
• May 1, CODY, Error Backpropagation, Bischop 5.3, and Support Vector Machines (SVM) 
Bishop Ch 7.

• May 3, Class HW Bishop Ch 6-7, RVM, PCA dimensionality reduction
• May 8, CODY Machine Learning for finding oil, focusing on 1) robust seismic 

denoising/interpolation using structured matrix approximation 2) seismic image clustering and 
classification, using t-SNE(t-distributed stochastic neighbor embedding) and CNN. Weichang
Li, Goup Leader Aramco, Houston.

• May 10, Class HW First distribution of final projects. K-means. Dictionary learning, Mike 
Bianco (half class) Bishop Ch 9

• May 15, CODY Seismology and Machine Learning, Daniel Trugman (half class), ch 9
• May 17, Class HW Ocean acoustic source tracking. Final projects. The main goal in the last 3 

weeks is the Final project.
• May 22,
• May 24, Graphical models Bishop Ch 8
• May 31, No Class Workshop, Big Data and The Earth Sciences: Grand Challenges Workshop
• June 5, Discuss workshop.
• June 7, Workshop report. Importance of feature extraction, Aaron Thode (half class)
• June 16 Final report delivered



Solving a Rank-Deficient System
If A is m-by-n with m > n and full rank n, each of the three statements
x = A\b 
x = pinv(A)*b 
x = inv(A'*A)*A'*b
theoretically computes the same least-squares solution x, although 
the backslash operator does it faster.

However, if A does not have full rank, the solution to the least-squares problem is not 
unique. There are many vectors x that minimize
norm(A*x -b)

The solution computed by x = A\b is a basic solution; it has at most r nonzero 
components, where r is the rank of A. The solution computed by x = pinv(A)*b is the 
minimal norm solution because it minimizes norm(x). An attempt to compute a solution 
with x = inv(A'*A)*A'*b fails because A'*A is singular.



Error back propagation

• To train a NN we need to update weights w. The 
size of w is HUGE. Using gradient search or 
higher order methods.

• We have N observations {xn , tn}

• For each observation we can compute !"($%,'%)
!𝒘

• The gradient is then computed as ∑ !"($%,'%)
!𝒘

+,'-.
%



Error backpropagation



Gaussian Kernels



Commonly used kernels
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For the neural network kernel, there is one “hidden unit” per support vector, 
so the process of fitting the maximum margin hyperplane decides how many 
hidden units to use. Also, it may violate Mercer’s condition.

Parameters 
that the user 
must choose



Dual representation, Sec 6.2

𝐸 = 1
2
∑ 𝒘3𝒙% − 𝑡% 28
% + 9

2
𝒘 2

Solution

𝒘 = 𝑿;𝒕
= (𝑿3𝑿 + 𝜆𝑰𝑴)A𝟏𝑿3𝒕
= 𝑿3(𝑿𝑿𝑻 + 𝜆𝑰𝑵 )A1𝒕
= 𝑿3(𝑲 + 𝜆𝑰𝑵 )A1𝒕
= 𝑿3𝒂

Prediction
𝑦 = 𝒘3𝒙 = 𝒂3𝑿𝒙 = ∑ 𝑎%𝒙%3𝒙8

% = ∑ 𝑎%𝑘(𝒙% , 𝒙)8
%

Only kernels, no feature vectors



Kernels

Information unchanged, but now we 
have a linear classifier on the 
transformed points.

With the kernel trick, we just need kernel
𝑘 𝒂, 𝒃 = 𝜱(𝒂)3 𝜱(𝒃)

Say I want to predict whether a house on the real-estate market will sell today
or not:

x =

2

4 x(1)|{z}
house’s list price

, x(2)|{z}
estimated worth

, x(3)|{z}
length of time on market

, x(4)|{z}
in a good area

, ...

3

5 .

We might want to consider something more complicated than a linear model:

Example 1: [x(1), x(2)] ! �
�
[x(1), x(2)]

�
=

⇥
x(1)2, x(2)2, x(1)x(2)

⇤

The 2d space gets mapped to a 3d space. We could have the inner product in
the 3d space:

�(x)T�(z) = x(1)2z(1)2 + x(2)2z(2)2 + x(1)x(2)z(1)z(2).

