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Abstract— This paper summarizes current developments in
the refractivity from clutter (RFC) techniques and describes
the global parametrization approach in estimation of the lower
atmospheric electromagnetic sea ducts. RFC uses radar clutter to
gather information about the environment the radar is operating
in. Range and height dependent atmospheric index of refraction
(M-profile) is statistically estimated from the sea-surface reflected
radar clutter. These environmental statistics can then be used
to predict the radar performance by taking multidimensional
integrals of the posterior probability density.

All of the following methods use a Bayesian framework and
use split-step fast Fourier transform based parabolic equation
approximation to the wave equation as the propagation model.
Environmental parameters are inverted using genetic algorithms,
Markov chain Monte Carlo samplers, and a hybrid genetic
algorithm - Markov chain Monte Carlo technique. The methods
are compared with respect to their estimated maximum a
posteriori accuracy, speed and ability to sample correctly from
posterior density. The inversion algorithms are implemented on
S-band radar sea-clutter data from 1998 Wallops Island, Virginia
experiment. Reference data are measured as range-dependent
refractivity profiles obtained with a helicopter. The inversions are
assessed by comparing the propagation predicted from the radar-
inferred refractivity profiles and from the helicopter profiles.

I. INTRODUCTION

Non-standard electromagnetic propagation due to formation
of lower atmospheric sea ducts is a common occurrence in
maritime radar applications. Under these conditions, some
fundamental system parameters of a sea-borne radar can sig-
nificantly deviate from their original values specified assuming
standard-air (0.118 M-units/m) conditions. These include the
variation in the maximum operational range, creation of re-
gions where the radar is practically blind (radar holes), and
increased sea surface clutter (1). Therefore, it is important
to predict the real-time environment the radar is operating in
so that the radar operator will at least know the true system
limitations and in some cases even compensate for it.

Evaporation and surface-based ducts are associated with
increased sea clutter due to the heavy interaction between the
sea surface and the electromagnetic signal trapped within the
duct. However, this unwanted clutter is a rich source of infor-
mation about the environment and can be used to determine the
local atmospheric conditions. This can be a valuable addition
to other more conventional techniques such as radiosondes,
rocketsondes, microwave refractometers and meteorological
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Fig. 1. Clutter map from the SPANDAR radar corresponding to Wallops run
12 with 0o elevation angle.

models such as the Coupled Ocean/Atmospheric Mesoscale
Prediction System (COAMPS) that give M-profile forecasts
[1]–[4]. There are also other promising techniques that can
refer the refractivity using lidar [5] and GPS [6] measurements.
In a Bayesian framework, the results of one or several of
these techniques above and regional duct statistics [7] can
be coupled with the clutter inversion to improve the overall
estimation quality. An attractive feature of inferring refractivity
from sea surface clutter is that it does not use additional hard-
ware or extra meteorological/electromagnetic measurements. It
extracts the information from the radar clutter obtained during
normal radar operation, which usually is readily available both
as a function of range, direction and time. For a fast inversion
algorithm, a near-real-time M-profile structure is obtained. For
a fast inversion algorithm, a near-real-time M-profile structure
is obtained. The need for a fast algorithm that updates the
environmental estimates at intervals of 30 min. or less is
evident from [8], where the RMS error in propagation factor
exceeds 6 dB after 30 min., due to temporal decorrelation.

Various techniques that estimate the M-profile using radar
clutter return are proposed by [9]–[15]. Most of these refractiv-



ity from clutter (RFC) techniques use an electromagnetic fast
Fourier transform (FFT) split-step parabolic equation (SSPE)
approximation to the wave equation [16], [17], whereas some
also make use of ray-tracing techniques. While [9] exclusively
concerns evaporation duct estimation, other techniques are
applicable to both evaporation, surface-based and mixed type
of ducts that contain both an evaporation section and an
surface-based type inversion layer. [15] exploits the inherent
Markovian structure of the FFT parabolic equation approxima-
tion and uses a particle filtering approach, whereas [12] uses
rank correlation with ray tracing to estimate the M-profile.

In contrast, [10], [11], [14] and [18] use global parameteri-
zation within a Bayesian framework. Since the unknown model
parameters are defined as random variables in a Bayesian
framework, the inversion results will be in terms of the means,
variances and marginal, as well as the n-dimensional joint
posterior probability distributions, where n is the number of
unknown duct parameters. This gives the user not only the
ability to obtain the maximum a posteriori (MAP) solution,
but also the prospect of performing statistical analysis on the
inversion results and the means to convert these environmental
statistics into radar performance statistics. These statistical
calculations can be performed by taking multi-dimensional
integrals of the joint PPD. [10] uses genetic algorithms to
estimate the MAP solution. However, no statistical analysis is
performed since classical GA is not suitable for the necessary
integral calculations. While [11] uses importance sampling,
[14] uses Markov chain Monte Carlo (MCMC) samplers to
perform the MC integration [19], [20]. Although they provide
the means to quantify the impact of uncertainty in the esti-
mated duct parameters, they require large numbers of forward
model runs and hence they lack the speed to be near-real-time
methods and are not suitable for models with large numbers
of unknowns.

