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Abstract The goal of geoacoustic inversion is to estimate 

environmental parameters from measured acoustic fields from 
e.g. a towed array. Though the inversion results have some 
uncertainty, inversion is an efficient technique to estimate 
environment parameters. Based on the a posteriori probability 
density of environmental parameters obtained from inversion, we 
perform statistical estimation of transmission loss (TL) and 
generate a 90% credibility level envelope or uncertainty band for 
the TL. This uncertainty band accounts for the inherent 
variability of the environment not usually contained in sonar 
performance prediction model inputs, and presents a useful 
probabilistic description of the environment s variability. Towed 
arrays are advantageous to fixed systems as they are easy to 
deploy and the moving ship enables estimation of spatially 
variable seabed properties. The approach is demonstrated with 
data obtained from the MAPEX2000 experiment conducted by 
NATO Undersea Research Centre (NURC) in the Mediterranean 
Sea in November 2000.   

Index Terms
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I. INTRODUCTION  

EO-ACOUSTIC inversion using matched-field 
processing is a model-based technique that has been 

applied successfully to derive environment and seabed 
parameters for propagation prediction [1],[7],[12]. Computer 
simulations are used to model the acoustic response to 
different sea-bed types (forward models), and efficient search 
algorithms used to find the environment giving an optimal 
match between the modeled and measured data. It should be 
noted, however, that inverse problems are usually under-
determined, and solutions may not be unique, i.e. there could 
be several solutions giving rise to the same objective function. 
If the results of the inversion are only required for sonar 
performance prediction (for example), it is only the resulting 
acoustic field in the water that matters, often at long range and 
within a restricted range of frequencies. In this context, a 
precise description of the seabed is not necessary, and it is 
usually sufficient to describe a simpler effective

 

seabed 
model having the same acoustic effect on the underwater 
sound field within the range-frequency domain of interest [2].   
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There are uncertainties associated with the sea-bed 
parameters obtained from geoacoustic inversion, and in this 
paper, the translation of these uncertainties to the transmission 
loss domain is also presented. Sonar performance prediction 
using a probability density function (pdf) based on 
environmental variability has been discussed in [3]. 

By far, a sound source in combination with a receiving 
vertical line array (VLA) is the most common configuration 
for collection of acoustic data for geoacoustic inversion. It is a 
sensible choice as the propagating acoustic field is received at 
almost all angles if the VLA spans a large portion of the water 
column. The disadvantage is that for reliable seabed estimates, 
a geometry with a fixed VLA receiver array is usually limited 
to 2 km (or less) separation between the two due to ocean 
sound-speed variability [7]. In addition, in strongly range-
dependent regions where distinct bottom types impact acoustic 
propagation in significantly different ways, the behaviour of 
the acoustic field will not be modeled accurately using 
averaged seabed properties as input to the propagation model.   

The use of horizontal line arrays (HLA) has been gaining in 
popularity as it offers several advantages over the VLA. This 
include the ease of deployment from a ship, and the ability to 
cover large areas of interest as the ship travels, together with 
either a separate towed source [7], or using the ship noise as 
the acoustic source [8], though in this paper, a fixed source 
was used.  

In Section II of this paper, we describe the inversion 
procedure for geoacoustic parameter estimation. Section III 
describes an algorithm for the estimation of transmission loss 
(TL) from ocean acoustic data recorded from a receiver array 
which can be either a VLA or HLA. Section IV presents the 
experimental setup. In Section V, a simulation study is 
presented to study the sensitivity of different seabed 
parameters to matched-field geoacoustic inversion. Section VI 
presents the geoacoustic inversion results using the 
MAPEX2000 experimental data recorded on the HLA. 
Section VII presents the TL estimation results using the 
posterior probability distributions of the parameters (or 
uncertainties of the parameters) derived from geoacoustic 
inversion in Section VI. 

