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Abstract—We consider the sparse inversion of seismic record-
ings from a Bayesian perspective. We have a prior belief that
the spatially distributed seismic source should be sparse in the
spatial domain. In a Bayesian framework, we assume a Laplace-
like prior for a distributed wideband source and derive the
corresponding objective function for minimization. We solve a
sequence of convex minimization problems for finding a sparse
seismic source representation from an underdetermined system of
linear measurement equations using teleseismic P waves recorded
by an array of sensors. The root mean square reconstruction
error for the source distribution is evaluated through numerical
simulations.

I. INTRODUCTION

Array processing methods for source localization have been
used for the analysis of seismic recordings for many decades.
It was this field of application which originally motivated
Capon’s beamformer [1], [2].
In a Bayesian perspective, an inversion result is the a pos-

teriori probability density for the parameters of interest, from
which all information regarding the sources and propagation
environment can be inferred [3]. Many inversion experiments
have relied on the a priori knowledge that only a single point
source is present. Such inversion approaches can be interpreted
as optimization problems with an extreme sparsity constraint:
The spatial source distribution is a single Dirac-δ distribution.
Tibshirani [4] proposed the least absolute shrinkage and se-

lection operator (lasso) to overcome drawbacks from ordinary
least squares, lack of prediction accuracy and interpretability.
In effect, the lasso is a least squares regression constrained by
an upper bound on the "1-norm of the solution. He shows that
this technique sets many coefficients of the regression solution
to zero, and therefore favors sparse solutions. Daubechies et
al. [5] recommend the use of "p-norm penalized inversion
problems with p < 2 when one expects the solution to be
sparse. Since then numerous papers have appeared in the
areas compressive sensing and sparse reconstruction which
employ the penalization by a "1-norm to promote sparsity of
the solution, e.g. [6], [7], [8].
Here, we extend the Bayesian approach, e.g. [9], [10] to a

wideband array model for application to seismic recordings.

II. SEISMIC RECORDING MODEL

Let (θ1, . . . , θM )T be a vector of M potential earthquake
source locations on a suitably chosen grid on the earth’s
surface. Further, let x = (x1, . . . , xM )T be the asociated
complex-valued source vector. We observe time-sampled seis-
mic waveforms on an array of N sensors which are stacked in
a vector. After a short-time Fourier transform, we obtain the
following linear model which relates the Fourier transformed
sensor array output y(ω) to the source vector,

y(ω) = A(ω)x(ω) + n(ω) . (1)

The mth column of the transfer matrix A(ω) is the steering
vector am(ω) for candidate source location θm. We model
the (n, m)-element of A(ω) by e−jωτnm . Here τnm is the
traveltime from location θm to sensor n,

τnm =

∫

Cnm

ds

cp(s)
, (2)

where we integrate along the curved ray Cnm which connects
location θm to sensor n, and cp(s) is the phase velocity
of compressional (“P”) waves along the ray in the earth’s
mantle. Travel times are calculated from the IASP91 1-D
earth reference model [11]. The additive noise vector n(ω)
is assumed to be spatially uncorrelated and follows the zero-
mean complex normal distribution with diagonal covariance
ν(ω)I . Further, the noise is assumed to be uncorrelated across
frequency.
Let us stack all individual single-frequency observations

y(ωj) for j = 1, 2, . . . , J into a long NJ × 1 vector Y , and
similarly for the MJ × 1 source vector X and the NJ × 1
additive noise vector N . Further, we define the NJ × MJ
block diagonal matrix

A = diag (A(ω1), A(ω2), . . . , A(ωJ )) ,

then the multi-frequency model becomes

Y = AX + N . (3)

III. BAYESIAN FORMULATION

First, we select a set of frequencies {ω1, . . . , ωJ} at which
we observe measurement data Y according to the model (3).
For the linear model (3), we arrive at the following conditional
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probability density for multi-frequency observations given the
wideband source vector X ,

p(Y |X) =
J

∏

j=1

exp
(

− 1
νj
‖y(ωj) − A(ωj)x(ωj)‖2

2

)

