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Abstract— This paper addresses the problem of tracking the
spatial and temporal lower atmospheric variations in marine
and coastal environments. The method tracks the evolution
of the range and height-dependent index of refraction using
the sea clutter measured from sea-borne radars operating in
the region. A split-step fast Fourier transform based parabolic
equation approximation to the wave equation is used to compute
the clutter return in complex environments with varying index
of refraction. In addition, regional statistics are incorporated
as prior densities, resulting in a highly nonlinear and non-
Gaussian tracking problem. Various tracking algorithms such as
the extended Kalman, unscented Kalman and particle filters are
used for tracking surface-based electromagnetic ducts frequently
encountered in marine environments. Tracking performance of
each filter is also calculated and compared using the posterior
Cramér-Rao lower bound. Even though the tracking performance
of the Kalman filters was limited by the high non-linearity of the
parabolic equation, particle filters proved to be very promising
in tracking even the abruptly changing environments.

I. INTRODUCTION

In many maritime regions of the world, such as the
Mediterranean, Persian Gulf, East China Sea, and California
Coast, atmospheric ducts are common occurrences. They result
in various anomalies such as significant variations in the
maximum operational radar range and increased sea clutter.
Therefore, it is important to predict the real-time 3-D en-
vironment (characterized by the modified refractivity profile,
M-profile) the radar is operating in so that the radar operator
will at least know the true system limitations and in some
cases even compensate for them. Some of the conventional
techniques that measure or predict the lower atmospheric index
of refraction include radiosondes and rocketsondes, microwave
refractometers, meteorological models such as the Coupled
Ocean/Atmospheric Mesoscale Prediction System (COAMPS),
lidar and GPS measurements.

However, it is also possible to predict the duct properties
using the radar itself. When launched at a low elevation angle,
the electromagnetic signal will be trapped within the duct
which can be taken as a range-dependent leaky waveguide
bounded from below by the sea surface. This will result in
multiple reflections and strong interaction with the surface
which in turn will result in an increase in the sea clutter,
forming clutter rings. This normally unwanted portion of the
received signal can then be used to infer the environment that
would give such a clutter structure. These techniques can be
classified as refractivity-from-clutter (RFC) techniques [1]–

[4]. Other RFC techniques and more detailed discussions about
the differences between them can be found in [4].

This paper is a natural extension to these previous RFC
methods which compute the 2-D range and height-dependent
M-profile for a given azimuth direction. Instead of inverting
the environmental parameters for a given azimuth and time,
the emphasis is on tracking both the temporal and spatial
evolutions of duct parameters. Throughout this paper, the term
spatial evolution will be used to represent the evolution of the
2-D M-profile with the rotating azimuth angle of the radar.
This is achieved by employing various tracking filters. The
problem is formulated in a Kalman framework, where the
clutter for a given environment is calculated using a split-
step fast Fourier transform (FFT) based parabolic equation
(PE) approximation to the wave equation [5]. This introduces
a high level of nonlinearity in the measurement equation. The
problem is then solved by using various tracking algorithms.

II. THEORY

Two equations are necessary to fully characterize the dy-
namic system; one that describes the evolution of the lower
atmosphere and another that governs the propagation of the
electromagnetic signal in this environment. At a time step k,
these equation can be given as:

xk = Fxk−1 + vk−1 (1)

yk = h (xk) + wk (2)

where F is a known linear function of the state vector xk,
h(·) is a known nonlinear function of the measurement vector
yk, vk and wk are the process and the measurement noise
vectors, respectively with

E{vkv
T
i } = Qkδki E{wkw

T
i } = Rkδki

E{vkw
T
i } = 0 ∀ i, k. (3)

The state vector xk is composed of the nx parameters that
describe the complex environment at the step index k. The
state vector for the surface-based duct (SBD) is given in
Appendix I. The process noise vk is a zero-mean additive
Gaussian probability density function (pdf). Prior density
p(xo) is usually constructed using the regional statistics. This
density must be Gaussian for the Kalman filters but it can be
any distribution for the particle filter.