II. PARAMETER ESTIMATION USING GENETIC ALGORITHMS  

Genetic algorithms (GA) are based on an analogy with 
biological evolution. The basic principle of GA is simple. 
From all possible model vectors, an initial population of n 
members is selected. The fitness (or objective function) of 
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each member is computed. Then, through a set of evolutionary 
steps, the initial population evolves in order to become fitter. 
An evolutionary step consists of selecting a parental 
distribution from the initial population based on the 
individual's fitness. The parents are then combined in pairs, 
and operators are applied to them to form a set of children. 
The operators are the crossover and mutation operators. 
Finally, the children replace part of the initial distribution to 
get a fitter population. For a detailed description of GA and 
their application to geoacoustic parameter estimations, refer to 
[12]. 

A. Baseline environmental model 

We use the baseline environmental model established for the 
North Elba site from [4]. Fig. 1 illustrates the baseline 
environmental model, comprising the water column, a 
constant thickness sediment layer with depth dependent sound 
speed (increasing with depth), and subbottom half-space layer. 

B. Inversion procedure and objective function 

The inversion is performed as follows:  

(1) Record the acoustic field at the site of interest. A signal 
transmission covering a broad band of frequencies contains 
more information than a single tone and will generally 
produce better (more stable) inversion results. In this 
experiment, data from the 300-500 Hz band are used for the 
inversion. 

(2) Choose a suitable propagation model. In this paper, we 
use the SACLANTCEN SNAP normal-mode propagation 
model [10], which is robust, fast, and suitable for low 
frequencies. 

(3) Choose a suitable cost function to minimize. The phone-
coherent method has traditionally been used. However, recent 
analyses [7] show that frequency-coherent matched-field 
inversions (MFI) work well for multi-frequency HLA data, 
where matched-field correlations between data and replica 

frequency vectors are summed incoherently over range 
(hydrophones). The frequency-coherent cost function based 
on the Bartlett correlator is defined by  
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and the phone-coherent cost function is defined by   
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In Eqs. (1), (2), (3) and (4), NF is the number of frequency 
components, NH is the number of hydrophones, and pij and qij 

are the modeled and measured complex pressure vectors 
respectively (* denotes the complex conjugate). Both cost 
functions take on a value of 0 for two identical signals and 1 
for completely uncorrelated signals.  

The frequency-coherent MFI requires knowledge of the 
source spectrum (as is the case for this experiment), as 
frequency correlation is the same as correlation of the time 
series by the convolution theorem [5]. We use the frequency-
coherent cost function in this paper, as we found the phone-
coherent method yields poor results, as in [13]. The failure of 
the phone-coherent method here may be due to large errors in 
positions, as the phone-coherent method requires accurate 
information on the array shape and position [5],[13]. 
However, if using ships of opportunity or ship self-noise, 
since the source spectrum is unknown, it will be more 
convenient to use the phone-coherent cost function, where 
matched-field correlations between data and replica phone 
vectors are summed incoherently over frequency. 

(4) An efficient algorithm is needed to navigate the 
enormous search space and find the global minimum to the 
cost function. In this paper, a genetic algorithm search is used 
with the propagation model SNAP as implemented in the 
inversion package SAGA version 5.3 [11]. 40 000 forward 
models were used in the inversion searches.    

III. ALGORITHM TO MAP GEOACOUSTIC PARAMETERS

 

UNCERTAINTIES TO TRANSMISSION LOSS DOMAIN  

The mapping of geoacoustic parameters uncertainties to 
the transmission loss (TL) domain has been discussed in [9] 
and [15] and is summarized in this section for completeness.  

