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ABSTRACT

Sparse Bayesian learning (SBL) has been used to obtain

source direction-of-arrivals (DoAs) from uniform linear array

(ULA) data. The maximum number of sources that can be

resolved using a ULA is limited by the number of sensors

in the array. It is known that sparse linear arrays such as

co-prime and nested arrays can resolve more sources than the

number of sensors. In this paper we demonstrate this using

SBL. We compute the mean squared error in source power

estimation as various parameters are varied.

Index Terms— Sparse Bayesian learning, co-prime array,

nested array, DoA estimation, compressed sensing

1. INTRODUCTION

Sparse Bayesian learning (SBL) [1, 2] is a compressive sens-

ing technique that can find sparse solutions to an underdeter-

mined linear problem. In the context of direction-of-arrival

(DoA) estimation using uniform linear array (ULA) sensor

data it has been applied to resolve nearby sources [3, 4].

A limitation of ULA data is that the maximum number of

sources that can be resolved is limited by the number of sen-

sors in the array. A Cramér-Rao based theoretical analysis of

SBL in this context has been performed in [5, 6, 7].

Recently various sparse array geometries have been pro-

posed such as Nested arrays [8] and Co-prime arrays [9, 10,

11, 12, 13] which can resolve more sources than the number

of sensors. This has been demonstrated with MUSIC [14, 15,

16] and SBL [17] using the co-array covariance. Theoreti-

cal results justifying these claims have also appeared in the

literature [16, 18].

In this paper we use SBL to directly process observation

vectors from nested and co-prime arrays. It is shown using

simulations that SBL can identify more sources than the num-

ber of sensors. A mean squared error comparison of ULA,

nested and co-prime arrays, all having same number of sen-

∗This work was supported by ONR Grant N00014-18-1-2118.

sors, is performed with respect to parameters such as number

of snapshots, number of sources and signal-to-noise ratio.

This paper is organized as follows: Section 2 gives a brief

overview of the co-prime and nested arrays. The SBL algo-

rithm is summarized in Section 3 and a pseudocode is pro-

vided for implementation. Simulations are performed in Sec-

tion 4 to study performance of SBL with respect to various

parameters. Conclusions are discussed in Section 5.

1.1. Signal Model

In the sparse signal representation framework, the lth obser-
vation snapshot yl recorded by an array with N sensors due

to impinging plane waves is given by yl = Axl + nl, where

yl ∈ C
N , xl ∈ C

M ,M is the number of grid points in which

the angle space [−90, 90] is divided, and nl is the additive

complex Gaussian noise. The sparse vector xl has at most

K � M non-zero entries corresponding to the complex am-

plitudes of the waves. The objective is to find the unknown

vector xl given the observations yl and the dictionaryA. Typ-
ically multiple (L) snapshots are usedY = [y1, . . . ,yL].

The columns of dictionaryA are composed of the steering

vectors corresponding to theM discrete angles {θ1, . . . , θM}.
For a narrow-band signal of wavelength λ and sensor loca-
tions given by {d1, . . . , dN}, themth column is

am = [1, ej2π
d1
λ sin(θm), . . . , ej2π

dN
λ sin(θm)]T . (1)

2. CO-PRIME AND NESTED ARRAYS

A ULA consists of uniformly spaced sensors with locations

dn = (n − 1)d, d = 1, . . . , N where d is the uniform spac-

ing. A co-prime array consists of two ULAs with N1 and N2

sensors such that N1 and N2 are co-prime (i.e. their greatest

common divisor is 1). Also let N1 > N2 without loss of gen-

erality. If d is the fundamental spacing, location of sensors in
a co-prime array is given by the following set

s ={0, dN2, . . . , (N1 − 1)dN2}
∪ {dN1, 2dN1, . . . , (2N2 − 1)dN1}. (2)
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A co-prime array has a total of (N1 + 2N2 − 1) sensors.
A nested array also consists of two ULAs, the dense ULA

portion withN1 sensors (spacing d), and the second ULA por-
tion with N2 sensors (spacing (N1 + 1)d). The set of sensor
locations for a nested array is given by

s ={d, 2d, . . . , N1d}
∪ {(N1 + 1)d, 2(N1 + 1)d, . . . , (N1 + 1)dN2}. (3)

A nested array consists of a total of (N1 +N2) sensors. For a
detailed discussion on co-prime and nested arrays refer [8, 9].

An advantage of co-prime and nested arrays is that they can

detect more sources than the number of sensors. Typically the

spacing d is chosen to be d = λ
2 .

