].

The backscattering strength is proportional to the cross
spectral density of the scattering field thus related to its statisti-
cal properties such as variance and correlation lengths [1], [5],
[14]. However, for narrowband measurements the backscatter-
ing strength provides a single measure and additional informa-
tion for covariance parameters are required to relate the spatial
variation of the scattering field to a covariance function.

Herein, the weak scattering approach is applied for study-
ing the backscattering from inhomogeneous substances in
the water column and specifically for the characterization of
submerged oil from a deep-water oil leak. In such cases,
there are indications that a significant quantity of oil remains
submerged and extends throughout the water column as elon-
gated formations of viscous material mixed with water and
possibly with biological material [15], [16]. Since the existence
of submerged oil is controlled by the ambient density, the
difference in the acoustic parameters between the two fluid
media is small producing weak scattering of the incident
acoustic energy [3], [13]. The submerged oil in the water is
modeled as a fluid medium exhibiting spatial heterogeneity. A
random field generator [17] is used to implement a physical
model of the inhomogeneous medium and a high-frequency
active sonar is selected to collect the backscattered returns.

A new method is developed which allows to describe
volume scattering models quantitatively in terms of their
statistical properties. Determining the correlation function of

the field parameters directly with inverse methods gives a better
measure of the volume reverberation statistical characteristics.

The theory of Toeplitz matrices [18] is employed to study
the stability of the solution and thus the quality of the recon-
struction.

II. FORWARD PROBLEM

A. Scattering from inhomogeneities

The scattered sound pressure ps observed at a remote
position r0 due to scattering from spatial fluctuations of the
compressibility εκ(r) and density ερ(r) of the medium within
a scattering region R (see Fig. 1) is given by the integral
equation [19],

ps(r0) =

∫
R

(
k2εκ(r)p(r)−∇ [ερ(r)∇ p(r)]

)
g(r0|r) dr, (1)

where k is the wavenumber, p(r) is the wave insonifying the
scatterer located at r and g(r0|r) = 1

4π|r0−r|e
−ik|r0−r| is the

free-space Green’s function which describes the sound pressure
at an observation point r0 due to a point source at r. The
harmonic time dependence eiωt is implied and neglected for
simplicity. The compressibility and density fluctuations are
normalized to their mean values, εκ(r) = δκ(r)

〈κ〉 , ερ(r) =
δρ(r)
〈ρ〉 , thus are dimensionless quantities with zero mean value,
〈εκ(r)〉 = 0 and 〈ερ(r)〉 = 0.















Fig. 1. Schematic for backscattering from an inhomogeneous field R.

For far field radiation, the Fraunhofer approximation for
the range term is valid [20],



|r0 − r| ≈ r − r̂ · r0, (2)

where r = |r| and r̂ = r
r is the unit vector in the direction of

r and the Green’s function takes the simpler form,

g(r0|r) ≈ 1

4πr
e−ik(r−r̂·r0). (3)

The incident wave which insonifies the region R emanates
from a monopole located at the origin of the coordinate system
out of the scattering region R,

pi(r) = A
e−ikr

r
, (4)

where A is the pressure amplitude at a distance 1 m from the
source and r denotes the range of the insonified point.

Assuming weak scattering, the Born approximation applies,
p ≈ pi. Thus, inserting Eqs. (3) and (4) in Eq. (1) the pressure
scattered from inhomogeneities in the acoustic parameters of
the medium is,

ps(r0) ≈ k2A

4π

∫
R

(
[εκ(r)− ερ(r)]

e−ik(2r−r̂·r0)

r2

)
dr. (5)

The density fluctuations are neglected henceforth since they
are proportional to the compressibility fluctuations and are less
significant in fluid media [11], [21].

Owing to the Born approximation, Eq. (5) relates linearly
the backscattered pressure and the fluctuations in the acoustic
parameters and can be discretized and rearranged in a matrix-
vector formulation.

B. Discretization of the propagation model

An active sonar in a monostatic configuration (the trans-
mitter and receiver array are collocated) is assumed. The
transmitter emits a narrowband high-frequency pulse and is
supposed to have a narrow directivity pattern in the along-track
plane, thus the monochromatic case is considered and only
the 2D across-track plane is modeled. The receiver comprises
sensors arranged in a uniform linear array centered at the
origin of the coordinate system such that the sensors locations
are xq = (q − Ns+1

2 )ds, q = 1, 2, · · · , Ns, where Ns is
the number of sensors with interelment spacing ds. Hence
r̂j · r0 = xq sin(θj) in Eq. (2), where θj is the angle between
the z-axis and the jth scatterer.