Example 2:

[x(1), x(2), x(3)] ! �
⇣
[x(1), x(2), x(3)]

⌘

= [x(1)2, x(1)x(2), x(1)x(3), x(2)x(1), x(2)2, x(2)x(3), x(3)x(1), x(3)x(2), x(3)2]

and we can take inner products in the 9d space, similarly to the last example.

2

Input Space Feature Space
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So we showed that k is an inner product for n = 2 because we found a feature
space corresponding to it.

For n = 3 we can also find a feature space, namely the 9d feature space from
Example 2 would give us the inner product k.
That is,

�(x) = (x(1)2, x(1)x(2), ..., x(3)2), and �(z) = (z(1)2, z(1)z(2), ..., z(3)2),

h�(x),�(z)i
R

9 = hx, zi2
R

3.

That’s nice.

We can even add a constant, so that k is the inner product plus a constant
squared.

Example 4:

k(x, z) = (xTz+ c)2 =

 
nX

j=1

x(j)z(j) + c

! 
nX

`=1

x(`)z(`) + c

!

=
nX

j=1

nX

`=1

x(j)x(`)z(j)z(`) + 2c
nX

j=1

x(j)z(j) + c2

=
nX

j,`=1

(x(j)x(`))(z(j)z(`)) +
nX

j=1

(
p
2cx(j))(

p
2cz(j)) + c2,

and in n = 3 dimensions, one possible feature map is:

�(x) = [x(1)2, x(1)x(2), ..., x(3)2,
p
2cx(1),

p
2cx(2),

p
2cx(3), c]

and c controls the relative weight of the linear and quadratic terms in the inner
product.

Even more generally, if you wanted to, you could choose the kernel to be any
higher power of the regular inner product.

Example 5: For any integer d � 2

k(x, z) = (xTz+ c)d,

4



Lecture 9
Support Vector Machines

Non Bayesian!



Lagrange multiplier

max 𝑓 𝑥 subject	to		𝑔 𝑥 = 0

𝐿 𝑥, 𝜆 = 𝑓 𝑥 + 𝜆𝑔(𝑥)



Preprocessing the input vectors
• Instead predicting the answer directly from the raw inputs we 

could start by extracting  a layer of “features”.
– Sensible if certain combinations of input values would be 

useful (e.g. edges or corners in an image).
• Instead of learning the features we could design them by hand. 

– The hand-coded features are equivalent to a layer of non-
linear neurons with no need to be learned.

– Using a big set of features for a two-class problem, the 
classes will almost certainly be linearly separable.

• But surely the linear separator gives poor generalization.



Is preprocessing cheating?
• Its cheating if using carefully designed set of task-specific, 

hand-coded features and claim that the learning algorithm 
solved the whole problem. 
– The really hard bit is designing the features.

• Its not cheating if we learn the non-linear preprocessing.
– This makes learning more difficult and more interesting (e.g. 

backpropagation after pre-training)
• Its not cheating if we use a very big set of non-linear features 

that is task-independent. 
– Support Vector Machines do this.
– They prevent overfitting (first half of lecture)
– They use a huge number of features without requiring as 

much computation as seems to be necessary (second half).



A hierarchy of model classes

• Some model classes can be arranged in a hierarchy 
of increasing complexity.

• How to pick the best level in the hierarchy for 
modeling a given dataset?



A way to choose a model class
• A low error rate on unseen data.

– This is called “structural risk minimization”
• A guarantee of the following form is helpful: 

Test error rate =< train error rate + f(N, h, p)
Where N = size of training set,

h = measure of the model complexity,
p = the probability that this bound fails

We need p to allow for really unlucky test sets.
• Then we choose the model complexity that minimizes the 

bound on the test error rate.



Preventing overfitting when using big sets of features
• Suppose we use a big set of features to ensure 

that two classes are linearly separable. What is 
the best separating line?

• The Bayesian answer is to use them all 
(including ones that do not separate the data.)

• Weight each line by its posterior probability (how 
well it fits the data and how well it fits the prior).

• Is there an efficient way to approximate the 
correct Bayesian answer?