A hybrid GA-MCMC method based on the nearest neigh-
borhood algorithm (NA) [21] has been implemented in [18].
It can be classified as an improved GA method, which
improves integral calculation accuracy through hybridization
with a MCMC sampler. Since the number of forward model
samples is based on GA, it requires fewer samples than a
MCMC, enabling inversion of atmospheric models with higher
complexity with larger number of unknowns.

II. THEORY

To formulate the problem, a Bayesian framework is adopted,
where the M-profile model and the radar measured sea-surface
clutter data are denoted by the vectors m and d, respectively.
An electromagnetic FFT-SSPE is used to propagate the field in
an environment given by m and obtain synthetic clutter returns
f (m). Since the unknown environmental parameters m are
assumed to be random variables, the solution to the inversion is
given by their joint posterior probability distribution function
(PPD or p(m|d)). More theory can be found in [10], [11],
[14], [18], each one corresponding for one of the methods
summarized here. Bayes’ formula can be used to write the
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Fig. 2. An observation d is mapped into a distribution of environmental
parameters m that potentially could have generated it. The environmental
parameters are then mapped into the usage domain u.

PPD as

p(m|d) =
L(m)p(m)∫

m′ L(m′)p(m′)dm′ , (1)

where p(m) is the prior probability distribution function
(pdf) of the parameters. Any information obtained from other
methods and regional duct statistics can be incorporated in this
step as a prior belief. Since this paper investigates the ability to
infer M-profiles using RFC, a uniform prior is used. However,
it is possible to include statistical meteorological priors from
studies such as [7], for some of the parameters (e.g. the duct
height).

Assuming a zero-mean Gaussian error between the mea-
sured and modeled clutter, the likelihood function is given by

L(m) = (2π)−NR/2|Cd|−1/2 (2)

× exp
[
− (d − f(m))TC−1

d (d − f(m))
2

]
,

where Cd is the data error covariance matrix, (·)T is the
transpose and NR is the number of range points used (length
of the data vector, d). Further simplification can be achieved
by assuming that the errors are spatially uncorrelated with
identical distribution for each data point forming the vector
d. For this case, Cd = νI, where ν is the variance and I the
identity matrix. Then the equation can be simplified to

p(m|d) ∝ p(m)
[

NR

2πeφ(m)

]NR/2

(3)

φ(m) = (d − f(m))T (d − f(m)) . (4)

Having defined the posterior density, any statistical informa-
tion about the unknown environmental and radar parameters
can now be calculated by taking these multi-dimensional
integrals:

µi =
∫

. . .

∫
m

′
ip(m

′ |d)dm
′

(5)

σ2
i =

∫
. . .

∫
(m

′
i − µi)2p(m

′ |d)dm
′

(6)

p(mi|d) =
∫

. . .

∫
δ(m

′
i − mi)p(m

′ |d)dm
′

(7)

where µi, σ2
i , p(mi|d) are posterior means (Bayesian min-

imum mean square error (MMSE) estimate), variances, and
marginal PPD’s of M-profile parameters.



Probability distributions of parameters of interest to a radar
operator are calculated in a similar fashion [11]. Assume that u
is such a parameter-of-interest (e.g. propagation factor), which
naturally is some function u = g(m) of the radar environment
m (Fig. 2). A statistical analysis of u can be carried out by
computing the following MC integration

p(u|d) =
∫

. . .

∫
δ(u − g(m

′
))p(m

′ |d)dm
′
. (8)

III. SELECTION OF SAMPLER/OPTIMIZER

The question is about how to efficiently compute these
multi-dimensional integrals and MAP solutions. The following
list summarizes the techniques that have been used in previous
work:

• Genetic algorithms (GA) is used in [10] to successfully
compute the MAP solution. Among all the following
methods GA is the fastest method in obtaining the MAP.
However, it fails to obtain PPD so no integral calculation
can be performed.

• Importance sampling (IS) is used in [11]. This allows
computation of the necessary posterior integrals without
needing to sample from the PPD. It is accurate as long as
the prior is not significantly different from the PPD since
it gathers the samples necessary for MC integration from
the prior.

• Markov chain Monte Carlo (MCMC) samplers are used in
[14]. MCMC allows sampling directly from the PPD and
hence provides the best estimates of the integral required.
However it requires a lot of samples to converge.