3. REVIEW OF SPARSE BAYESIAN LEARNING

The multi-snapshot signal model is given by

Y = AX+N, (4)

where the noiseN = [n1, . . . ,nL]withnl ∼ CN (nl;0, σ
2I),

X = [x1, . . . ,xL] is the matrix of sparse weights with all the
columns sharing the same sparsity. The observations are

assumed to be independent across the snapshots. The multi-

snapshot likelihood function is written as

p(Y|X) =

L∏
l=1

p(y|x) =
L∏
l=1

CN (yl;Axl, σ
2I). (5)

Prior: In SBL, x is treated as a zero mean complex Gaus-
sian random vector with unknown diagonal covariance Γ =
diag(γ1 . . . γM ) = diag(γ). The prior model is given by

p(X) =
L∏
l=1

p(xl) =

L∏
l=1

CN (xl;0,Γ). (6)

Evidence: For Gaussian prior and likelihood, the evidence
p(Y) is Gaussian and given by

p(Y) =

∫
p(X)p(Y|X)dX =

L∏
l=1

CN (yl;0,Σy), (7)

whereΣy = σ2I+AΓAH . The SBL approach is to estimate

the diagonal entries of Γ by maximizing the (log) evidence

(γ̂1 . . . γ̂M ) = arg max
γ

{
−

L∑
l=1

yH
l Σ−1

y yl − Llog|Σy|
}
.

Differentiating and equating the derivatives to zero gives the

fixed point update rule [1, 2, 4]

γnewm = γoldm
1

L

||YHΣ−1
y am||22

aHmΣ−1
y am

(8)

= γoldm
Tr[SyΣ

−1
y amaHmΣ−1

y ]

aHmΣ−1
y am

(9)

where Sy = 1
LYYH is the sample covariance matrix (SCM)

and Tr[·] denotes the trace operator for a matrix.
Using stochastic likelihood we can formulate a noise vari-

ance update rule [4]. But this noise estimate is not valid for

more sources than sensors (K ≥ N). Hence to keep simula-
tions simple, in this paper it is assumed that the noise is known

exactly and we focus on estimating γ. The pseudocode of the
SBL algorithm is given in Algorithm 1.

Algorithm 1 Sparse Bayesian Learning

1: Parameters: ε = 10−3, Nt = 1200
2: Input: Y,A, σ2

3: Initialization: γoldm = 1, ∀m
4: for i = 1 to Nt

5: Compute: Σy = σ2IN +AΓoldAH

6: γnewm update ∀m using (9)

7: If
||γnew−γold||1
||γold||1 < ε, break

8: γold = γnew, Γold = diag(γold)
9: end

To resolve more sources than the number of sensors, SBL

Algorithm 1 can directly be applied to observations from co-

prime and nested arrays. This is possibly because from (9)

the update rule depends on the sample covariance matrix Sy

which has more diversity than directly using the observations

Y. The dimensions of the covariance matrices required by
SBL are O((N1 +N2)× (N1 +N2)).

By comparison, MUSIC based on direct SCM can only

find up to O(N1 +N2) sources as there are at most O(N1 +
N2) eigenvalues. It has been demonstrated that MUSIC [14]
with co-array based covariance can resolve more sources than

the number of sensors. This requires construction of a higher

dimensional covariance matrix of size O(N1N2 × N1N2)
from the smaller O((N1 + N2) × (N1 + N2)) direct SCM.
SBL does not rely on eigendecomposition and is thus able

to extract higher number of sources from the smaller, direct

SCM itself. Alternately, a covariance based LASSO [19]

could also recover more sources but the computational costs

would be higher than those of SBL (see [4], Fig.3).

4. SIMULATIONS

4.1. Gram matrices

In simulations we apply SBL to measurements obtained from

three array geometries: uniform linear array (ULA), co-prime

array, and nested array. All three arrays have the same number

of sensors, N = 9. To achieve this we construct the co-prime
array with N1 = 4, N2 = 3 and nested array with N1 =
5, N2 = 4. The sensor positions for the three cases are given
in Table 1. We use d = λ

2 where λ is the signal wavelength.
The corresponding Gram matrices |AHA| for each of the

arrays is shown in Figure 1. The angle space [−90, 90] is
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discretized using a grid of size M = 44 giving a resolu-
tion of Δθ = 180

43 ∼ 4◦. We note that due to the specific
sensor arrangement, co-prime and nested arrays have larger

aperture than ULA for the same number of sensors. In exam-

ples the ULA, co-prime and nested arrays have apertures of

8d, 20d and 23d respectively. Though co-prime and nested ar-
rays have much larger apertures than ULA, they do not cause

aliasing (for the same number of sensors, the aperture of ULA

cannot be further increased without causing aliasing).