For reasons that will become apparent in the following, the
model parameters are discretized on a 2D grid equidistantly
spaced in sin(θ) and r. To simplify the notation, the variable
u = sin(θ) is introduced such that r̂j · r0 = xiuj .

Dynamic focusing is used to relate the focusing distance
with the arrival time [20], [22]. The scattered pressure at the
sensor located at xq at the focusing range rl is,

ps(xq, rl) =
k2A

4π

e−ik2rl

r2l
dr

Nu∑
j

εκ(uj , rl)e
ikxqujrldu. (6)

The forward problem can be written in a matrix formula-
tion,

d = Gm + n, (7)

where d is the N × 1 vector comprising the acquired data
(the scattered returns possibly contaminated with additive noise
described by the N×1 vector n), G is the N×M linear forward
matrix and m is the M×1 vector of model parameters, namely
the compressibility fluctuations.

More analytically, Table I shows the model parameters
arranged on the 2D grid, where Nu is the number of arrival
directions and Nr is the number of focusing depths. The total
number of model parameters is M = NrNu.

TABLE I. MODEL GRID.

m1 m2 · · · mNu

mNu+1 mNu+2 · · · m2Nu

...
...

. . .
...

m(Nr−1)Nu+1 m(Nr−1)Nu+2 · · · mNrNu

The vector m of the model parameters is formed by
stacking the rows of the model grid,

mM×1 =



εκ(u1, r1)

...
εκ(uNu , r1)

εκ(u1, r2)

...
εκ(uNu , r2)

...
εκ(u1, rNr )

...
εκ(uNu , rNr )



=



m1

...
mNu

mNu+1

...
m2Nu

...
m(Nr−1)Nu+1

...
mNrNu



. (8)

The data vector comprises the scattered pressure at each
sensor xq , q = 1, 2, · · · , Ns at each focusing range rl,
l = 1, 2, · · · , Nr (total number of elements N = NsNr) and
additive noise,



dN×1 =


d1
d2
...
dN

 =



ps(x1, r1)

...
ps(xNs , r1)

ps(x1, r2)

...
ps(xNs , r2)

...
ps(x1, rNr )

...
ps(xNs , rNr )



+


n1
n2
...
nN

 . (9)

The noise is assumed to be complex Gaussian with zero
mean and covariance matrix Cn such that n ∼ CN(0,Cn). The
noise covariance matrix is diagonal with the diagonal elements
equal to the standard deviation σn.

Due to dynamic focusing, the forward matrix has a range-
dependent structure,

G(rl)Ns×Nu ∝
e−ik2rl

rl


eikx1u1 · · · eikx1uNu

eikx2u1 · · · eikx2uNu

...
. . .

...
eikxNsu1 · · · eikxNsuNu

 . (10)

The matrix G(rl) contains the propagation phase shifts
between all Ns sensors on the ULA positioned at xq , q =
1, 2, · · · , Ns and all Nu arrival directions uj , j = 1, 2, · · ·Nu
at the focusing distance rl.

The total GN×M matrix where N = NsNr, M = NuNr,
is a block matrix which is constructed by the direct sum of
G(rl) for l = 1, 2, · · ·Nr.

GN×M =


G(r1) 0 · · · 0

0 G(r2) · · · 0
...

...
. . .

...
0 0 · · · G(rNr )

 . (11)

III. INVERSE PROBLEM

Assuming that the random field of model parameters is
stationary, the model covariance matrix, Cm, has a Toeplitz
structure determined by the covariance function. As the model
parameters which are more than a characteristic length (defined
as the lag distance where the covariance function has decayed
by 95%) apart are practically uncorrelated, the dimensions of
the problem is significantly reduced [23] when the interest is
in solving for the model covariance function and not for the
model parameters per se.

The forward linear problem (Eq. (7)) yields,

ddH = (Gm + n)
(

mTGH + nH
)

= GmmTGH + GmnH + nmTGH + nnH ,
(12)

where the symbol T denotes transpose and the symbol H

denotes conjugate transpose of a vector or matrix. Considering
the ensemble average and assuming that the noise is uncorre-
lated with the model parameters, Eq. (12) yields,

< ddH >= G < mmT > GH+ < nnH > . (13)

Thus, the data covariance matrix Cd =< ddH >, and the
model covariance matrix Cm =< mmT > are connected
through the relation,

Cd = GCmGH + Cn (14)

where Cn =< nnH > is the covariance matrix of the noise.

Inversion of Eq. (14) with the least-squares approach
yields,

Ĉm = G+Cd
(
G+
)H

, (15)

where + denotes generalized inverse.

