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ABSTRACT

Cross-correlating ocean noise is a potential alternative to using ac-
tive sources to monitor and study ocean environments. However,
directional sources in the medium (usually ships) often introduce a
bias in the cross-correlations, making the travel time estimates un-
reliable. Here, we use recent results in random matrix theory for
the eigenvalue density of isotropic noise sample covariance matrices
to separate the directional noise from the diffuse noise field. The
eigenvalues obtained from ocean data agree well with the theoreti-
cal results. Beamforming on the diffuse noise components reveals a
fairly spatially isotropic nature for the noise field, which fits the as-
sumption. The cross-correlations using the diffuse noise field alone
converge to the expected travel times (i.e., unbiased estimates) and
are stable temporally.

Index Terms— Passive acoustics, environment monitoring,
isotropic noise, sample covariance matrix, eigenvalue density

1. INTRODUCTION

In recent years, it has been demonstrated that cross-correlations of
noise fields in the environment can be used to obtain travel time and
multi-path information [1–5]. It also is possible to image remote
areas of the ocean [6, 7] and the interior of the earth [8, 9] using
diffuse noise fields, as opposed to using controlled active sources
which are both expensive and limited in resolution.

The ocean noise field has two primary components — a rich and
varied background diffuse noise field due to wind, breaking waves,
biological activities, distant shipping, etc., and a highly directional
(and often stronger) noise field due to ships and other similar anthro-
pogenic activities in the vicinity of the observing sensors. Depend-
ing on whether one wishes to monitor the changes in the environ-
ment, or the movement of the sources, the two components of the
noise field can either be beneficial or a deterrant and one of the pri-
mary challenges in working with ocean noise is to reliably separate
these.

For an N element linear hydrophone array, the sample covari-
ance matrix (SCM) is formed in the frequency domain fromM snap-
shot vectors (i.e., the Fourier coefficients of the data observation vec-
tor at a particular frequency f ), xm(f), m = 1, . . . ,M as

R̂(f) =
1

M

M∑
m=1

xm(f) xHm(f). (1)

The eigendecomposition of R̂(f) gives the eigenvalues λ̂1(f) ≥
· · · ≥ λ̂N (f) and eigenvectors v̂1(f), . . . , v̂N (f). Henceforth, the
dependence on f is dropped unless necessary. The objective here
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is to use statistical inference on the eigenvalues of the SCM from
ocean acoustic data, based on theoretical results from random ma-
trix theory (RMT) to separate the two components of the noise field.
Random matrix theory has applications in diverse fields, including
several in signal processing [10–14]

1.1. Statistical model for the sample covariance matrix

The mth snapshot vector, xm, is modeled as

xm = sm + nm (2)

where sm ∼ CN (0,S) is the directional noise vector from loud
sources in the environment with a covariance matrix (CM) S and
nm ∼ CN (0,Σ) is the N -dimensional Gaussian diffuse noise vec-
tor with a CM Σ. From the independence of sm and nm, the true
covariance matrix of xm can be decomposed as

R = S + Σ (3)

To model the effect of a few loud and directional signals, we as-
sume that the rank of S, say K, is small compared to the rank of Σ,
i.e. K � rank(Σ), and that the K non-zero eigenvalues of S are
all larger than the eigenvalues of Σ and manifest in the K largest
eigenvalues of the SCM.

The objective is to separate the components of the SCM R̂ from
its eigenvalues and eigenvectors as

R̂ =

K∑
k=1

λ̂k v̂k v̂Hk +

N∑
k=K+1

λ̂k v̂k v̂Hk

= R̂dir + R̂dif (4)

where R̂dir is the directional noise component and R̂dif is the dif-
fuse noise component. The eigenvalues of R̂dir, namely λ̂1, . . . , λ̂K
(and the eigenvectors), also contain a diffuse noise component in ad-
dition to the directional noise component and hence the separation
of R̂ exactly into Ŝ and Σ̂ is not possible. In order to do so, we first
present results from random matrix theory that describe the behavior
of the eigenvalues of the SCM when R̂ = R̂dif = Σ̂, assuming the
true noise CM Σ to be spatially isotropic.

2. SPATIALLY ISOTROPIC NOISE FIELDS

The coherence function [15] of the noise recorded on two sensors
in a 3D isotropic noise field is Γ = sinc(2β), where sinc(x) =
sin(πx)/(πx) and β is the ratio of the spacing between the sensors
to the wavelength under consideration (β = f∆x/c, where f is the
frequency, ∆x is the spacing between the sensors, and c is the speed
of wave propagation in the medium).
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2.1. Asymptotic eigenvalues of the isotropic noise CM

For a linear array of N equidistant sensors, the elements of the co-
variance matrix (CM) of the noise field (normalized to unit power
on each sensor) are given by Σij = sinc (2β|i− j|), which is a
symmetric Toeplitz matrix. Thus, the spatial correlations are only
dependent on β (or equivalently, on f ) and the separation |i− j|.