Fig. 2 summarizes the estimation of TL (usage domain U)  
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Fig. 1. The baseline environmental model based on [4] for the North Elba 
experiment site.  
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from ocean acoustic data observed on a vertical or horizontal 
array (data domain Q). Based on the ocean acoustic data q, we 
statistically characterize TL, the usage domain U. The vector 
q represents the acoustic data observed at NH hydrophones and 
the vector u represents TL at several ranges and depths. This 
is mapped via a set of environmental parameters m in the 
environmental domain M. The geoacoustic inverse problem is 
solved as an intermediate step to obtain the posterior 
distribution of environmental parameters p(m|q) 
(environmental domain M). We are not just interested in the 
environment itself but also a statistical estimation of the TL 
field (usage domain U). Based on the posterior distribution 
p(m|q), the probability distribution of the TL p(u|q) is 
obtained via Monte Carlo integration. From this TL 
probability distribution, all relevant statistics of TL can be 
obtained, such as the median, percentiles and correlation 
coefficients. The vector u is used to denote the transmission 
loss as an I-dimensional vector at discrete (ri, zi) positions, 

where ui = u(ri, zi). 

Both the experimental data q and the usage domain model u 
are related to m via forward models Q(m) and thus formally, 
if the data were error free and the mappings were unique, we 
would have u = U(Q 1(q)). It is assumed that the mappings 
Q(m) and U(m) are deterministic and all uncertainties 
(including noise and modeling errors) are in the data. Due to 
the uncertainties in the data, the inverse mapping from q to m 
is formulated in a probabilistic framework where one also can 
include prior information. The forward mapping could also be 
probabilistic as in [16] and [17].  

A. Bayesian inference  

We use the Bayesian inference framework to determine the 
parameters of interest m given an observation q. The solution 
is characterized by the posterior probability p(m|q). First, the 
prior information about the model parameter vector is 
quantified by the probability density function p(m). Then, this 
information is combined with the likelihood function p(q|m) 

provided by the combination of data and the physical model to 
give the posterior information of the model parameters 
p(m|q). A complete discussion of inverse theory from a 
probabilistic point of view may be found in the recent 
textbook by Tarantola [16]. The solution to the inverse 
problem is then given by   
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where p(q) is a normalizing factor that makes the posterior 
probability density p(m|q) integrate to one. Since p(q) does 
not depend on environmental model m, it is typically ignored 
in parameter estimation. Hence, in the second representation, 
the normalization constant p(q) is omitted and a brief notation 
L(m) is used to denote the likelihood function p(q|m). The 
posterior distribution p(m|q) carries all information available 
on models originating from the data and from data-
independent prior information. From this distribution, all 
relevant features of the environmental model can be estimated 
using e.g., the maximum a posteriori (MAP) estimator. 

The posterior probability distribution p(m|q) is M-
dimensional, where M is the dimension of m. The method 
used to compute the posterior distribution p(m|q) depends on 
the dimension M. For small scale problems where M < 8, 
evaluating the likelihood function over a grid of parameter 
values seems most efficient. For medium scale problems, 
utilizing sequences of random numbers sampling from the 
posterior distribution using Markov chain Monte Carlo 
(MCMC) methods is most efficient [9]. A brief description on 
MCMC algorithms are given in section III-D.   

B. Likelihood and objective functions 

This section derives a likelihood function to be used in the 
probabilistic inversion following the same approach as 
described in [18],[19]. At a single frequency, the relation 
between the observed complex-valued data vector q sampled 
at a N-element array and the modeled data D(m) is described 
by the model  

    q = D(m) + e ,                                 (6)  

where e represents the error term. The modeled data are given 
by D(m) = sp(m), where the complex deterministic source 
term s is unknown. The transfer function p(m) is obtained 
using an acoustic propagation model and an environmental 
model m. For simplicity in the development below, data from 
only one frequency is first assumed. The theory for 
multifrequency is also described in [18],[19]. 