Equation (1) is the state equation for the stochastic environ-
mental model. F is the linear state transition matrix which will
be taken as the identity matrix. The main assumption is that the
environment is changing slowly compared to the step index.
Although the M-profile is not expected to vary considerably
in short intervals, sudden fluctuations can occur and the
filters will require larger Qk to perform adequately in these
environments. From many previous experiments such as the
Variability of Coastal Atmospheric Refractivity (VOCAR) [6],
it is known that spatial and temporal duct variability are strong
functions of region, season, time of the day and mesoscale
atmospheric processes. For example, experiments indicate that
Santa Ana-induced (warm and dry offshore winds in South-
ern and Baja California) SBDs typically have higher spatial
variability than the subsidence-induced SBDs [7]. The duct
parameters such as the duct height have also been observed
to stay stable for days, followed by rapid fluctuations [8].
Spatial variability also has similarly challenging and dynamic
patterns as shown during the Wallops’2000 experiment [9].
Hence, different environmental models may be necessary for
different applications or regions.

Equation (2) is the measurement equation and it relates the
environment given by xk to the radar clutter power yk through
a highly nonlinear h(·) function which uses a split-step FFT-
PE (see Appendix II). The degree of nonlinearity and hence
the filter performance heavily depends on the current location
of xk on the state-space. As stated in Appendix II, wk is
the logarithm of the sea surface clutter radar cross section
(RCS). There are many successful models for the sea clutter
distribution. The selection of the appropriate model depends on
various factors such as the grazing angle, radar resolution and
sea roughness. Some of the commonly used models include
the Rayleigh, Weibull, log-normal and K-distributed sea clutter
[10], [11]. Since the Kalman framework requires Gaussian
distributions, the model can only be constructed if RCS is
selected as log-normal even if this may not be the most suitable
selection among the densities mentioned above. The PF does
not have such restrictions and any pdf can be used. Since it
is desirable to compare these filters under the same set of
assumptions, sea clutter is taken as log-normal.

A. Tracking Algorithms

Since the tracking problem given in (1)–(2) is nonlinear
with non-Gaussian densities, a Kalman filter (KF) cannot
be used. Instead, an extended Kalman filter (EKF) [12] is
used by locally linearizing the equations using the first terms
in the Taylor series expansions (Jacobian) of the nonlinear
transformations (such as h) and hoping that the nonlinearities
are mild enough that EKF will still perform well. Since the
pdfs are Gaussian and equations are linearized, it is necessary
to propagate only the mean and covariance as in KF. However
due to this approximation, the EKF cannot claim the optimality
enjoyed by the KF for linear-Gaussian systems. The EKF
has been successfully implemented in a large number of
applications such as many radar and sonar target tracking
applications and its speed and ease of implementation makes

the EKF the filter of choice. Therefore, the EKF is the first
filter tested in the RFC tracking problem.

To alleviate some of the problems the EKF is faced with,
the unscented Kalman filter (UKF) [13] has been introduced.
Unlike the EKF which tackles the problem by enforcing
linearity, this filter approaches the problem from a different
angle by enforcing Gaussianity and keeping the nonlinearity.
This still enables the filter to carry all the necessary informa-
tion by propagating only the mean and covariance as a KF
does. It uses an unscented transformation (UT) that enables
the propagation of the mean and variance through nonlinear
functions. The UKF represents initial densities using only a
few predetermined particles called the sigma points. These
particles are chosen deterministically by the UT algorithm and
they can describe accurately the mean and covariance of a pdf.
As the random variable undergoes a nonlinear transformation,
these particles are propagated through this nonlinear function
and used to reconstruct the new mean and covariance using
the UT weights. Hence, unlike the EKF, they can compute
accurately the mean and covariance to at least second order
(third if the initial density is Gaussian) of the nonlinearity. It
is a fast, derivative-free algorithm but UKF may still perform
poorly in a highly nonlinear or non-Gaussian system.

