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ABSTRACT

Direction of arrival (DOA) estimation from array observa-
tions in a noisy environment is discussed. The source ampli-
tudes are assumed to be correlated zero-mean complex Gaus-
sian distributed with unknown covariance matrix. The DOAs
and covariance parameters of plane waves are estimated from
multi-snapshot sensor array data using sparse Bayesian learn-
ing (SBL). The performance of SBL is evaluated in terms of
the fidelity of the reconstructed coherency matrix of the esti-
mated plane waves.

1. INTRODUCTION

When the sources are weak and closely spaced, paramet-
ric methods are needed for high-resolution DOA estimation.
This is demonstrated for uncorrelated sources and the ap-
plication of multiple measurement vector (MMV, or multi-
snapshot) compressive beamforming [1, 2, 3, 4]. The MMV
problem was previously solved using the sparse Bayesian
learning (SBL) framework [3, 5, 6] with the maximum-a-
posteriori (MAP) estimate for DOA reconstruction.

Here, we allow the sources to be correlated. Thus, we
assume the source signals to jointly follow a zero-mean mul-
tivariate complex normal distribution with unknown covari-
ance parameters. The noise across sensors and snapshots also
follows a zero-mean multivariate normal distribution with un-
known variance. These assumptions lead to a Gaussian like-
lihood function.

The corresponding posterior distribution is also Gaus-
sian and already developed SBL approaches solve this well
when the sources are uncorrelated. We base our present
development on our fast SBL method [5, 6] which we aug-
ment to estimate the signal covariance parameters and noise
variance. Standard techniques are based on minimization-
majorization [7] and expectation maximization (EM) [3, 8, 9,
10, 11, 12, 13], though not all estimates work well. Instead,
we estimate the unknown (co-)variances using stochastic
maximum likelihood [14, 15, 16].
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1.1. Noisy sensor array observation model

For the lth observation snapshot, we assume the linear model

yl = Axl + nl, (1)

where the dictionary A ∈ CN×M is constant and known, and
the source vector xl ∈ CM contains the physical information
of interest. Further, nl ∈ CN is additive zero-mean circularly
symmetric complex Gaussian noise, nl ∼ CN (nl; 0,Σn).
Due to the circular symmetry of the noise the phase is uni-
formly distributed.

We specialize to diagonal noise covariance matrices, pa-
rameterized as

Σn = σ2I (2)

Let X=[x1, . . . ,xL]∈CM×L be the complex source am-
plitudes, xml = [X]m,l = [xl]m with m ∈ {1, · · · ,M} and
l ∈ {1, · · · , L}, at M DOAs (e.g., θm = −90◦ + m−1

M 180◦)
and L snapshots for a frequency ω. We observe narrowband
waves on N sensors for L snapshots Y = [y1, . . . ,yL] ∈
CN×L. A linear regression model relates the array data Y to
the source amplitudes X as

Y = AX + N. (3)

The dictionary A=[a1,...,aM ]∈CN×M contains the array
steering vectors for all hypothetical DOAs as columns, with
the (n,m)th element given by e−j ωdn

c sin θm (dn is the dis-
tance to the reference element and c the sound speed).

We assume M>N and thus (3) is underdetermined. In
the presence of only few stationary sources, the source vector
xl is K-sparse with K�M . We define the lth active set

Ml = {m ∈ N|xml 6= 0}, (4)

and assume Ml=M={m1,...,mK} is constant across all
snapshots l. Also, we define AM∈CN×K which contains
only the K “active” columns of A. In the following, ‖ · ‖p
denotes the vector p-norm and ‖ · ‖F the matrix Frobenius
norm.

Similar to other DOA estimators, K can be estimated by
model order selection criteria or by examining the angular
spectrum. The parameter K is required only for the noise
power in the SBL algorithm. An inaccurate estimate influ-
ences the algorithm’s convergence.



1.2. Prior on the sources

We assume that the complex source amplitudes xml are in-
dependent both across snapshots. They follow a zero-mean
circularly symmetric complex Gaussian distribution with co-
variance Γ,

p(X; Γ) =

L∏
l=1

p(xl; Γ) =

L∏
l=1

CN (xl; 0,Γ), (5)

i.e., the source vector xl at each snapshot l∈{1,···,L} is multi-
variate Gaussian with potentially singular covariance matrix,

Γ = E[xlx
H
l ] =

 Γ11 · · · Γ1M

...
. . .