(πνj)N
(4)

where we have used the shorthand notation νj = ν(ωj)
and ‖ · ‖p is the "p-norm. In our setting, the number of
candidate source locations M is larger than the number of
sensors N , i.e. N < M and the linear models (1) and (3)
are underdetermined. To reconstruct a physically meaningful
source vector, we exploit its sparsity through the introduction
of a prior probability density on X which promotes sparsity.
A widely used sparseness prior is the Laplace probability
density [9], [12] which puts a higher probability mass than
the normal distribution both for large and small absolute
deviations. We assume the multivariate complex Laplace-like
probability density [13],

p(X) =
J

∏

j=1

(

λj√
2π

)2M

exp (−λj‖x(ωj)‖1) . (5)

The parameters λj are positive scale parameters which are suit-
ably chosen later. For the posterior probability density function
p(X|Y ), we follow Bayes’ rule and apply the logarithm. We
arrive at the following cost function to be minimized,

Λ = − ln p(X |Y ) = − ln p(Y |X) − ln p(X) + ln p(Y )

=
J

∑

j=1

(

‖y(ωj) − A(ωj)x(ωj)‖2
2

νj
+ λj‖x(ωj)‖1

+N ln νj − 2M ln λj

)

+ const. (6)

In (6) the term ln p(Y ) is absorbed into the additive constant
which will be neglected in the following.

A. Arbitrary noise spectrum: Colored noise
For the case of colored noise, we assume that the ν1, . . . , νJ

parameters are unknown non-negative constants. First, we
minimize Λ with respect to νj and λj :

∂Λ

∂νj
= 0 ⇒ ν̂j =

1

N
‖y(ωj) − A(ωj)x(ωj)‖2

2

∂Λ

∂λj
= 0 ⇒ λ̂j =

2M

‖x(ωj)‖1

.

Inserting ν̂j and λ̂j into (6) leads to the following wideband
cost function,

Λ2(X) = 2
J

∑

j=1

(N ln (‖y(ωj) − A(ωj)x(ωj)‖2)

+M ln ‖x(ωj)‖1) . (7)

for minimization with respect to X . The minimizing solution
X̂ is the Bayesian sparse wideband maximum a posteriori
source estimate.

B. Flat noise spectrum: White noise

Consider now the special case where ν and λ is constant
across frequency, i.e., νj = ν and λj = λ whereby Λ becomes

Λ = JN ln ν − 2JM ln λ + λ‖X‖1 +
1

ν
‖Y − AX‖2

2. (8)

If we regard ν and λ as given constants then the cost function
can be cast into the form

Λ3 = ‖X‖1 + µ‖Y − AX‖2
2 (9)

with µ = (λν)−1. On the other hand, if we regard ν as an
unknown parameter, the minimizing ν̂ turns out to be

ν̂ =
1

JN
‖Y − AX‖2

2 =
1

J

J
∑

j=1

ν̂j , (10)

i.e. ν̂ is the arithmetic mean over all single-frequency estimates
ν̂j . Next, we minimize (8) with respect to λ,

∂Λ

∂λ
= 0 ⇒ λ̂ =

2JM

‖X‖1

, (11)

and it turns out that λ̂ is the harmonic mean over all single-
frequency estimates λ̂j . Finally, we insert ν̂ and λ̂ into (8).
which leads to the following cost function for minimization

Λ5 = N ln ‖Y − AX‖2 + M ln ‖X‖1 . (12)

IV. COMPUTATION OF SPARSE REPRESENTATION

The cost function (9) is convex for µ ≥ 0 and this leads
to a second order cone problem which is efficiently solvable
with interior points solvers [14].
Unfortunately, the cost functions (7) and (12) are non-

convex due to the logarithm [14]. We minimize these by a
sequence of convex minimization problems by locally lineariz-
ing the logarithm via its Taylor expansion,

ln z ≈ ln z0 +
1

z0

(z − z0) . (13)

Given an approximate solution vector X0 to the minimizer
of Λ5, this leads to the convex approximation valid in the
neighborhood of X0

Λ5 ≈ a1‖X‖1 + a2‖Y − AX‖2 , (14)

with the coefficients

a1 =
M

‖X0‖1

a2 =
N

‖Y − AX0‖2

. (15)