Herein we are concerned with the overdetermined problem,
that is N > M .

IV. EIGENVALUE STRUCTURE OF THE FORWARD
OPERATOR

The stability of the solution (Eq. (15)) is examined through
the singular values of the matrix G. Since the singular values of
a block matrix are the combined singular values of its blocks,
it is sufficient to examine the singular value structure of G(rl).
In the overdetrmined case, where N > M and thus according
to Eq. (11) Ns > Nu, the singular values of G(rl) are the
square roots of the eigenvalues of GH(rl)G(rl).

The matrix GH(rl)G(rl) is Hermitian Toeplitz for equidis-
tant spacing in u, such that ui − uj = du(i − j), i, j =
1, 2, · · · , Nu; see Eq. (16).

Since the Toeplitz matrix of concern is Hermitian, it is
completely specified by the elements on the first row. The
elements on the first row are samples from the periodic sinc
function,



GH(rl)G(rl)Nu×Nu ∝
1

r2l



Ns
Ns∑
q=1

e−ikxq(u1−u2) · · ·
Ns∑
q=1

e−ikxq(u1−uNu )

Ns∑
q=1

e−ikxq(u2−u1) Ns · · ·
Ns∑
q=1

e−ikxq(u2−uNu )

...
...

...
...

Ns∑
q=1

e−ikxq(uNu−u1)
Ns∑
q=1

e−ikxq(uNu−u2) · · · Ns


(16)

f(u) =

Ns∑
q=1

e−ikxqu

=

Ns∑
q=1

e−i2π
ds
λ (i−Ns−1

2 )u

= e−i2π
ds
λ ( 1−Ns

2 )u
Ns∑
q=1

e−i2π
ds
λ (i−1)u

= e−i2π
ds
λ ( 1−Ns

2 )u 1− e−iπNs
ds
λ u

1− e−i2π dsλ u

= e−i2π
ds
λ ( 1−Ns

2 )u e
−iπNs dsλ u2i sin

(
πNs

ds
λ u
)

e−iπ
ds
λ u2i sin

(
π dsλ u

)
=

sin
(
πNs

ds
λ u
)

sin
(
π dsλ u

) .

(17)

The generating function f(u) is the discrete Fourier trans-
form of the rectangle function Π

(
x
W

)
with unit height and base

width W = Ls
λ , where Ls = Nsds is the length of the array,

sampled at Ns points with spacing ds and can be recognised
as the beampattern as a function of u. As shown in Fig. 2, the
zeros of the function occur at u = q λ

Nsds
for q ∈ {Z− pNs}

and p ∈ Z. The function is bounded by the maximum arrival
direction considered in the visible region umax ≤ 1. In order
to avoid aliasing, the condition λ

2ds
> umax should be fulfilled.

−1 1
u

N s

0

−umax
−

λ

2d s

λ

N sd s

umax λ

2d s

Fig. 2. The sinc periodic function
sin(πNsds

λ
u)

sin(π ds
λ
u)

as a function of u.

Hence, the elements of the matrix GH(rl)G(rl) are,

[
GH(rl)G(rl)

]
ij
∝ 1

r2l

sin(πNsdsλ du|i− j|)
sin(π dsλ du|i− j|)

(18)

The eigenvalue structure of Toeplitz matrices can be de-
duced by relating the properties of Toeplitz matrices to those
of their simpler special case, the circulant matrices. These
two types of matrices are equivalent in an asymptotic sense
and this is shown to imply that their eigenvalues among other
characteristics behave similarly. The eigenvalues of circulant
matrices can be found exactly as the Fourier transform of
the elements in the first row [18], [24]. Since u is bounded,
|u| ≤ umax ≤ 1, the corresponding Toeplitz matrix is of finite
order and is shown in [24] that asymptotically its eigenvalues
are samples of the Fourier spectrum of the series connected
with the Toeplitz structure.

Assuming λ
2ds

> umax the eigenvalues are determined
by the sampling of the Fourier transform of the truncated
sinc function (Fig. 3). Denoting W = Nsds

λ , in case of
oversampling when du < 1

W there will be zero eigenvalues
and the matrix GHG will be rank deficient [25]. Otherwise,
when du ≥ 1

W , the matrix GHG is full rank.

Figure 3 shows the effect of the grid spacing du on
the eigenvalues of the matrix GHG for fixed frequency and
receiving array configuration. The higher the frequency and/or
the longer the receiving array, the finer the resolution that can
be achieved in terms of du. Note that fewer sensors can be
used with larger interelement spacing without altering the total
length of the array as long as the condition λ

2ds
> umax is

satisfied.

