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ABSTRACT
Sparse sensing is a technique for finding sparse signal repre-
sentations to underdetermined linear measurement equations.
We use sparse sensing to locate seismic sources during the
rupture of the 2011 Mw9.0 earthquake in Japan from teleseis-
mic P waves recorded by a seismic sensor array of stations
in the United States. The location estimates of the seismic
sources are obtained by minimizing the square of `2-norm of
the difference between the observed and modeled waveforms
penalized by the `1-norm of the seismic source vector. The
resulting minimization problem is convex and can be solved
efficiently using LASSO type optimization. The potential to
track the rupture sequentially is demonstrated.

1. INTRODUCTION

Fortunately, large earthquake are sparse in time and location.
However, large earthquakes do evolve in both time and space,
often lasting 100s of seconds and rupturing over 100s of
kilometer[1]. For subduction earthquakes, there is evidence
that radiation of frequencies depends on distance to the plate
interface [2, 3, 4], with the higher frequencies being further
away from the trench and deeper below the surface.

The earthquake rupture process is complicated, but it
tends to evolve sequentially with sparse locations that typi-
cally propagate at a speed of approximately 80% of the shear
speed. In this contribution, we motivate a sparse sequential
model and carry out a simple test to demonstrate its utility.

Let yt be the measurement vector (i.e., seismic recording
at the sensor array) at step t and xt represents the state vector
(for example, location of a source emitting signal yt), where
t = 1, . . . , T . Our goal is to sequentially estimate xt as data
measurements yt become available.

The state equation (1) and measurement equation (2) de-
fine a state-space model:

xt = ft(xt−1,vt) (1)
yt = ht(xt,nt) (2)

The state equation, Eq. (1), describes the evolution or
transition of xt with t and assumes that states follow a first
order Markov process.

Function ft and ht are known functions. Variable vk is
the process or state noise and wk is the measurement noise.

Such system has been solved using sequential filtering,
e.g., a Kalman type or a Particle filtering approach [5, 6].
These often lead to a wide posterior probability distribution
of the state vector estimate x̂t. We here utilize that the state
vector xt is expected to be sparse. The sparseness is enforced
by using a Laplace-like prior model.

The sequential sparse sampling approach has received
much attention recently [7, 8, 9]. For each time step t such
approaches require solving a LASSO-type optimization prob-
lem [10, 11, 12, 13].

2. SEISMIC RECORDING MODEL

Let (θ1, . . . , θM )T be a vector of M potential earthquake
source locations on a suitably chosen grid on the earth’s sur-
face. Further, let xt(ω) = (x1t(ω), . . . , xMt(ω))T be the
associated complex-valued source vector at time t and fre-
quency ω. We observe time-sampled seismic waveforms on
an array of N sensors which are stacked in a vector. After a
short-time Fourier transform, we obtain the following linear
model which relates the Fourier transformed sensor array
output yt(ω) to the source vector,

yt(ω) = A(ω)xt(ω) + nt(ω) . (3)

The mth column of the transfer matrix A(ω) is the steering
vector am(ω) for potential source location θm. We model
the (n,m)-element of A(ω) by e−jωτnm . Here τnm is the
traveltime from location θm to the nth seismic sensor,

τnm =
∫
Cnm

ds
cp(s)

, (4)

where we integrate along the curved ray Cnm which connects
location θm to sensor n, and cp(s) is the phase velocity of
compressional (“P”) waves along the ray in the earth’s man-
tle. Travel times are calculated from the one-dimensional
IASP91 earth reference model [14]. The additive noise vector
nt(ω) is assumed to be spatially uncorrelated and follows the
zero-mean complex normal distribution with diagonal covari-
ance ν(ω)I . Further, the noise is assumed to be uncorrelated
across frequency.
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3. BAYESIAN FORMULATION

First, we select a set of frequencies {ω1, . . . , ωJ} at which we
observe measurement data yt(ωj) according to the model (3).
We stack all these measurement data into anNJ-dimensional
multi-frequency observation yt and likewise for the source xt
and noise nt. For the linear model (3), we arrive at the fol-
lowing conditional probability density for the stacked multi-
frequency observations given the multi-frequency source vec-
tor xt,

p(yt|xt) =
J∏
j=1

exp
(
− 1
νj
‖yt(ωj)−A(ωj)xt(ωj)‖22

)
(πνj)N

(5)
where we have used the shorthand notation νj = ν(ωj) and
‖ · ‖p is the p-norm. In our setting, the number of candidate
source locations M is larger than the number of sensors N ,
i.e.N < M and the linear model (3) are underdetermined. To
reconstruct a physically meaningful source vector, we exploit
its sparsity through the introduction of a prior probability den-
sity on x which promotes sparsity. A widely used sparseness
prior is the Laplace probability density [15, 16] which puts a
higher probability mass than the normal distribution both for
large and small absolute deviations . We assume the multi-
variate complex Laplace-like probability density [17],

p(xt) =
J∏
j=1

(
λjt√
2π

)2M

exp (−λjt‖xt(ωj)‖1) . (6)