Array Sensor positions Aperture

ULA {0, 1, . . . , 8}d 8d

Co-prime {0, 3, 6, 9, 4, 8, 12, 16, 20}d 20d

Nested {1, 2, 3, 4, 5, 6, 12, 18, 24}d 23d

Table 1: The three arrays used in simulations along with the
location of the sensors and the array aperture.
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Fig. 1: Gram matrices |AHA| for the three array configura-
tions: ULA, Co-prime, and Nested. All the arrays have same

number of sensors N = 9 with grid sizeM = 44.

4.2. Resolving more sources than sensors

The SBL algorithm in Section 3 is applied for DoA estima-

tion. We simulate observations assuming multiple sources

with equal amplitudes. The angle resolution is Δθ ∼ 4◦ us-
ing a grid of sizeM = 44. The sources are always assumed
to be on one of the grid points.

The estimates γ̂ from a typical run of SBL are shown

in Figure 2a for the three arrays and three different sparsity

values, i.e. K = 3, 6, 12 sources. Data is processed using
L = 100 snapshots with an SNR of 20 dB. The true value
of γ is 1 at its non-zero location. The co-prime and nested
arrays can resolve all the DoAs even when more sources are

present than the number of sensors (K = 12, N = 9), while

(a) Plot of γ
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(b) Plot of γmean
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Fig. 2: (a) A typical γ at convergence for ULA, co-prime, and
nested arrays. All arrays have N = 9 sensors. L = 100 and
SNR is 20 dB. (b) Mean γ over 1000 Monte Carlo runs.

the solution for ULA is not sparse. The mean of γ over 1000
Monte Carlo (MC) runs is shown in Figure 2b.

4.3. Mean squared error

The performance of SBL algorithm processing measurements

from different array types can be quantified using the mean

squared error (MSE). The MSE is calculated as

MSE(γ) =
1

Nsim

1

M

Nsim∑
i=1

M∑
m=1

(γi,m − γ̂i,m)2 (10)

where γi and γ̂i are the true and the estimated γ for the ith
MC simulation run, Nsim is the number of MC runs. When

expressed in log scale we have MSE(dB) = 10 log10(MSE).
Figure 3 plots the aboveMSE of γ as a function of number

of snapshots forK = 6, 9, 12 sources. The number of sensors
isN = 9 and noise is added at an SNR of 20 dB. The MSE is
highest for ULA in all the cases. ForK = 6, 9 both co-prime
and nested array have similar error. The nested array has the

least error forK = 12.
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Fig. 3: MSE (γ) vs L for ULA, co-prime and nested arrays.
All arrays have N = 9 sensors and SNR is set to 20 dB.

Figure 4 shows the MSE as the SNR is varied in the sim-

ulation. For K = 6 all three arrays have very similar MSE
performance. On increasing the number of sources to K = 9
the ULA MSE significantly degrades as it cannot resolve all

the sources. Further increasing K = 12 gives lowest MSE
for nested array, followed by co-prime array and ULA. This

is also confirmed by the plots of γmean in Figure 2b.

We also compute MSE as a function of the number of

sources (K). For this simulation the number of snapshots L =
100 is fixed and SNR is selected from 0, 20, 40 dB as seen in
Figure 5. As observed from previous simulations, the increas-

ing order of MSE is nested < co-prime < ULA.
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Fig. 4: MSE (γ) vs SNR for ULA, co-prime and nested ar-
rays. All arrays have N = 9 sensors and L = 100 snapshots.

We now consider the root MSE (RMSE) of DoA estima-
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Fig. 5: MSE (γ) vs K for ULA, co-prime and nested arrays.
All arrays have N = 9 sensors and L = 100 snapshots.

tion. The DoAs are computed as the location of the strongest

K peaks in γ. The Cramér-Rao bound (CRB) for DoA esti-
mation for the case K > N is given in [16], Eq.(19). The

grid separation is Δθ = 0.5◦ givingM = 359. SNR is 0 dB,
K = 12, and 100 MC runs are performed. Figure 6 plots the
DoA RMSE vs snapshots (L) for co-prime and nested arrays.
The corresponding CRB is also shown. 1
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Fig. 6: DoA RMSE/CRB vs L for co-prime and nested arrays.
Number of sensors N = 9,K = 12 sources, and SNR 0 dB.

5. CONCLUSIONS

SBL is able to resolve more sources than number of sensors

when measurements from sparse linear arrays such as co-

prime and nested arrays are processed. The mean squared er-

ror performance was studied by varying the parameters: num-

ber of snapshots, SNR, and number of sources. For the same

number of sensors, the MSE is lowest for nested array, fol-

lowed by co-prime array, and ULA.

1We are thankful to Y. Qin [17] for providing CRB MATLAB code.
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