The last algorithm analyzed in this paper is the particle filter
(PF) [14] which is used for many nonlinear, non-Gaussian
tracking problems. The main difference with Kalman type fil-
ters is that, since no Gaussian assumption is made, propagating
the mean and covariance will not be sufficient. Instead the PF
will propagate particles to represent the densities just as in the
UKF; with notable differences. The first is that the particles
in the PF will be selected randomly by MC runs and typically
a much larger number of particles will be needed to represent
the pdf. Therefore, the PF can perform much better than its KF
variants but it does this with an order of magnitude increase
in the computational burden.

B. Posterior Cramér-Rao Lower Bound

It is usually not possible to have an optimal estimator
to nonlinear filtering problems such as the RFC. All the
techniques used in this paper are also sub-optimal techniques.
Therefore, it is desirable to have a tool that can not only
assess the performances of these sub-optimal techniques but
also provide a limit to achievable performance for a given
environment.

In a classical non-Bayesian framework, the Cramér-Rao
Lower Bound (CRLB), which is the inverse of the Fisher
information matrix (FIM), is commonly used. For a Bayesian
framework this instead can be replaced by the posterior
Cramér-Rao Lower Bound (PCRLB) introduced by van Trees
[15]. Since this paper exclusively deals with PCRLB, it will
henceforth be referred simply as CRLB.

Any filter that can lower its mean square error to the CRLB
is called an efficient estimator. For a linear and Gaussian
system, the Kalman filter is an efficient estimator. It may not
be possible to attain the CRLB for a nonlinear, non-Gaussian
system.



Let Jk be the inverse of the CRLBk as a (nx×nx) filtering
information matrix so that the mean-square error of any filter
estimate at tracking step index k will be bounded as

E
{(

x̂k|k − xk

) (
x̂k|k − xk

)T
}
≥ J−1

k , (4)

where x̂k|k is the estimate of xk given its previous
history {xo,x1, . . . ,xk−1} and the set of measurements
{y1,y2, . . . ,yk}. A computationally efficient way of comput-
ing this CRLB recursively for discrete-time nonlinear filtering
problems is proposed in [16]:

Jk = D22
k−1 −

[
D12

k−1

]T (
Jk−1 + D11

k−1

)−1
D12

k−1 (5)

where

D11
k−1 = −E

{
∇xk−1

[∇xk−1 log p (xk|xk−1)
]T}

(6)

D12
k−1 = −E

{
∇xk

[∇xk−1 log p (xk|xk−1)
]T}

(7)

D22
k−1 = −E

{
∇xk

[∇xk
log p (xk|xk−1)]

T
}

− E
{
∇xk

[∇xk
log p (yk|xk)]T

}
. (8)

Note that the computations only require (nx × nx) matrices
and the computational cost is independent of the step index k.

Taking into account that the system defined in (1) – (2) has
a linear state equation and both of the random noise sequences
v and w are additive and Gaussian, the above equations will
be reduced to

D11
k−1 = FTQ−1F D12

k−1 = −FTQ−1

D22
k−1 = Q−1 + E

{
HT

k R−1
k Hk

}
, (9)

where

Hk =
[∇xk

hT (xk)
]T

(10)

is the Jacobian of h(x) evaluated at its true value xk. Unfortu-
nately the expectation in (9) has to be evaluated numerically.
The recursion is initiated by using the prior to compute Jo as

Jo = −E
{
∇xo

[∇xo
log p (xo)]

T
}

= P−1
o . (11)

III. EXAMPLES

This section is composed of two examples covering the
temporal tracking of surface-based ducts. Throughout the
examples issues such as the performance limitations, filter
efficiencies, divergence characteristics, and CPU time com-
parisons are addressed.