It was shown in [14] that there are at most two distinct eigenval-
ues (with multiplicities) for all β, given by

Λ1 =
q + 1

2β
and Λ2 =

q

2β
, (5)

with q ∈ {0, 1, . . . } such that q < 2β ≤ q + 1, and the respective
multiplicity ratios are given by

ξ1 = 2β − q and ξ2 = q + 1− 2β. (6)

A key result here is the fact that the CM is rank deficient for β <
1/2, because Λ2 = 0, i.e. the rank deficiency is inherent and not as
a result of snapshot deficiency.

2.2. Eigenvalue density of the isotropic noise SCM

The isotropic noise SCM Σ̂ is modeled as

Σ̂ =
1

M
Σ XXH (7)

where X is an N ×M random matrix whose entries are zero-mean
complex Gaussian random variables drawn from CN (0, 1). The
probability density of the eigenvalues of the noise SCM were de-
rived in [14] in the limit N,M → ∞, N/M → ν, using Stieltjes
transforms [16]. Here, we only consider ν ≤ 1, i.e. there are more
number of snapshots than the number of hydrophones.

When the ratio of spacing to wavelength β < 1/2 or is a mul-
tiple of 1/2 i.e., β = q/2, q ∈ N, the eigenvalue density is given
by,

p̂(λ) =

{
ξ1

√
(λ+−λ)(λ−λ−)

2πνλ
λ− < λ < λ+

ξ2δ(λ) otherwise
(8)

where
λ± = (

√
Λ1 ±

√
ν)2 (9)

Regardless of the value of ν, Σ̂ will be rank deficient for all β <
1/2, as ξ2 6= 0.

For all other values of β, the eigenvalue density of the SCM is
given by,

p̂(λ) =
1

π

∣∣∣∣∣Im
[(

1 + ı
√

3
)
R

2
+

(
1− ı

√
3
)
Q

2R

]∣∣∣∣∣ , (10)

where R =
3
√
P +
√
−D, Q = (a32 − 3a1)/9, D = Q3 − P 2 and

P = (−2a32+9a1a2−27a0)/54 and ai being the coefficients of x
in the polynomial

x3λ2Λ1Λ2ν
2 + x2λν [λ(Λ1 + Λ2) + 2Λ1Λ2(ν − 1)]

+ x
[
λ2 + λν(Λ2ξ1 + Λ1ξ2) + λ(Λ1 + Λ2)(ν − 1)

+Λ1Λ2(ν − 1)2
]

+ λ+ (Λ1ξ2 + Λ2ξ1) (ν − 1) = 0. (11)

when it is written in the form x3+a2x
2+a1x+a0. The dependence

on β in both Eq. (8) and Eq. (10) arises from the definitions of Λi
and ξi from Eq. (5) and Eq. (6) respectively.
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Fig. 1. (a) Eigenvalues of the data SCM R̂ (dB) from 20–100 Hz.
The solid line shows the threshold separating the directional noise
(to the left) from the diffuse noise. (b, c) Individual eigenvalues at
25 and 50 Hz due to ships (∗), diffuse noise (•) and eigenvalues not
considered [×, only in (b)]. The chosen time slices correspond to
data time 92 min in Fig. 3.

An important observation is the fact that the eigenvalue densities
have a finite support on the real line, i.e., the density is zero outside
certain bounds. The asymptotic upper bound for all β and ν ≤ 1 can
be written as

ζ(β, ν) =

{
λ+ β < 1/2

∨
β = q/2, q ∈ N

λ′+ otherwise (12)

where λ′+ is the largest root of D (as a function of β and ν).

3. INFERENCE FROM THE EIGENVALUES OF THE SCM

The statistical inference approach followed is based on [17], but us-
ing the asymptotic upper bound to threshold the eigenvalues instead
of the Tracy–Widom distributions used there. Similar algorithms are
also used in signal processing [12] for signal detection. At each β (or
frequency f ), we test sequentially the eigenvalues λ̂i of R̂ at each
step k (starting with k = 1) against the following two hypotheses
H0 (null) andH1:

H0 : The kth eigenvalue is due to diffuse noise

H1 : The kth eigenvalue is dominated by loud sources (13)

untilH0 no longer can be rejected.
Since, λ̂1 is bounded (asymptotically) by the upper bound of the

density (the effect of the tail for finite N is ignored here), i.e.,

λ̂1

σ̂2(1)
≤ ζ

(
β,
N

M

)
(14)
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Fig. 2. Empirical eigenvalue density (histogram) of the eigenvalues
of R̂dif (under the solid lines) and R̂dir (to the right) obtained from
ocean acoustic data for f = (a) 25 Hz, (b) 50 Hz and (c) 75 Hz.
The solid lines correspond to the asymptotic eigenvalue density. In
(a), only the contribution from the largest bξ1Nc eigenvalues are
shown. The dotted lines show the location of Λ1, the eigenvalue of
the isotropic noise CM. The densities for the eigenvalues of R̂dir

extend beyond the extent of the panels and is truncated for clarity.

where σ̂2(k) = (N − k + 1)−1∑N
i=k λ̂i is a normalization factor

to bring the mean of the eigenvalues, or the average power to 1 (this
is done to enable comparison with the analytical results which were
derived for unit noise power), H0 is rejected if the inequality is not
satisfied.