...
ΓM1 · · · ΓMM

 , (6)

as rank(Γ)=card(M)=K≤M (typically K � M ). Note
that the diagonal elements of Γ represent source powers and
thus Γmm ≥ 0 for all 1 ≤ m ≤ M . When the variance
Γmm=0, then xml=0 with probability 1. The sparsity of the
model is thus controlled by the diagonal elements of Γ, and
the active setM is equivalently

M = {m ∈ N|Γmm > 0} . (7)

The SBL algorithm estimates Γ rather than the complex
source amplitudes X yielding a significant reduction of the
degrees of freedom.

1.3. Stochastic likelihood

We here derive the well-known stochastic maximum likeli-
hood function [17, 18, 19]. Given the linear model (3) with
Gaussian source (5) and noise (2) the array data Y is Gaus-
sian with covariance Σy given by

Σy = E[yly
H
l ] = Σn + AΓAH (8)

The probability density function of Y is thus given by

p(Y) =

L∏
l=1

CN (yl; 0,Σy) =

L∏
l=1

e−yH
l Σ−1

y yl

πN det Σy
. (9)

The L-snapshot log-likelihood for estimating Γ and Σn is

logp(Y; Γ,Σn) = −
L∑
l=1

(
yHl Σ−1

y yl + log det Σy

)
(10)

where we have neglected irrelevant constants. This likelihood
function is identical to the Type II likelihood function (evi-
dence) in standard SBL [9, 8, 5] which is obtained by treating
Γ as a hyperparameter. The Type II likelihood is obtained by
integrating the likelihood function over the complex source
amplitudes, cf. (29) in [5]. The stochastic maximum likeli-
hood approach is used here as it is more direct.

The parameter estimates Γ̂ and Σ̂n are obtained by maxi-
mizing the likelihood, leading to

(Γ̂, Σ̂n) = arg max
Γ�0, Σn�0

log p(Y; Γ,Σn), (11)

where Γ � 0 restricts the maximization over Γ to the domain
of positive semi-definite Hermitian matrices and Σn � 0 en-
sures that σ2 > 0 in (2). The likelihood function (10) is simi-
lar to the one derived for LIKES [7]. If Γ and Σn are known,
then the MAP estimate is the posterior mean x̂MAP

l and co-
variance Σxl

[20, 5],

x̂MAP
l = ΓAHΣ−1

y yl, (12)

Σx =
(
AHΣ−1

n A + Γ−1
)−1

. (13)

The diagonal elements of Γ control the sparsity of x̂MAP
l as

for Γmm = 0 the corresponding mth element of x̂MAP
l be-

comes 0.
It is well-known that the maximum-likelihood DOA esti-

mate for a single source in additive white Gaussian noise co-
incides with the peak finder in the conventional beamformer.
In this case, there is also no difference between maximum-
likelihood Type I and II estimates for DOA. Here, this means
that the solution to (11) coincides with the peak finder in the
conventional beamformer for the special case K = 1 formu-
lated as the angular power spectrum at DOA θm,

PCBF(θm) = aHmYYHam/L = aHmSyam . (14)

Here, the sample covariance matrix is defined as

Sy = YYH/ L. (15)

2. SOURCE COVARIANCE MATRIX ESTIMATION

For solving (11), the source signal covariance matrix Γ is es-
timated in two steps. In the first step, the active set M is
estimated iteratively. In the second step, Γ and σ2 are esti-
mated by assumingM known. After detailing the estimation
procedure, the algorithm is summarized in Table 1.