A. Case Study I: Temporal Tracking of a Range-Independent
Surface-Based Duct

This example is used to compare the tracking performances
of the EKF, UKF and PF and compute their efficiencies using
the numerically computed CRLB. The range-independent SBD
is selected from the environmental library (previously known
as the Ducting Climatology Summary (DCS) database) of the
Advanced Refractive Effect Prediction System (AREPS) [17].
The Bahrain radiosonde station in the Persian Gulf is used
for the simulation (Fig. 1). The station, average environment,

TABLE I

CASE STUDY I: COMPARISON OF TRACKING ALGORITHMS AND CRLB

RADIOSONDE STATION BAHRAIN, PERSIAN GULF

Station Environment

Longitude 50o36′E Duct Type Surface-based duct

Latitude 26o18′N Month Mar/Apr/May average

Elevation 2 m Time Day/night average

Marsden Square 103 Occurrence 59% day / 75% night

Radar c1 0.500 M-units/m

Frequency 2.84 GHz c2 -0.221 M-units/m

Altitude 15 m h1, h2 43 m, 77 m

Simulation Parameters

Monte Carlo runs 100

Track length 30 min – 1 measurement/min

Initial covariance Po = diag[0.012, 0.012, 32, 32]

State noise covariance Q = diag[0.0032, 0.0032, 12, 12]

Measurement noise log–normal, R = diag[52 dB2]

radar and simulation parameters are given in Table I, where
the layer thicknesses and slopes are defines as in Appendix I.
The fact that only SBD (excluding evaporative and elevated
ducts) is present an average of 67% of the time clearly makes
estimation and tracking of atmospheric ducts a high priority
in Persian Gulf and many other regions of the world. The
same frequency as that of the Space Range Radar (SPANDAR)
employed in the Wallops island experiments [1], [9] is used.
The height is set to 15 m, a typical value for a naval radar.

The CRLB is calculated using Monte Carlo analysis. 100
environmental parameter trajectories are created from the state
equation (1) with starting values randomly selected from the
prior density. D22

k−1 is then calculated using

D22
k−1 = Q−1+

1
NMC

NMC∑
j=1

∇h
(
xj

k−1

)
R−1

[
∇h

(
xj

k−1

)]T

.

(12)
Each of these environments is also tracked using the EKF,
UKF and PF. The results are given in Fig. 1 and Table II. The
performance metrics are defined as follows:

ηk(i) = J−1/2
k (i, i) / RMSk(i) (13)

RTAMS(i) =




k2∑
k=k1

NMC∑
j=1

(
x̂j

k(i) − xj
k(i)

)2

(k2 − k1 + 1)NMC




1/2

(14)

Improv. =
RTAMSEKF − RTAMSfilter

RTAMSEKF
(15)

where xj
k(i) is the ith parameter of the true state vector x at

time index k for the jth MC run, RMSk and ηk are the root
mean square error and the filter efficiency at step k, RTAMS
is the root time averaged mean square error [14] calculated
for the interval [k1,k2], and (15) is used to calculate the
performance improvement of a filter with respect to the EKF.
RTAMS is calculated for the 5-30 min. interval so that the
initial variation will not affect the performance calculations.



TABLE II

PERFORMANCE COMPARISON FOR CASE STUDY I

RMS Error After 30 min. RTAMS Average %

Method c1 c2 h1 h2 Avg. Error Average c1 c2 h1 h2 Improvement

(M-units/km) (m) (%) η (%) (M-units/km) (m) Over EKF

EKF 12.7 20.5 3.36 11.01 14.2 8 11.7 18.8 3.03 9.48 -

UKF 8.5 16.0 2.33 7.64 9.9 12 6.5 11.9 1.87 6.98 36

PF−200 5.5 2.6 0.71 3.72 4.7 30 4.9 2.7 0.73 3.50 71

PF−1000 3.1 1.9 0.38 0.97 2.3 58 3.6 2.2 0.59 1.96 79

PF−5000 2.0 1.7 0.23 0.96 1.6 77 2.9 2.2 0.46 1.20 84√
CRLB 2.0 1.0 0.21 0.57 1.4 100 2.1 1.0 0.24 0.67 90
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Fig. 1. Case study I for comparison of the tracking algorithms. Location of the station (×), average spring M-profile, evolution of 100 Monte Carlo
trajectories, RMS errors of the EKF (O), UKF (�), and 200-particle PF (�) obtained from the tracking performance of these trajectories along with the
square root of the posterior CRLB (dashed).