Assume the error vector e to be Gaussian distributed with 
zero mean and covariance Ce. The error vector represents all 
features that are not modeled in the data such as noise, 
theoretical errors, and modeling errors. Hence, the likelihood 
function is  

Fig. 2. An observation q 

 

Q is mapped into a distribution of environmental 

parameters m 

 

M that potentially could have generated it. These environmental 
parameters are then mapped into the usage domain U, which is

 

the transmission 
loss domain in this paper. 
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where N is the number of data points and superscript H 
denotes the complex conjugate transpose. Although in general 
not true, we assume Ce = I to make the derivation more 
tractable mathematically. The source term s can be estimated 

in closed form by setting 0
log

s

L
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It is seen that s depends on m but not on

 

. After substituting 
sML back into Eq. (7), the likelihood function is then  

)(
exp

1
),(

m
m

NN
L ,                  (9) 

where  

                   
22

2H
2

)(

)(
1)(

mp  q 

mpq 
q m                     (10)  

is the objective function. The maximum likelihood (ML) 
estimate of the noise ML can be estimated in closed form by 

solving 0log L
, giving  
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It is straightforward to extend the above to the multi-
frequency phone-coherent cost function in Eqs. (3) and (4) 
and the frequency-coherent cost function in Eqs. (1) and (2).  

With the phone-coherent cost function case with constant 
weighting over frequency, we have, for a particular frequency 
j,     
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where we have dropped the term 
2

jq by normalizing 

)(m
jH as we are using uniform weighting over each 

frequency, so that for NF frequencies, the likelihood function 
is given by   
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Similarly, with the frequency-coherent cost function case, for 
a particular hydrophone i, we have   

ii FF B1)(m ,        (14)  

so that for NH hydrophones, the likelihood function is given 
by  
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The ML solution of the model parameter vector mML is 
obtained by maximizing the objective function over all m. 
Finally, an overall estimate for the error power 

 

is obtained 
from Eq. (11) at the environmental ML solution: ML (mML) 
and can be re-inserted into the likelihood function. For 
simplicity, we consider the error as known and only keep the 
free argument m of the objective function . This approach 
leads to [19]  
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The above derivation assumes that the error in each sample 
is uncorrelated with the next sample. In practice, these are 
strongly correlated because the independent information is 
limited by the number of propagating modes. Therefore the 
number of samples N in the above equations must be replaced 
with the effective number of samples, Neff.  

C. Prediction in the TL domain 

Probability density functions that describe yet unobserved 
events are referred to as predictive distributions. Based on the 
posterior distribution p(m|q), the posterior predictive 
distribution p(u|q) is obtained from the joint posterior pdf of u 

and m given q,  
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where the second equation follows from the definition of 
conditional probability [15]. Since all uncertainties are 
assumed to be in the data q and all information in q has been 
mapped into m (see Fig. 2), conditioning on q adds no 
information in our prediction of u. Therefore,  

                                p(u|m,q) = p(u|m).        (18)  

The conditional probability density p(u|m) is used to 
describe uncertainties in the forward mapping due to 
imperfect knowledge of the environment (e.g., 
parameterization) [16],[17]. Here, the forward mapping is 
assumed exact: a functional relationship u = U(m) gives the 
transmission loss u exactly for each value of m. Note that u = 
U(m) is a short notation for the set of equations ui = Ui(m), i = 
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1, . . . , I. Therefore, the probability density is  

p(u|m) = (U(m)-u),                (19)  

where the vector delta function is defined as the product of the 
delta functions for the elements [16] as in  
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The posterior predictive distribution of u for a set of 
discrete ranges and depths given the observed acoustic data q 
is obtained by integrating the values of the TL with respect to 
the posterior distribution of the model parameters  

mqmumUq u d)p())(()p(
M

,      (21)  

where M represents the environmental model domain [15]. It 
is possible to implement Eq. (21) directly using MCMC 
methods described in the next subsection. The posterior 
distribution p(u|q) carries all the information about TL in the 
presence of the geoacoustic inversion uncertainties. As the 
predictive distributions are not necessarily Gaussian, it is 
preferable to characterize the distributions with medians and 
distance between the 5-th and 95-th percentiles instead of 
means and standard deviations. Note that the median 
corresponds to the 50th percentile of the distribution. The -th 
percentile of the TL distribution at a given position, denoted 
by u , is computed by finding the TL value that satisfies  

u
uu 100/d)p( q .       (22)  