By applying the locally convex approximation (14) repeatedly,
we arrive at the iterative procedure in Table I which uses the
convex optimization package CVX [15], [16].
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given: Arrays A of size NJ × MJ and Y of size NJ × 1
a1=M
a2=N
for cnt = 1:ncnt

cvx_begin
variables L1 L2
variable X(M) complex
minimize(a1*L1 + a2*L2)
subject to

L1 > norm(X,1)
L2 > norm(Y-A*X,2)

cvx_end
a1 = M/norm(X,1)
a2 = N/norm(Y-A*X,2)

end
output: X of size MJ × 1

TABLE I
COMPUTATIONAL PROCEDURE IN MATLAB/CVX FOR MINIMIZING THE

COST FUNCTION Λ5 EQ.(12) USING [15], [16].

V. NUMERICAL RESULTS

A. Reconstruction performance for seismic array
First, we report on numerical simulations with synthetic

data for modeling the USArray [18] with N = 409 wideband
seismic sensor stations. Figure 1 shows the geometry of the
sensor array which has a rather random geometry. Instead of
a single source location (as indicated by the red star * at the
center of Fig. 1), we assume a sparsely distributed source.
Based on the simulations, we evaluate the Root Mean Squared
Reconstruction Error (RMSRE) for the source vector.
We create a regular grid of 40 × 40 candidate source

locations covering the latitudes and longitudes shown in Fig.
3 and resulting in M = 1600. We synthetically generated
a sparse source vector X$ with K = 6 randomly selected
elements representing equal power sources with uniformly
distributed random phases. The remaining M − K = 1594
elements are set to zero (almost surely). The traveltimes τnm

which enter into A are calculated according to (2), cf. [11],
[17].
For sparse source reconstruction, we minimize the cost

function Λ5 defined in (12) via the computational procedure
in Table I. For simplicity, we use 5 iterations only. Figure 2
shows the RMSRE from the corresponding simulation runs,

RMSRE =
√

E ‖X − X$‖2
2 , (16)

versus Signal-to-Noise Ratio (SNR) in dB,

SNR = −10 log10 ν , (17)

for ω1

2π
= 0.3125Hz, ω2

2π
= 0.6250Hz and ω3

2π
= 0.9375Hz.

From Fig. 2, we conclude that the RMSRE for source distribu-
tions which emit high frequency P waves can be reconstructed
more precisely than low frequency sources.

B. Sparse source reconstruction for Tohoku-Oki earthquake
We apply sparse source reconstruction to image the temporal

evolution of the Tohoku-Oki earthquake source distribution on
March 11, 2011. The first 200 s of the teleseismic P waves
recorded by over 500 stations in the US are used [17]. The
seismic sensor output yn(t) for (n = 1, . . . , N) is sampled at
10Hz, subsequently 0.05–2Hz bandpass filtered, and finally
normalized by its peak amplitude. We use N = 476 stations
(Fig.1) with good data quality and estimate the sparse spatial
source distribution using 10 s sliding windows. Before the
earthquake, we only observe noise (Fig. 3a). Initially the
earthquake is weak causing some source ambiguity (Fig. 3b),
which disappeared as the earthquake gained strength (Fig. 3c–
d).

VI. CONCLUSION

The wideband cost functions Λ2 and Λ5 for sparse source
reconstruction are derived from a Bayesian perspective using
a Laplace-like prior for the source. These cost functions are
not convex, but they can be efficiently minimized by solving
a sequence of convex problems. Numerical simulations with
synthetic data indicate that sparse source reconstruction is
applicable to seismic array data. Source distributions which
emit high frequency P waves can be reconstructed more
precisely than low frequency sources. Finally, we image the
source distribution in space and time for the Tohoku-Oki
earthquake.
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Fig. 2. RMSRE versus SNR at three frequencies of interest: Cost function Λ5

in (12) is minimized by the computational procedure in Table I with ncnt=5.
The USArray [18] has lower RMSRE at higher frequencies.
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Fig. 3. Temporal evolution of spatial source power distribution for Tohoku-
Oki Earthquake 2011: (a) t = −10s, (b) t = 10s, (c) t = 30s, (d) t = 50s.
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