The parameters λj are positive scale parameters which are
suitably chosen later. For the posterior probability density
function Λt = p(xt|Y t) base on the history of all multi-
frequency observations Y t = [y1, . . . ,yt], we follow Bayes’
rule and apply the logarithm. We arrive at the following cost
function to be minimized,

Λt= − ln p(xt|Y t) = − ln p(Y t|xt)− ln p(xt) + ln p(Y t)

=
J∑
j=1

(
‖yt(ωj)−A(ωj)xt(ωj)‖22

νj
+ λjt‖xt(ωj)‖1

+N ln νj − 2M lnλjt
)

+ const. (7)

In (7) the term ln p(Y t) is absorbed into the additive constant
which will be neglected in the following.

4. NON-SEQUENTIAL COMPRESSIVE SENSING

In this section, we neglect the sequential time dependence
and formulate the sparse recovery problem as follows: We
observe waveforms on an array of N seismic stations in the
frequency domain,

y(ω) = A(ω)x(ω) + n(ω) . (8)
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Fig. 1. Location of the 2011 Tohoku-Oki earhthquake (red
star ?) and array geometry of 409 seismic stations in the cen-
tral and western US [2].

The number of potential source locations M is substantially
larger than the number of seismic stations N , i.e. N � M .
The additive Gaussian noise n(ω) is zero-mean and circular.

The linear system (8) is underdetermined. Therefore there
is a large-dimensional subspace of potential source vectors
x(ω) that result in the same observed waveform y(ω). To
recover a physically meaningful source vector, we exploit our
knowledge of its sparsity: We restrict the source vector to
have only K non-zero (“active”) entries and K � M . The
recovery of such sparse x(ω) can be formulated as

x̂(ω) = arg min ‖x‖0 s. t. ‖A(ω)x−y(ω)‖2 < ε , (9)

where ‖x‖0 counts the number of nonzero entries in x. The
additive Gaussian noise motivates an `2-norm interpretation
of the constraint with ε being the noise floor. Unfortunately,
this problem is hard to solve and unstable in the presence of
noise [18].

Practical recovery algorithms rely on the restricted isom-
etry property (RIP). The RIP conditions are satisfied due to
the pseudo-randomly varying phases e−jωτnm [19]. Follow-
ing [11], we replace (9) by the following convex problem

x̂(ω) = arg min ‖x‖1 s. t. ‖A(ω)x− y(ω)‖2 < ε .
(10)

Finally, the Lagrange multiplier λ−1 is introduced and the
following second-order cone problem is obtained

x̂(ω) = arg min (‖y(ω)−A(ω)x‖2 − ε+ λ‖x‖1)
= arg min (‖y(ω)−A(ω)x‖2 + λ‖x‖1) . (11)

We use the package CVX [20, 21] for specifying and solving
this convex optimization problem.
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Fig. 2. Synthetic tests of source location using compressive sensing (CS) and beamforming at f = 0.23 Hz: (A) input amplitudes
of one source model; (B-D) recovery of (A) using CS with different damping parameters (λ = qλ0, with λ0 = r

√
N and

r = 0.1) as indicated (see text for details); (E) beamforming output for the one source in (A); (F) CS recovery of the two
sources with locations at the blue crosses; (G) beamforming output for the two-source model in (F); (H) L-curve between data
misfit and model norm for one source model in (A) using different damping values.

The choice of Lagrange multiplier λ is important to obtain
physically meaningful solutions to (11), Using (8) with just
a single source without any noise gives ‖y‖2 = ‖Ax‖2 =
‖A‖2‖x‖2 =

√
N‖x‖1. We define the residual r = ‖y −

Ax‖2/‖y‖2, which depends on the noise level. This indi-
cates the following choice of Langrange multiplier λ ∼ r

√
N

for balancing the ratio between data misfit (‖y −Ax‖2) and
model constraint (‖x‖1) in the misfit function (11). Using the
array in Fig. 3, Fig. 2 shows synthetic tests of the performance
for different λ values at f = 0.23 Hz with a randomly gener-
ated source amplitude and phase. We add 10% random noise
(r = 0.1) to the synthetic spectrum data. We use λ = r

√
N

as it is around the “knee” in the L-curve in Fig. 2H between
the data misfit and model constraints.