D. Markov chain Monte Carlo methods 

Markov chain Monte Carlo (MCMC) is essentially Monte 
Carlo integration using Markov chains. MCMC methods are a 
class of algorithms for sampling from probability distributions 
based on constructing a Markov chain that has the desired 
distribution as its stationary distribution. In the Bayesian 
framework, there is often a need to integrate over high-
dimensional probability distributions to make inference about 
model parameters or to make predictions. MCMC methods are 
able to evaluate integrals in high dimensional space efficiently 
[20] and have been found to be well suited for problems of 
Bayesian inference. They are extensively used in various 
fields of inverse problems, including ocean acoustics [23], 
[24]. The commonly used MCMC methods are the 
Metropolis-Hastings algorithm, which was introduced first in 
[21], and Gibbs sampling, which was developed originally in 
[22]. MCMC algorithms consist of a random walk in the 
parameter space where the next parameter value depends only 
on the current value and not on past values (Markov chain). 
After an initial burn-in period in which the random walker 
moves toward the high posterior probability region, the set of 
parameter vectors sampled by the chain will be dependent 

samples approximately distributed as in the posterior pdf, i.e. 
the distribution of the samples converges to the posterior pdf 
after a sufficiently long time. 

In the MCMC, samples are generated from the posterior 
distribution p(m|q). The difficulty is to create a Markov chain 
which converges rapidly. As noted in [15], parameter coupling 
is frequently encountered in ocean acoustics. High correlation 
between parameters can slow down the convergence of a 
MCMC sampler considerably. Thus, a parameter covariance 
matrix estimated from the sampled models during the initial 
burn in period [23] is used for determining appropriate 

coordinate rotations. MCMC convergence is established by 
implementing two independent runs in parallel and 
periodically comparing the marginal distributions of the 
parameters estimated from each run. The procedure is 
terminated when the maximum difference between two 
cumulative marginal distributions for all parameters is less 
than 0.05 in this paper. A good introduction to MCMC 
methods is in [25], which also contains many applications in 
statistical data analysis. 

The integral in Eq. (21) is the expectation of the function 
(U(m)  u) with respect to the posterior distribution of the 

model parameters. This and other expectations can be 
approximated by using the MCMC samples {m(t)} drawn from 
the posterior distribution of model parameters p(m|q), with the 
probability distribution of the TL  

T

t

t

T
1

1
)p( umUq u ,        (23)  

where the superscript t is used to label the sequence of states 
in a Markov chain and T denotes the total length of the 
sequence. To implement Eq. (23), a numerical approximation 
is made by binning the calculated TL values. The bin width is 
selected small enough to have negligible effect on the 
distribution [15]. In this paper, a 1-dB bin width is used.  

Using all samples from MCMC runs can consume a large 
amount computation time to compute p(u|q) and storage to 
save all m(t). It has been suggested in the statistical literature 
[25],[26],[27] that inferences should be based on a 
subsampling of each sequence, with a subsampling factor high 
enough that successive draws of m are approximately 
independent. This can save a large amount of storage and 
computation time. This subsampling reduces the number of 
samples needed to calculate p(m|q) and thus translates into a 
large saving in computer time for calculating p(u|q). 
Practically, we use a Monte Carlo (random) subsampling of 
the MCMC samples {m(t)} and monitor the convergence of 
the maximum difference between the marginal cumulative 
distributions estimated from subsamples and from all MCMC 
samples. We define the maximum difference to be less than 
0.05 for all parameters in this paper. These subsampled model 
parameter vectors are then used to compute p(u|q).   