2.1. Estimation of the active set

We allow correlated sources and thus a full K×K source co-
variance ΓM�0 and derive (10) with respect to all elements
Γmm′ with pairs of active indices, cf. [17]. Using

∂Σ−1
y

∂Γmm′
= −Σ−1

y

∂Σy

∂Γmm′
Σ−1

y =−Σ−1
y amaHm′Σ

−1
y , (16)

∂ log det(Σy)

∂Γmm′
= tr

(
Σ−1

y

∂Σy

∂Γmm′

)
= aHm′Σ

−1
y am, (17)

the derivative of (10) is formulated as

∂ log p(Y;Γ,VN)

∂Γmm′
=

L∑
l=1

aHm′(Σ
−1
y yly

H
l Σ−1

y −Σ−1
y )am (18)



The solution to (11) must satisfy the necessary condition
∂ log p(Y;Γ,VN)

∂Γmm′
= 0 for all pairs of active indices, (m,m′) ∈

M×M.
First, we use (18) for the diagonal elements of Γ only

(i.e. m = m′) by ignoring the off-diagonal elements of Γ.
The diagonal Γ approximation is found iteratively by assum-
ing Γold

mm and Σy given (from previous iterations or initial-
ization), we obtain the following fixed point iteration [21] for
Γmm:

Γnew
mm =Γold

mm

(
aHmUam
aHmVam

)b
, where (19)

U =

L∑
l=1

Σ−1
y yly

H
l Σ−1

y , V =

L∑
l=1

Σ−1
y . (20)

The choice of b = 1 gives the update equation used in [20, 3,
6] and b = 0.5 gives the update equation used in [5]. Here,
we use b = 0.5.

The converged Γnew
mm = Γold

mm are solely used to estimate
the active setM by thresholding according to (7). The Γnew

mm

are ignored thereafter.

2.2. Signal Covariance and Noise Variance Estimates

In this section we estimate all elements of Γ and the noise
variance σ2. We assume that all index pairs (m,m′) for non-
zero Γmm′ are known.

When Σn = σ2IN with IN the identity matrix of size
N , stochastic maximum likelihood [11, 14, 16] provides an
asymptotically efficient estimate of σ2 if the set of active
DOAsM is known.

Let ΓM be the covariance matrix of the K active sources
estimated above with corresponding active steering matrix
AM which maximizes (10). The corresponding data covari-
ance matrix is

Σy = σ2IN + AMΓMAH
M. (21)

Note that,the data covariance matrices (8) and (21) are identi-
cal. Following [15], we continue from (18),

∂ log p(Y;γγγγγ,Σn)

L ∂Γmm′
= aHm

(
Σ−1

y SyΣ−1
y −Σ−1

y

)
am′ (22)

= aHmΣ−1
y (Sy −Σyl

) Σ−1
y am′ = 0, (23)

for all pairs of active sources (m,m′ ∈ M). Now we use
range(Σ−1

y AM) = range(AM) and Eq.(23) simplifies to

aHm (Sy −Σy) am′ = 0, ∀m,m′ ∈M . (24)

This is Jaffer’s condition ([15]:Eq.(6)), i.e.,

AH
M (Sy −Σy) AM = 0, (25)

which we enforce at the optimal solution (ΓM, σ
2). Jaffer’s

condition follows from allowing arbitrary correlations among

the source signals, i.e. when the Γ matrix is not restricted to
be diagonal. Substituting (21) into (25) gives

AH
M
(
Sy − σ2IN

)
AM = AH

MAMΓMAH
MAM. (26)

This suggests the signal covariance estimate

Γ̂M = A+H
M
(
Sy − σ2IN

)
A+
M, (27)

where A+
M=(AH

MAM)−1AH
M. Let us then define the pro-

jection matrix onto the subspace spanned by the active steer-
ing vectors

P = AMA+
M = AM(AH

MAM)−1AH
M = PH = P2.

(28)
Left-multiplying (26) with A+H

M =AM(AH
MAM)−1 and

right-multiplying it with A+
M=(AH

MAM)−1AH
M, we obtain

PSyPH − σ2PPH = PAMΓMAH
MPH = AMΓMAH

M

= Σyl
− σ2IN . (29)

Evaluating the trace, using tr
(
PPH

)
=K and tr

(
PSyPH

)
=

tr(PSy), gives

σ2 =
tr[(Sy −PSy] + ε

N −K
≈ tr[(IN −P)Sy]

N −K
= σ̂2, (30)

where we have defined ε=tr[Σyl
−Sy].