The routine is then repeated for the remainingN−1 eigenvalues,
this time testing λ̂2, and using σ̂2(2) (i.e., incrementing k), and so
on until we fail to reject H0. The final value of K′ = k − 1 gives
the number of eigenvalues that have been effectively identified to be
due to directional sources.

For β < 1/2, the smallest bξ2Nc eigenvalues are theoretically
zero. In practice however, they’re not exactly zero, most likely due
to sensor noise. It was observed empirically that including these
eigenvalues in the approach resulted in the lhs in (14) often being
large, leading to H0 being rejected with a greater likelihood. To
avoid this, an ad hoc correction is made by not considering these
eigenvalues for β < 1/2 and subsequently,N is replaced withN ′ =
bξ2Nc in (14) and σ̂2(k) is redefined as σ̂2(k) = Λ1(N ′ − k +

1)−1∑N′

i=k+1 λ̂i for β < 1/2.

Using the asymptotic upper bound ζ automatically sets the sig-
nificance level, α as well, which varies with β. Hence it is not pos-
sible to test at a uniform α or a chosen α.
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Fig. 3. (a,b) Conventional beamformer output (dB) at 25 and 50 Hz
respectively using R̂dir. (c,d) Same as the previous, using R̂dif . The
output in each panel is normalized by the maximum in that panel.

4. EXPERIMENTAL RESULTS

The data considered here were recorded from 13:00:00 to 15:14:24
on September 1, 2006 (UTC) on the first 30 hydrophones of a 32 el-
ement bottom mounted horizontal line array (HLA), at a water depth
of 79 m with a 15 m inter-element spacing. The experiment was part
of the Shallow Water 2006 (SW06) experiments conducted off the
coast of New Jersey. The data were filtered to 20–100 Hz and the
SCM was formed from 125 snapshots every 128 s (each snapshot
lasts 1.024 s).

4.1. Eigen-structure of the ocean noise field

Fig. 1 shows the eigenvalues across all frequencies at a single time
slice (128 s from 14:31:44). The threshold obtained from the ap-
proach in Section 3 is shown by the solid line. The dark triangle to
the lower right is the region with zero eigenvalues (theoretically) and
corresponds to invisible space. This is also observed in Fig. 1 (b),
where the eigenvalues drop past the 16th eigenvalue, which closely
corresponds to bξ2Nc, as predicted by theory (6).

It is clear that the algorithm separates the diffuse noise field from
the directional noise field quite well. The histogram of the non-zero
eigenvalues of R̂dif (Fig. 2) for the entire duration (normalized to
unit mean at each time slice) shows good agreement with the asymp-
totic density (solid line). The histogram of the eigenvalues of R̂dir

lies to the right of the diffuse noise eigenvalues.

4.2. Applicability in passive monitoring

Conventional beamforming with Hamming spatial shading was per-
formed for each block for R̂dir and R̂dif at 25 and 50 Hz as:

B(·)(θ) = wH(θ) R̂(·) w(θ), (15)
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Fig. 4. Averaged cross-correlations (dB) between phones 1 and 16
obtained using (a) R̂ and (b) R̂dif with increasing averaging time.
The maximum in each trace has been normalized to 1 for plotting
purposes in order to highlight the peaks. The result after averaging
or 136.5 min (solid) is shown above the respective plots. Dashed
lines indicate the expected travel times for the direct (inner) and the
surface reflected (outer) paths.

where w(θ) is the shaded steering vector, with the phase delay of
the nth element given by wn(θ) = exp [ı2πfnd/c sin(θ)] , n =
{0, 1, . . . , N − 1}.

Using R̂dir, the tracks from loud sources detected by the algo-
rithm are resolved with a high SNR [Fig. 3(a,b)]. Beamforming us-
ing R̂dif indicates that the diffuse noise field is fairly isotropic, with
nulls only at directions where the ships were removed.

The averaged time domain cross-correlation between phones i
and j using ocean noise is obtained as

Ĉij(t) = F−1
[〈

R̂ij(f)
〉
T

]
(16)

where t denotes the correlation time, T denotes the averaging time
and F−1 denotes an inverse Fourier transform. When the cross-
correlations are obtained from R̂ (averaged cumulatively) [Fig. 4
(a)], the arrival times are skewed by the directional sources seen in
Fig. 3 (a,b) and hence are not reliable. On the other hand, obtaining
the cross-correlations using R̂dif in (16) instead of R̂ results in a
steady estimate of the arrival time that corresponds to the expected
travel time [Fig. 4 (b)].

5. CONCLUSIONS

The theoretical distributions for the eigenvalues of an isotropic noise
field have been used to study ocean noise. It is demonstrated that us-
ing the eigenvalues of the sample covariance matrix, the ocean noise
field can be separated into a directional noise component (nearby
shipping and other sources) and a diffuse noise component. The
directional noise component provides a higher signal-to-noise ratio
in beamforming applications, which can be used to detect and ob-
serve the sources. Using the diffuse noise component in noise cross-

correlations yields stable travel time estimates, which has applica-
tions in studying and monitoring environments passively.
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