All results presented in this paper are generated by SAGA 
version 5.3 [11], which implements the MCMC method using 
the Metropolis-Hastings algorithm described in [28]. 
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IV.  EXPERIMENTAL SETUP  

The NATO Undersea Research Centre (NURC) conducted 
the MAPEX2000 experiment on 28 November 2000 in a 
shallow water area north of Elba island off the Italian west 
coast (see Fig. 3). This area is characterized by a flat bottom 
covered with clay and sand-clay sediments. The bathymetry 
was measured to be between 110-120 m along the track 
(42.928 N, 10.145 E to 42.928 N, 10.260 E). The HLA was 
towed by NRV Alliance at approximately 4 knots with the 
first hydrophone approximately 350 m behind the ship's stern. 
The acoustic source deployed from NRV Manning which was 
moored at 42.926 N, 10.206 E. The tow depth of the HLA 
was 55-65 m during the trial. The HLA is 254 m in length, 
and data recorded along the entire length was used (128 
hydrophones spaced at 2 m).  A sequence of 2-s LFM sweeps 
from 150-500 Hz was transmitted every 15 seconds. The 
received time-series was converted to the frequency domain 
using a Fast Fourier Transform (FFT) with a frequency bin 
width of 0.09 Hz. Frequency bins corresponding to 300-500 
Hz in 10 Hz increments were used in the inversion for 
comparison with modeled results. 

  

Fig. 3. Bathymetry of experimental location, and track of NRV Alliance 
during the MAPEX2000 experiment. All times are UTC. Each frame 
represents a 15-s increment.  

The sound speed profile was measured before the 
experiment and shown in Fig. 4. The profile exhibits a slight 
positive gradient for most of the water column, except near 
the bottom, where there is a sharp decrease in sound velocity.  

 

Fig. 4. Sound velocity profile taken from a CTD cast at position 42.943 N 
10.127 E on 28 November 2000. 

V. HLA SEABED CHARACTERIZATION : A SIMULATION STUDY    

In this section, the sensitivity of different seabed and 
geometric parameters using a HLA inversion method is 
determined via simulations. The sensitivity test is performed 
by looking at each seabed parameter separately. For a selected 
parameter, the acoustic fields are computed for all values in its 
search space. All other parameters are held fixed at their 
respective reference values. The geometric and seabed 
parameters considered and their reference values are provided 
in table I.   

For the experimental geometry considered, the HLA was 
positioned with the first hydrophone 900 m from the source. 
The water depth was taken as 115 m and the source depth at 
55 m. The HLA was at 60 m depth and comprises 128 
elements with 2-m spacing, spanning 900-1154 m from the 

TABLE  I 
GEOMETRIC AND SEABED PARAMETERS USED IN SENSITIVITY STUDY FOR 

SOURCE-1ST  HYDROPHONE RANGE OF 900 M 

Model parameter  Value 
Lower 
search 

interval 

Upper  
Search  
Interval 

Geometric    
  Source range (m) 900 600 1200 
  Source depth (m) 55 50 60 
  1st hydrophone depth (m) 60 55 65 
Array tilt ( ) 0 -3 2 
Array bow (m) 1 -3 3 
Water depth (m)  115 112 118 

Sediment    
  Sediment thickness (m) 50 1 80 
  Sediment density (g/cm3) 1.5 1.0 2.0 
  Sediment top comp. speed (m/s) 1520 1520 1650 
  Comp. speed increment at    
  sediment bottom (m/s) 

130 10 150 

  Attenuation in sediment (dB/ )  0.13 0.0 1.0 

Bottom    
  Bottom density (g/cm3) 1.8 1.0 2.0 
  Bottom comp. speed as increment    
  of sediment bottom comp. speed (m/s)   

100 10 150 

  Attenuation in bottom (dB/ ) 0.1 0.0 1.0 
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source. The fitness for each parameter, given by 1-CF, where 
the cost function CF is given by Eq. (1), is plotted in Fig. 5. 