The results in Fig. 1 show that Kalman filters suffer due to
their inherent approximations. The measurement equation is
highly nonlinear for most of the state space and linearization
using the Jacobian clearly does not work for this scenario.
Since the UKF does not assume linearity its enjoys an average
of 36% improvement over the EKF results. However, a pure
Gaussian assumption and high nonlinearity also results in poor
UKF estimates with only 12% efficiency. All the particle filters
used in this case perform better than both of the Kalman
filters. The PF with 5000 particles has an average error of

only 1.6%, very close to the value of 1.4% predicted by the
CRLB. It is 77% efficient and enjoys a 84% improvement over
the EKF. However, it should be noted that PF requires orders
of magnitude more of CPU time. The PF-200 required a factor
of 10 more CPU time than that of the UKF for this scenario.
Hence, the PF is a costly alternative and as a general rule
should be avoided as long as the Kalman frameworks provide
reasonable tracking.

Atmospheric parameters can sometimes fluctuate abruptly.
This requires increasing Qk to compensate for the sudden
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Fig. 2. Case Study II: Temporal evolution of the range-independent duct.

jumps. Initial tests showed that the Kalman structures are very
sensitive to these sudden moves and diverge if the sudden jump
is large enough, even after Qk is increased, whereas particle
filters showed robust tracking performance. Therefore, as a
general conclusion it can be said that SBD tracking requires
particle filters even though they are computationally expensive.

B. Case Study II: Divergence in Surface-Based Duct Tracking

This example studies the divergence problem in SBD track-
ing using a deterministic trajectory. The height and slope
values (Fig. 2) and their variations are selected similar to the
helicopter measured real M-profiles obtained in the Wallops
island’98 experiment [1]. All the radar and simulation param-
eters are kept the same as Case Study I except Q for the
layer slopes and sea surface RCS variance are taken as 10−4

M-units2/m2 and 16 dB2, respectively. This fixed trajectory
is tracked 100 times by each filter to obtain divergent track
probabilities.

The evolution of the clutter signal without the addition of
noise is given in Fig. 3. This strong nonlinearity of h(xk)
results in a high percentage of track divergence for the Kalman
filters. For this scenario, a track is declared as divergent if any
of the slope estimates for c1 or c2 has a RMS error greater
than 50 M-units/km or any of the layer thickness estimates
for h1 or h2 has a RMS error larger than 5 m for any 5
consecutive minutes. A typical track result is given in Fig. 4
for each filter type. The divergence statistics of the filters are
provided in Table III. Similar to Case Study I, the PF performs
significantly better than both Kalman filters and the UKF is
more preferable to the EKF. Actually both Kalman filters were
mostly able to follow the thickness variations but failed in
tracking the slopes which usually have more effect on the
clutter return. Interestingly the EKF RTAMS error for the layer
thickness is less than that of the UKF. However, this is more
than offset by the fact that after only 10 min, the EKF reached
a 47% divergence rate while none of the UKF runs diverged.
The PF-200 starts to diverge after 30 min. with a 17% rate
and only 1% of the PF-1000 runs failed to track the duct after
30 min.

IV. CONCLUSION

The extended and unscented Kalman and particle filters are
used for tracking the spatial and temporal evolutions of the
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TABLE III

PERFORMANCE COMPARISON FOR CASE STUDY II

Average RTAMS Divergent Track Percentage After

Method M-units/km m 10 min. 20 min. 30 min.