• Hybrid GA–MCMC method is used in [18]. This tech-
nique is a hybrid between the fastest and the most
accurate technique, trying to get reasonably integral cal-
culations using much less forward model runs, typically
on the order of a GA run. It uses Voronoi decomposition
to approximate the PPD using a typical GA run and then
run a MCMC on this approximate PPD minimizing the
parabolic equation calculations.

The hybrid method can be summarized by the following
steps:

1) GA: Run a classical GA, minimizing the misfit φ(m),
save all the populations (sampled model vectors) and
their likelihood values. MAP solution is obtained as the
best fit model vector.

2) Voronoi Decomposition and Approximate PPD: Using
the GA samples {mi} and their corresponding p(mi|d)
construct the Voronoi cell structure and create the ap-
proximate PPD, p̂(m|d).

3) Gibbs Resampling: Run a fast GS on the approximate
PPD. No forward modeling is needed.

4) MC Integral Calculations: Calculate the Bayesian mini-
mum mean square estimate (MMSE), variance and pos-
terior distributions of desired environmental parameters,
statistics for the end-user parameters, such as propaga-
tion loss L, propagation factor F, coverage diagrams,
statistical radar performance prediction, such as the
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Fig. 3. Four-parameter range-independent tri-linear M-profile.

probability of detection and false alarm using (5) – (7),
and (8) using MC integration.

IV. EXAMPLES

Three examples are presented in this section. The first shows
how to estimate MC integral using the importance sampling,
the second compares GA, MCMC and the hybrid methods and
the last one analyzes a range-dependent profile with a high
number of parameters using the hybrid method.

The first example is created using a range-dependent 8
parameter surface-based duct formed using 2 tri-linear M-
profiles at 0 and 100 km, where a typical tri-linear profile
is shown in Fig. 3. It is taken from [11]. The unknown model
parameters are the slope and height of the base layer (c1 and
h1) and the slope and thickness of the inversion layer (c2 and
h2). Since the RFC is insensitive to the M-profile parameters
above the duct, the top layer slope corresponds to standard
atmosphere. The data are generated based on the helicopter
measured range-dependent refractivity profile (run 7) for the
Wallops 98 experiment. Then samples are drawn from the prior
density given in Fig. 4 and their likelihood are computed using
(2). Any required parameter can now be computed by using
these likelihood values as appropriate weight factors in integral
calculations. 1-D and 2-D PPD estimate is given in Fig. 5.
Note that any integral using importance sampling will be less
accurate if prior is too different with respect to the PPD such
as the third parameter (slope 1) in this examples.

The second example is [18] a 4 parameter surface-based
duct. This example compares GA, MCMC and the hybrid
methods in terms of their computational complexity, MAP
accuracy, and PPD estimation accuracy. It computes the true
values using exhaustive search to provide a benchmark. 1-
D marginal model parameter PPD’s are given in Fig. 6 for
(a) exhaustive search, (b) Metropolis-Hastings sampler (con-
ventional MCMC), (c) pure GA, and (d) hybrid GA-MCMC
method, respectively. Exhaustive search results are assumed
to have a dense enough grid to give the true distributions
and will be used as the benchmark. As expected, the Gibbs
sampler results are close to the true distribution but requires
70x103 (70k) samples to converge. The GA uses 15k samples
(5k is enough to get the MAP solution). The distributions are
clearly not accurate, however, as a global optimizer it does
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Fig. 4. Prior probability distribution for the base height and slope at 0
and 100 km range. Along the diagonal the marginal for each parameter is
plotted, and above the diagonal show the 2D marginals (red indicates higher
probability). The distributions below the diagonal are symmetric with those
above.

its job of minimizing φ(m) and obtaining MAP very fast.
The GA sample histograms presented here are not unique.
Every GA run will result in a different set of curves, without
any specific sampling density ps(m|d). The hybrid method
actually uses the 15k GA samples obtained in (c) to perform
the Voronoi decomposition. When a fast Gibbs resampling is
performed on the approximate PPD, results comparable to the
conventional MCMC solution is obtained. A Gibbs resampling
of just 20k samples is sufficient to calculate the MC integral
accurately (40k is used in (d)). It should be noted that (d) is
extracted using the forward model samples obtained in (c).
All information about the search space comes from the GA
samples and the hybrid method makes the information hidden
in the GA set available for MC integration through Voronoi
decomposition.