Referring to Fig. 5(a) for geometric parameters, it can be 
seen that the HLA has the greatest sensitivity to the source-
receiver range. The fitness graph for the sensitivity of the 
source-receiver range is plotted in dB scale as it falls off 
rapidly from the actual source-receiver range. We also 
observe that there are other cyclical peaks due to sidelobes 
from linear matched-field processing. This is to be expected as 
range determination of a source to a HLA at endfire is 
reported to be more ambiguous than for a vertical array [14]. 
For seabed parameters, the HLA shows good sensitivity to the 
sediment sound speed and sediment thickness. A caveat to the 
sensitivity test is the interdependency of each parameter on the 
others. For example, the sensitivity to sediment thickness and 
sub-bottom properties will also depend on the sediment 
properties, as the ability to sense the sub-bottom will depend 
on the amount of penetration through the sediment. Given the 
sensitivity curves, and the interdependency of sediment 
properties, we refine the geoacoustic model by holding the 
sediment thickness constant, and varying only the top 
sediment sound speed, and the sediment sound speed gradient. 
We also hold the bottom density and bottom attenuation fixed 
as they are insensitive to the inversion. This is because 
including insensitive parameters increases the computational 
effort of the inversion without providing more meaningful 
results, and it is preferable to hold insensitive parameters at 
physically meaningful values [13]. A full inversion was then 
performed for both the geometric and seabed parameters.  

   

Fig. 5. Sensitivity study of parameters based on simulation. (a) Geometric 
parameters. (b) Sediment parameters. (c) Bottom parameters. 

VI. MAPEX2000 HLA SEABED CHARACTERIZATION : 
INVERSION RESULTS   

During the experiment, a 2-s LFM signal (150-500 Hz) was 
transmitted from the fixed source at 15-s intervals. This was 
recorded by the HLA towed by Alliance. Fig. 6 shows the 
signal received on the last hydrophone of the HLA at frame 
185. Before inversion, the received acoustic data were 
calibrated by dividing by the ideal 2-s LFM source spectrum 
over the 150-500 Hz frequency band [13]. The frequency bins 
used for inversion are corresponding to the frequencies 
Doppler-shifted according to the Doppler factor of (1+v/c), 
where c is the sound velocity, and v is the ship velocity 
(positive when moving towards the source, and negative when 
moving away) [6].  We follow a similar approach as in [7] in 
performing the inversions. First, we perform a general 
inversion for all the parameters. We then constrain the 
geometric parameters by allowing them to vary only within 
narrow intervals, and perform a full inversion of the seabed 
properties. This prevents the highly sensitive geometric 
parameters from dominating the inversion.   

 

Fig. 6. Data received on the last hydrophone on the HLA at frame 185. (a) 
Time series. (b) Spectrogram of the received LFM sequence. (c) Matched 
filter output showing the arrival time of the LFM pulse.    
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Table II shows the geometric and geoacoustic parameters 

and their search bounds used in the final inversion, where the 
geometric parameters are only allowed to vary in a narrow 
interval. We invert for selected seabed parameters which are 
dominant in propagation modeling (sediment top speed, 
increase of sediment speed at bottom, and sediment 
attenuation) while holding the rest of the parameters, which 
are insensitive (sediment density and all other bottom 
parameters) or coupled to other parameters (e.g. sediment 
thickness, which is coupled to sediment speed), constant.     

Fig. 7 shows the variation of the inverted parameters with 
time, as Alliance traveled along the track from frame 185 
(10:04:00) to frame 240 (10:17:45). The geometric parameters 
such as source-receiver range, water depth, receiver depth and 
source depth have been inverted within the bounds of errors in 
measurement. It should also be noted that the inversion results 
for other parameters represent averaged values over range, 
rather than results at a particular location.     

  

Fig. 7.  Variation of measured and inverted geometric and sediment properties 
with time along the track. (a) Geometric parameters. (b) Sediment parameters. 
The o

 

indicates the values obtained after inversion, and *

 

indicates the 
measured values where available. The source-receiver ranges obtained from 
inversion are well-determined along the track, and plotted with the upper and 
lower intervals of the measured range (solid lines) using GPS with an error of 

100 m.  

Fig. 8 shows the 1-D posterior probability distribution plots 
of the geometric and sediment parameters for an inversion 
performed at frame 195. The plot indicates that uncertainty 
exists in the parameters obtained from geoacoustic inversion 
results. In the next section, we discuss how the uncertainties in 
the estimation of the sea-bed parameters resulting from the 
geoacoustic inversion are used to map to uncertainties in the 
transmission loss domain.  