• A Bayesian Interpretation: Using the maximum 
margin separator often gives a pretty good 
approximation to using all separators weighted 
by their posterior probabilities.



Support Vector Machines
• The line that maximizes the minimum 

margin is a good bet.
– The model class of “hyper-planes with a margin m” 

has a low VC dimension if m is big.

• This maximum-margin separator is 
determined by a subset of the datapoints.
– Datapoints in this subset  are called 

“support vectors”.
– It is useful computationally if only few 

datapoints are support vectors, because 
the support vectors decide which side of 
the separator a test case is on.

The support vectors are 
indicated by the circles around 
them.
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Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin.
Right: a separating hyper-plane with small margin.
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Figure 14.12 (a) Illustration of the geometry of a linear decision boundary in 2d. A point x is classified
as belonging in decision region R1 if f(x) > 0, otherwise it belongs in decision region R2; here f(x)
is known as a discriminant function. The decision boundary is the set of points such that f(x) = 0.
w is a vector which is perpendicular to the decision boundary. The term w0 controls the distance of
the decision boundary from the origin. The signed distance of x from its orthogonal projection onto the
decision boundary, x⊥, is given by f(x)/||w||. Based on Figure 4.1 of (Bishop 2006a). (b) Illustration of
the soft margin principle. Points with circles around them are support vectors. We also indicate the value
of the corresponding slack variables. Based on Figure 7.3 of (Bishop 2006a).
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Training a linear SVM
• To find the maximum margin separator, we have to solve the 

following optimization problem:

• This is tricky but it’s a convex problem. There is only one 
optimum and we can find it without fiddling with learning rates 
or weight decay or early stopping.
– Don’t worry about the optimization problem. It has been 

solved. Its called quadratic programming.
– It takes time proportional to N^2 which is bad for big 

datasets
• so for big datasets we end up doing approximate optimization!
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Testing a linear SVM
• The separator is defined as the set of points for 

which:
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What to do if there is no separating plane
• Use a bigger set of features.

– Makes the computation slow, but 
the “kernel” trick makes the 
computation fast even with many 
features.

• Extend definition of maximum 
margin to allow non-separating 
planes.
– Can be done by using “slack” 

variables
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𝜉 = 𝑡% − 𝑦 𝒙%
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Figure 14.10 (a) Illustration of ℓ2, Huber and ϵ-insensitive loss functions, where ϵ = 1.5. Figure generated
by huberLossDemo. (b) Illustration of the ϵ-tube used in SVM regression. Points above the tube have
ξi > 0 and ξ∗

i = 0. Points below the tube have ξi = 0 and ξ∗
i > 0. Points inside the tube have

ξi = ξ∗
i = 0. Based on Figure 7.7 of (Bishop 2006a).

originally designed for binary classification, but can be extended to regression and multi-class
classification as we explain below.
Note that SVMs are very unnatural from a probabilistic point of view. First, they encode

sparsity in the loss function rather than the prior. Second, they encode kernels by using an
algorithmic trick, rather than being an explicit part of the model. Finally, SVMs do not result in
probabilistic outputs, which causes various difficulties, especially in the multi-class classification
setting (see Section 14.5.2.4 for details).
It is possible to obtain sparse, probabilistic, multi-class kernel-based classifiers, which work as

well or better than SVMs, using techniques such as the L1VM or RVM, discussed in Section 14.3.2.
However, we include a discussion of SVMs, despite their non-probabilistic nature, for two main
reasons. First, they are very popular and widely used, so all students of machine learning should
know about them. Second, they have some computational advantages over probabilistic methods
in the structured output case; see Section 19.7.

14.5.1 SVMs for regression

The problem with kernelized ridge regression is that the solution vector w depends on all the
training inputs. We now seek a method to produce a sparse estimate.
Vapnik (Vapnik et al. 1997) proposed a variant of the Huber loss function (Section 7.4) called

the epsilon insensitive loss function, defined by

Lϵ(y, ŷ) !
{

0 if |y − ŷ| < ϵ
|y − ŷ| − ϵ otherwise

(14.46)

This means that any point lying inside an ϵ-tube around the prediction is not penalized, as in
Figure 14.10.
The corresponding objective function is usually written in the following form

J = C
N∑

i=1

Lϵ(yi, ŷi) +
1

2
||w||2 (14.47)
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However, we include a discussion of SVMs, despite their non-probabilistic nature, for two main
reasons. First, they are very popular and widely used, so all students of machine learning should
know about them. Second, they have some computational advantages over probabilistic methods
in the structured output case; see Section 19.7.