EKF 84.2 2.9 47 69 90

UKF 41.8 3.3 0 29 37

PF−200 27.7 0.9 0 0 17

PF−1000 16.2 0.5 0 0 1



lower atmosphere using radar clutter. The divergence statistics,
computational complexities, and tracking performances of
these filters are compared to each other using the posterior
CRLB.
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APPENDIX I
CREATION OF THE 2-D MODIFIED REFRACTIVITY PROFILE

FROM STATE VARIABLES

Surface-based ducts (SBD) are represented by the com-
monly used tri-linear M-profiles. Each tri-linear profile re-
quires four parameters: slope and thickness of the base (c1, h1)
and inversion layers (c2, h2). The top layer slope is taken to be
constant at 0.118 M-units/m. For range-dependent profiles, the
M-profile parameters are defined at nr range intervals and the
values at other ranges are calculated using a cubic fit. Hence,
the number of state parameters nx = 4nr. The 2-D M-profile
is calculated using the following procedure:

xk =
[
mT

1 mT
2 . . . mT

nr

]T
(16)

mi =
[
c1(ri) c2(ri) h1(ri) h2(ri)

]T
i = 1, . . . , nr (17)

M(z, r) = M0 +




c̃1z if z ≤ h̃1

c̃1h̃1 + c̃2(z − h̃1) if h̃1 ≤ z ≤ h̃2

c̃1h̃1 + c̃2h̃2 if z ≥ h̃2

+0.118(z − h̃1 − h̃2),
(18)

where M0 is the base refractivity usually taken as 330 M-
units/m, mi represent the trilinear profiles at nr different
ranges defined in the state vector, c̃1, c̃2, h̃1, and h̃2 are cubic
fitted parameters at range r.

APPENDIX II
MEASUREMENT EQUATION – PROPAGATION MODEL

The measurement equation provides yk, the radar clutter
power in dB, for an environment described by the state vector
xk. First the field is propagated in range using the following
recursive split-step FFT PE formula [18]

uk(z, r + �r) = exp
[
iko�rM(xk)10−6

]
× (19)

F−1
{

exp
[
i�r

(√
k2

o − k2
z − ko

)]
F {uk(z, r)}

}

where uk(z, r) is the vertical electromagnetic field at range r
at step index k, ko and kz are the wavenumber and its vertical
component, �r is the range increment in PE, F and F−1 are
the Fourier and inverse Fourier transforms and M(xk) is the 2-
D M-profile M(z, r) computed in Appendix I. Following [1],
the clutter power Pc for low grazing angles can be calculated
using

Pc = cL−2(xk)rσo (20)

where c accounts for the constant terms in the radar equation,
L(xk) is the one way propagation loss obtained from the elec-
tromagnetic field uk(z, r) calculated at the effective scattering
height given as 0.6 times the mean wave height [19] and σo

is the normalized sea surface RCS.
The measurement equation (2) can be obtained by repre-

senting (20) in dB with the following definitions

yk = 10 log(Pc) wk = 10 log(σo) (21)

h (xk) = −20 log L(xk) + 10 log(cr) (22)

where the measurement noise wk is additive Gaussian since
σo is the sea surface RCS with log-normal pdf.
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[16] P. Tichavský, C. H. Muravchik, and A. Nehorai, “Posterior Cramér-
Rao bounds for discrete-time nonlinear filtering,” IEEE Trans. Signal
Processing, vol. 46 (5), pp. 1386–1396, 1998.

[17] User’s Manual for Advanced Refractive Effect Prediction System,
3rd ed., Space and Naval Warfare Systems Center, Atmospheric
Propagation Branch, San Diego, CA, April 2005. [Online]. Available:
http://www.spawar.navy.mil/sti/publications.

[18] A. E. Barrios, “A terrain parabolic equation model for propagation in the
troposphere,” IEEE Trans. Antennas Propagat., vol. 42 (1), pp. 90–98,
1994.

[19] J. P. Reilly and G. D. Dockery, “Influence of evaporation ducts on radar
sea return,” IEE Proc. Radar and Signal Processing, vol. 137 (F–2), pp.
80–88, 1990.


