
Principles of Underwater Acoustics, December 2016 

Class discussion 

1) From the Wave Equation to the Helmholtz Equation. Three times. Reading: COA 
2.1, 2.2  

The wave equation has some intuitive properties. Think about a 1-d wave traveling down a rope 
that’s being wiggled sinusoidally at one end. If you plotted the displacement vs. time at a fixed 
location on the string, what would it look like? What would the shape of the string look like at a 
fixed point in time over all space (think of a flash photograph in a dark room). In both cases, it’s a 
sinusoid. The wave equation is: (double derivative in time of some function) = a constant times 
(double derivative in space of the same function). Take two derivatives of a sin, and you get -sin. 
Which is why plotting a wave at a fixed point in space vs time gives a similar plot to plotting 
something in space at a fixed time.  
 
But usually the first thing that’s done to solve the wave equation is to apply an integral transform, 
turning it into the Helmholtz Equation. Not only does this step get rid of one dimension of the 
problem, it also tends to get rid of any intuition that you had about the wave equation. Once the 
intuition is lost, all mathematical manipulations following the Helmholtz Equation then seem like 
you’re just playing with math, without knowing how you got there. Furthermore, “Integral 
Transform” is a scary phrase. We are going to go from the Wave Equation to the Helmholtz 
Equation three times, each time getting successively more sophisticated.  
 
In all three cases, you’re going to start with the wave equation for displacement potential in COA, 
Eq 2.26, letting f (r, t) = 0 which just means there is no source present. You will end with Eq 2.26, 
which is the Helmholtz Equation. In Eq. 2.26, ψ is the displacement potential. ψ of course is a 
function of space (cars sound quieter when you run away from them) and time (cars sound quieter 
when their engines are turned off). ψ = ψ(r, t) where r is a vector representing a point in space and t 
is time.  
 
1. The Easiest (though not necessarily easy) way. Assume ψ(r,t) is of the form ψ(r,ω)e−iωt. 

Think about what that means for a moment, and then plug it into Eq 2.26 (remembering to set 
f(r,t) = 0). Notice that you can take the temporal derivative now that we’ve assumed a specific 
form of ψ(r,t) . Take the temporal derivatives, and then manipulate the equation to look like Eq 
2.29, remembering the relation between c, k, and ω. Also, because c can be a function of space 
(the ocean is not homogeneous), k can be a function of r.  

 
2. The Fourier way. Write down Eq 2.26, (remembering to set f(r,t) = 0). Now take the Fourier 

transform of each side. The right hand side remains zero. For the left hand side, we do not know 
the Fourier transform of ψ(r, t). But whatever it is, we can just call it ψ(r,ω). We can also switch 
the order of integral and derivative (in this case) on the right hand side. Manipulate the equation 
and you should be able to get it to look like Eq 2.29.  

 
3. The Separation of Variables Way. To implement separation of variables, we assume that 



ψ(r,t) = R(r)T(t). That is, we assume that ψ(r, t) can be written as some function of space R(r) 
multiplied by some function of time T(t). Plug that into equation 2.26 (remembering to set f(r,t) 
= 0). Put everything having to do with T(t) on one side of the equation, and everything having to 
do with R(r) on the other side. Now comes the “trick” in this technique. If two functions of two 
different variables equal each other, (lets use f(x) = g(y) as a toy example), then the only way the 
equation can be true for all values of x and y is that f(x) = g(y) = a constant. (Google for 
“separation of variables”, or look in a partial differential equations textbook if you don’t believe 
me). So now we have two equations instead of one. In our toy example, f(x) = a constant, and 
g(y) = the same constant. In the case of our wave equation, lets call the constant −k2. Of the two 
equations (one with all of the T(t) and one with all of the R(r), one equation is the Helmholtz 
equation. The other is a second order linear ordinary differential equation, which has solutions 
that are complex exponentials. You don’t have to solve these two equations – just indicate which 
one is the Helmholtz one and try to make it look like Eq 2.29. 

 
 
 

2) Reading: Wikipedia 

Soon you will hear phrases like: “Hankel Function”, “Bessel Function”, “Integral Transform” and 
“Hankel Transform”. Those are scary sounding phrases. So lets try gently easing into them. Go to 
wikipedia.com and read the following articles: 1) Bessel Function, 2) Integral Transform, 3) 
Hankel Transform. Remember that if someone were to ask “What is a sine function?” you can reply 
by saying that it is the solution to the differential equation xʹʹ(t) + x(t) = 0. That is a legitimate 
definition of the sine function. In some sense, a Bessel function is no different than a sine or cosine – 
it is simply the solution to some differential equation. Don’t worry too much about the various 
properties of Bessel or Hankel function, just get a general idea for what they are and what they look 
like.  

   
3) Simple	Problems	

	
a) You	have	invented	an	apparatus	that	can	fry	an	egg	underwater	using	N	dB	in	certain	

time	interval.	How	many	dB	would	it	take	to	fry	two	eggs	in	the	same	time	?	
b) A	ray	is	launched	at	30	deg	grazing	angle	from	the	surface,	assuming	a	linear	sound	

speed	with	1500	m/s	at	the	top	and	1450	m/s	at	the	bottom.	What	would	the	
grazing	angle	be	at	the	bottom?	