The final example is taken from [18]. To further demon-
strate the capabilities and limitations of the hybrid method, a
range-dependent environmental model comprising of sixteen
parameters is employed during the inversion of the 1998
Wallops island experiment data. A range dependent inversion
is achieved by defining vertical, four-parameter tri-linear M-
profiles at certain ranges (0, 20, 40, and 60 km) and linearly
interpolating the parameters in between. Slopes for both the
first and the second layers can be negative and positive to give
more flexibility in the modeling. Hence, they are only referred
to by their layer numbers. Layer slopes at different ranges can
vary independent of each other. On the contrary, a Markovian
structure is used for the layer heights with a maximum of 30
m variation relative to the height value at the previous range.
The height values except for the first profile are difference
in meters between the layer thicknesses of two consecutive
profiles, so they can be ±30 m.
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Fig. 5. Posterior probability distribution for the base height and slope at
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Only 13 out of 16 parameters are given in Fig. 7(a). The
height parameters of the second layers m8, m12, and m16 are
omitted, as they are not important. Since clutter is mostly due
to the EM signal trapped inside the duct, it mostly contains
information about the parameters inside the duct, making
the second layer heights poorly determined except for very
close ranges. To demonstrate this, normalized error function
φ(m)/φ(mMAP ) for various conditional planes are given in
Fig. 7(b). These curves are obtained by fixing other parameters
to their MAP values and calculating φ(m) while varying only
two parameters at a time. Except for the bottom plots all the
plots show quickly varying complex patterns whereas the last
ones are flat since the horizontal axis for these is either m8,



Fig. 7. Marginal and conditional distributions. (a)1-D (diagonal) and 2-D (upper diagonal) posterior probability distributions in terms of percent HPD, for
the range-dependent SPANDAR data inversion. 13 parameters (m1−7, m9−11, m13−15) out of 16 are given . Vertical lines in the 1-D plots show the GA
MAP solution. (b) Normalized error function for various conditional planes. Each 2-D plot is obtained by fixing the other 14 parameters to their MAP values.

m12, or m16 (second layer heights). Some plots such as m1 vs.
m12 have zero likelihood regions since the height parameters
which are ∆h at 20, 40, and 60 km cannot be less than values
that would make the actual layer thickness negative.

The environmental statistics can be projected into statistics
for user parameters (see Section II). One typical parameter of
interest to an end-user is the propagation factor F. The results
in Fig. 8 are obtained from the parameter PPD in Fig. 7. It
shows the PPD for F at ranges (a) 18, (b) 40, and (c) 60 km.
Contour plots show the PPD of F for height values between
0–200 m, with the MAP solution (dashed white). Horizontal
lines represent the three altitudes analyzed in detail in the small
plots shown next to the color plots. Comparison of plots at
the same range and different altitudes reveals some important
aspects of RFC.

First, the propagation factor PPDs inside the duct (at 20
m) are sharper than those outside the duct (100 and 180
m). This is expected since we used the sea clutter which is
usually affected only by the lower portions of the atmosphere
to infer the environment. The PPDs do also become flatter

with increasing range. Note how the error made by using
the standard atmospheric assumption (black dashed lines)
increases with range, especially inside the duct. At [H, R] =
[20 m, 18 km] all three curves (MAP, helicopter profile, and
standard atmosphere) are almost identical whereas standard
atmospheric assumption leads to more than 40 dB error for [H,
R] = [20 m, 60 km] while MAP and helicopter profile comply
with the underlying PPD. Finally, the difference between the
helicopter profile and MAP tends to be larger outside the duct.

V. CONCLUSION

Various RFC methods has been summarized. These methods
have been used for statistical sea-borne radar performance es-
timation under non-standard propagation conditions. Statistical
refractivity-from-clutter (RFC) inversion is used to gather in-
formation about the environment, such as the range-dependent
vertical structure of the atmospheric index of refraction, and
then these environmental uncertainties are used to estimate
parameters-of-interest to be used by the radar operator.

As a forward model, a fast Fourier transform split-step
parabolic equation (FFT-SSPE) approximation to the wave
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equation was used to propagate the electromagnetic signal in
complex environments. The hybrid method uses fewer forward
model calculations than a classical MCMC while obtaining
more accurate distributions than GA. This enables inclusion of
more unknown parameters and range-dependent atmospheric
models. The capabilities of the technique were illustrated for
a sixteen dimensional range-dependent inversion.
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[19] J. J. K. Ó Ruanaidh and W. J. Fitzgerald, Numerical Bayesian Methods
Applied to Signal Processing, ser. Statistics and Computing Series. New
York: Springer–Verlag, 1996.

[20] D. J. C. MacKay, Information Theory, Inference and Learning Algo-
rithms. Cambridge, United Kingdom: Cambridge University Press,
2003.

[21] M. Sambridge, “Geophysical inversion with a neighborhood algorithm
- II. appraising the ensemble,” Geophys. J. Int., vol. 138, pp. 727–746,
1999.