 

Fig. 8. A posteriori probability distributions for (a) geometric parameters and 
(b) sediment parameters, obtained from inversion for frame 195. The red 
arrow shows the MAP value.   

VII. TRANSMISSION LOSS (TL) ESTIMATION FROM 

EXPERIMENTAL INVERSION RESULTS  

We apply the MCMC method presented in section III to the 
geoacoustic inversion results obtained from the preceding 
section to obtain the TL uncertainty plot as a result of 

TABLE II 
GEOMETRIC AND SEABED PARAMETERS USED IN FINAL INVERSIONS 

Model parameter  Value 
Lower 
search 

interval 

Upper  
Search  
Interval 

Geometric    
  Source range (m) From 

initial  
-5  +5  

  Source depth (m) inversion  -2.5  +2.5  
  1st hydrophone depth (m) results -2.5  +2.5  
Array tilt ( )      -1  -3  +2 
Array bow (m)      -1  -2  +2  
Water depth (m)  115  112   118  

Sediment    
  Sediment top comp. speed (m/s) 1520 1500 1600 
  Comp. speed increment at    
  Sediment bottom (m/s) 

130 10 150 

  Attenuation in sediment (dB/ )  0.13 0.0 1.0 
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uncertainty in the environmental parameters. Fig. 9(a) shows 
the TL uncertainty plot at a receiver depth of 60 m over range 
at a frequency of 300 Hz. The plot shows peaks and troughs in 
the TL due to the constructive and destructive interference of 
the modes propagating in the water column. Fig. 9 (b) and (c) 
shows the uncertainty spread in TL at a region of constructive 
and destructive interference at 1530 and 1640 m respectively. 
We see that the TL uncertainty band is about 5 dB around the 
regions of constructive interference and widens to 
approximately 18 dB around the regions of destructive 
interference, i.e. regions of destructive interference are 
predicted with much more uncertainty than at regions of 
constructive interference.    

 

Fig. 9. (a) TL uncertainty plot at a receiver depth of 60 m at 300 Hz. (b) 
Uncertainty spread of TL at a range of 1530 m where there is constructive 
interference. (c) Uncertainty spread of TL at a range of 1640 m where there is 
destructive interference.  

In Fig. 10, we plot the predicted TL in terms of the median 
(solid red line) and bounded by the 90% credibility interval 
(CI) (gray region) for the 3 frequencies 300 Hz, 400 Hz and 
500 Hz. We also insert the measured TL values in the same 
plot to see if the TL values match the predicted TL within the 
90% CI. We observe that approximately 70% of the measured 
TL values fall within the predicted TL s 90% CI uncertainty 
envelope for 300 Hz and 400 Hz, while for 500 Hz, the 
prediction is less accurate, with only 52% of the measured TL 
values falling within the predicted TL s 90% CI uncertainty 
envelope. This is likely due to the increased difficulty in 
prediction as frequency increases, which leads to a 
corresponding increase in the number of propagating modes 
and their interaction with each other.    

VIII. CONCLUSIONS  

In this paper, we have demonstrated the inversion of seabed 
parameters using data received on a towed array with a 
frequency-coherent cost function. The Markov chain Monte 
Carlo method was then applied to sample the posterior 

probability density of the geoacoustic parameters. Then, these 
parameter uncertainties are translated to the transmission loss 
domain, where the probability distribution of transmission loss 
over different range and frequencies are obtained. We also 
extracted the characteristic features such as the median and 
lower/upper percentiles from the distribution.    

 

(a) 

 

(b) 

 

(c)  

Fig. 10. Predicted and measured TL at depth 60 m and for frequencies (a) 300 
Hz, (b) 400 Hz and (c) 500 Hz. The median of the predicted TL (red line) is 
shown together with the 90% CI (gray area). The measured TL values are 
marked with crosses.  
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