The above approximation motivates the noise power esti-
mate which is error-free if tr[Σy]=tr[Sy], unbiased because
E[ε] = 0, consistent since also its variance tends to zero for
L→∞ [22], and asymptotically efficient as it approaches the
CRLB for L→∞ [23]. Note that, the estimate (30) is valid
for any number of snapshots, even for just one snapshot.

3. EXAMPLES

We carry out simulations to assess the performance of the al-
gorithm in Table 1. We consider a scenario with a uniform
linear sensor array with N = 20 elements and half wave-
length spacing. Three plane waves are arriving (K = 3).
Two of the plane waves are closely spaced arriving approx-
imately from broadside and the third wave arrives approxi-
mately from endfire direction. The corresponding directions
of arrival are θ1 = −3◦, θ2 = 2◦, and θ3 = 75◦. The asso-
ciated three complex-valued amplitudes are jointly Gaussian
with zero mean and covariance matrix

ΓM =

 16 Γ12 Γ13

Γ12 169 Γ23

Γ13 Γ23 100

 . (31)

We investigate two extreme cases in the simulations: uncor-
related plane waves (modeled by Γmm′ = 0 for m 6= m′)
and fully correlated plane waves (modeled by Γmm′ =√

ΓmmΓm′m′ for m 6= m′).



0 Initialize: Γnew = diag[AHSyA]

Σnew
n = σ̂2I using noise power estimate (30)

εmin = 0.001, ε = 2εmin, j = 0, jmax = 100

1 while (ε > εmin) and (j < jmax)

2 Γold =Γnew, Γ = Γold, Σold
n = Σnew

n

3 Σy = Σold
n + AΓAH (8)

4 Γnew
mm = calculate update based on Γold

mm (19)

5 M={m ∈ N|K largest peaks in Γnew
mm}

={m1, . . . ,mK} (7)

6 AM = (am1
, . . . , amK

), P = AMA+
M

7 σ̂2 = use noise power estimate (30)

8 ε = ‖γγγγγnew − γγγγγold‖1/‖γγγγγold‖1, j=j + 1

9 Γ̂M = A+
M(Sy − σ̂2IN )A+H

M (27)

10 Output:M, Γ̂M, σ̂2

Table 1. SBL Algorithm for correlated sources.

The dictionary A defined in (3) consists of M = 360
plane wave steering vectors sampling all bearings in [0◦, 179.5◦]
in steps of 0.5◦.

Figure 1 shows the reconstruction accuracy as evaluated
from the true and estimated coherence matrices with elements

Cmm′ = Γmm′/
√

ΓmmΓm′m′ (32)

for the three waves. The three left images show the case of
three uncorrelated waves. Here, the true coherency matrix is
C = I3. The reconstructed coherency matrices in very high
SNR= 100 dB (middle) and very low SNR= −10 dB (bot-
tom) are shown left. The three right images show the case of
three fully coherent waves. The true coherency matrix C with
Cmm′ = 1 ∀m,m′ is shown (top right). The reconstructed
coherency matrices in very high SNR= 100 dB (middle) and
very low SNR= −10 dB (bottom) are shown right. The SBL
estimate computed by the algorithm in Table 1 is very close to
the result computed by the method in Ref. [4]. The final pa-
per will discuss the SBL reconstruction accuracy versus SNR
and compare the performance with Ref. [4].

4. CONCLUSION

We develop a Sparse Bayesian Learning (SBL) approach to
estimate plane wave directions of arrival, their correlations,
and the background noise variance from multi-snapshot sen-
sor array data. The plane wave amplitudes are assumed to
be correlated zero-mean complex Gaussian distributed with
unknown covariance matrix, inspiring a stochastic maximum
likelihood approach. The performance of SBL is evaluated
in terms of the fidelity of the reconstructed coherency matrix
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Fig. 1. Coherence matrices for three correlated sources (right)
and uncorrelated sources (left). Top row: True coherence
matrix. Middle row: Estimated coherence matrix at SNR=
100 dB. Bottom row: SNR= −10 dB.

of the estimated plane waves. Simulations indicate that SBL
performs well in this setting.
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