Naturally, the field of model parameters exhibits station-
arity in the Cartesian coordinate system, which implies that
it is not stationary in the spherical coordinate system. How-
ever, confining the insonified area within an opening angle
[−15◦, 15◦] the curvature is negligible and du ≈ dθ ≈ dx

r and
dr ≈ dz . The longer the focusing distance, the coarser the
resolution, in terms of dx.

A. Regularization by truncated SVD

In case of oversampling, du < Nsds
λ , the matrix GHG will

have zero eigenvalues and regularization needs to be applied.
Due to the specific structure of eigenvalues (Fig. 3 (c)), the
truncated SVD method is chosen. The truncation parameter is
chosen as the width duW of the rectangle function.
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Fig. 3. (a), (d), (g) Sampled truncated sinc function, (b), (e), (h) the
corresponding spectrum and (c), (f), (i) the corresponding eigenvalue spectrum.
Effect of the sampling distance du on the eigenvalues of the matrix GHG for
fixed W (frequency and array configuration). (a)-(c) Oversampling du < 1

W
,

(d)-(f) critical sampling du = 1
W

and (g)-(i) undersampling du > 1
W

,
{q ∈ N| q < Wdu < q + 1}.

V. SIMULATION RESULTS

A synthetic example is build to demonstrate the method.
A uniform linear array is considered comprising Ns = 256
sensors with interelement spacing ds = 1.6 mm. The field
is insonified by a narrowband 200 kHz source. The duration
of the pulse is 120 µs corresponding to a range resolution of
0.1 m (c = 1500 m/s) [26].

A 2D field of compressibility fluctuations is considered,
representing a region of oil contamination within the water
column. The contaminated region is expected to have higher
viscosity than the surrounding seawater and present layering
due to interface tension [27]. The field is assumed stationary
with a constant mean value characterized by an anisotropic
Gaussian covariance function with variance σ2

κ = 0.01 and
correlation lengths 2 m in x-direction and 0.5 m in z-direction
[28]. The variance is the value of the covariance function at
zero lag and the correlation lengths are the lag distances where
the covariance function has decayed by at least 95%.

An area of x = [−4.5 : 1 : 4.5] m and z = [55 :
0.1 : 55.9] m is considered. The data covariance matrix is
calculated from an ensemble average from 500 pings and
additive Gaussian noise is assumed n ∼ CN (0, 0.01). Figure 4
shows the actual model covariance matrix and the result of the
least-square inversion. Since the field of model parameters is
spatially stationary, the model covariance matrix is symmetric
block Toeplitz with the covariance function as the generating
function. Thus the covariance function can be deduced from
the elements in the first row of the covariance matrix. In order
to improve the estimate, the covariance function is calculated
by averaging the elements across the blocks in the diagonals
and across the diagonals in each block of the covariance
matrix.

Due to the ordering of the model parameters on the model
vector, the first Nu elements of the covariance function are
related to the covariance in u-dimension while the elements
[1 : Nu : M ] are related to the covariance in r-dimension.
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Fig. 4. (a) True and (b) reconstructed model covariance matrix.
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Fig. 5. (a)-(c) True and (d)-(f) reconstructed model covariance function as a
function of the lag-distance hx ((b), (e)) and hz ((c), (f)) in x and z-direction
respectively. The characteristic lengths are denoted by dashed lines in each
case.

Since du ≈ dx
r and dr ≈ dz , the covariance can be expressed

in the x and z-direction as a function of the lag distances
hx = (0 : Nu − 1)dur and hz = (0 : Nr − 1)dr respectively.

Figure 5 shows the true and reconstructed covariance
function and the characteristic lengths.

A. Effect of the number of pings

Figure 6 shows the estimates for the variance, the charac-
teristic length in the x-direction and the characteristic length in
z-direction in relation to the number of pings. All the estimates
have converged to their true values after averaging over 300
pings.

B. Effect of the regularization by truncated SVD

Figure 7 shows the estimates for the variance, the charac-
teristic length in the x-direction and the characteristic length
in z-direction in relation to the ratio of significant eigenvalues
to the total number of eigenvalues corresponding to a decrease
in the sampling distance du.

VI. CONCLUSION

For stationary scattering fields the method of covariance
inference allows significant reduction of the dimensions of the
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problem. Generally, in a medium where there is flow as in
the water column, the scattering field will not be static so
a deterministic description has less to offer. Localization of
the contaminated region can be provided by beamforming and
identification by inference of the covariance characteristics of
the model covariance.
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