First, we apply conventional beamforming to estimate
the location of a single hypothetical source. For one source
(same source spectrum as in Fig. 2A), the beamformer peak
corresponds to the input source location (Fig. 2E), but with
poor resolution. In contrast, CS picks the true source location
if proper damping is used (Fig. 2C). For the synthetic model
with two sources (Fig. 2F; 10% noise), the conventional
beamformer (Fig. 2G) cannot resolve the sources. However,
CS (Fig. 2F) recovers the source locations exactly.

5. RECONSTRUCTION PERFORMANCE FOR
SEISMIC ARRAY

Numerical simulations were carried out with synthetically
generated data for the geometry of the USArray [22] with
N = 409 wideband seismic sensor stations. The USArray
geometry is shown in Fig. 3. It is obvious that the geometry
is two-dimensional and highly irregular. Instead of a single
point source (as indicated by the red star ? at the center of
Fig. 3), we assume a sparse source distribution. From the
simulation results, we numerically estimate the Root Mean
Square (RMS) location error for the source vector.

We create a regular grid of 40 × 40 potential source lo-
cations covering the latitudes from 35◦N to 40◦N and lon-
gitudes from 140◦E to 145◦E. The chosen grid size results in
M = 1600. We synthetically generated a sparse source vector
X? withK = 3 non-zero (“active”) elements which represent
three simultaneous seismic sources. The associated locations
r∗1, r

∗
2, r
∗
3 are evolving in time. At the initial time t = 0 they

start at the center location (o) and the three sources are propa-
gating north, stationary, and south. The seismic sources have
equal power of 1 and uniformly distributed random phases.
The remaining M −K = 1597 elements are set to zero. The
traveltimes τmn which enter into A are calculated according
to (4), cf. [14, 2].
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Fig. 3. Beampattern and sparse locations (*) for 3 equal
power sources (o) at a SNR of 40 (left) and 0 (right) dB and
frequency 0.16 (top) 0.55 (middle) 0.94 (bottom) Hz. The
beampattern are just based on the current data, where as the
sparse location use sequential processing based on a rupture
propagating from the middle source.

We recursively estimate source location using the ap-
proach similar to Panahi and Viberg [9]. The resulting loca-
tion estimate at t = 5 is shown in Fig. 3 for 3 frequencies
0.16, 0.55, and 0.94 Hz and SNR of 40 and 0 dB. At low
frequencies the conventional beamformer is unable to resolve
the 3 sources. The horizontal wavelength is here approx.
11 km/s/0.11 = 100 km or 1◦, indicating the order of mag-
nitude of the resolution. The direction to the array is to the
north-east. For the low SNR cases, the 3 estimated sources
are often not at the peak in the beamformer output, and the
beamformer output peaks do not correspond to the input
locations. For low SNR the locations are very biased.

Figure 4 shows the estimated RMS location error from a
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Fig. 4. RMS location error versus SNR for selected frequen-
cies of interest. The USArray [22] has significantly lower
RMS location error for higher frequencies than for lower
ones.

series of Monte Carlo simulation runs,

RMS location error =

(
E
∑

m∈Mt

‖rm − r?m‖22

) 1
2

, (12)

versus Signal-to-Noise Ratio (SNR) in dB,

SNR = −10 log10 ν , (13)

whereMt is the active set at time step t,

Mt = {m|mth element of xt 6= 0} . (14)

From the results shown in Fig. 4, we conclude that the RMS
location error for sparse source distributions which emit high
frequency P waves can be reconstructed more accurately than
low frequency sources. An SNR of approximately 10 dB is
required to estimate the sparse source locations satisfactorily.

6. CONCLUSION

We formulated the earthquake source location as sparse se-
quential estimation problem. Numerical simulations with
synthetic data indicate that sparse source reconstruction is
applicable to seismic array data. Source distributions which
emit high frequency P waves can be reconstructed more pre-
cisely than low frequency sources.
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[11] D. M. Malioutov, C Müjdat, A. S. Willsky: A sparse
signal reconstruction perspective for source localization
with sensor arrays,

[12] A. Panahi, M. Viberg: Fast Candidate Points Selection
in the LASSO Path, IEEE Sig. Proc. Lett., Vol. 19, No.
2, pp. 79–82, Feb. 2012.
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