14.5.1 SVMs for regression

The problem with kernelized ridge regression is that the solution vector w depends on all the
training inputs. We now seek a method to produce a sparse estimate.

Vapnik (Vapnik et al. 1997) proposed a variant of the Huber loss function (Section 7.4) called
the epsilon insensitive loss function, defined by

Lϵ(y, ŷ) !
{

0 if |y − ŷ| < ϵ
|y − ŷ| − ϵ otherwise

(14.46)

This means that any point lying inside an ϵ-tube around the prediction is not penalized, as in
Figure 14.10.

The corresponding objective function is usually written in the following form

J = C
N∑

i=1

Lϵ(yi, ŷi) +
1

2
||w||2 (14.47)



Introducing slack variables
• Slack variables are non-negative. When greater than zero they 

allow us to cheat by putting the plane closer to the datapoint
than the margin. We need to minimize the amount of cheating. 
This means we have to pick a value for lamba (this sounds 
familiar!)
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A picture of the best plane with a slack variable



The story so far
• Using a large set of non-adaptive features, we might make the 

two classes linearly separable.
– But just fitting any separating plane, it will not generalize well 

to new cases.
• Fitting the separating plane maximizing the margin (minimum 

distance to any data points), gives better generalization.
– Intuitively, maximizing the margin squeezes the surplus 

capacity that came from using a high-dimensional feature 
space.

• This isjustified by a lot of clever mathematics which shows that
– large margin separators have lower VC dimension.
– models with lower VC dimension have a smaller gap between training and test error rates. 



How to make a plane curved
• Fitting hyperplanes as separators is 

mathematically easy.
– The mathematics is linear.

• Replacing the raw input variables 
with a much larger set of features we 
get a nice property:
– A planar separator in high-D 

feature space is a curved 
separator in the low-D input 
space. A planar separator in a 20-D 

feature space projected back 
to the original 2-D space



A potential problem and a magic solution
• Mapping input vectors into a very high-D feature space, surely 

finding the maximum-margin separator is computationally 
intractable?
– The mathematics is all linear, but the vectors have a huge 

number of components.
– Taking the scalar product of two vectors is expensive. 

• The way to keep things tractable is  “the kernel trick”

• The kernel trick makes your brain hurt when you first learn 
about it, but it is actually simple.



What the kernel trick achieves
• All computations to find the maximum-margin separator is 

expressed as scalar products between pairs of datapoints (in 
high-D feature space).

• These scalar products are the only part of the computation that 
depends on the dimensionality of the high-D space.
– We need a fast way to do the scalar products to solve the 

learning problem in the high-D space.
• The kernel trick is a magic way of doing scalar products a lot 

faster.
– It relies on choosing a way of mapping to the high-D feature 

space that allows fast scalar products.



Dealing with the test data
• Choosing a high-D mapping for which the kernel trick works, 

we do not use much CPU time for the high-D when finding the 
best hyper-plane.
– We cannot express the hyperplane by using its normal 

vector in the high-D space because this vector is huge.
– Luckily, we express it in terms of the support vectors.

• What about the test data. We cannot compute the scalar 
product                  because its in the high-D space.)(. xw f

• Deciding which side of the separating hyperplane a test point 
lies on,  requires a scalar product   .

• We  express this scalar product as a weighted average of 
scalar products using stored support vectors
– Could  be slow many support vectors.

)(. xw f



The classification rule
• The classification rule is simple:

• The cleverness is in selecting the support vectors maximizing 
the margin and computing the weight for each support vector.

• Need choosing a good kernel function and maybe choosing a 
lambda for non-separable cases.

å >+
SVs

stest
s xxKwbias

e
0),(

The set of 
support vectors



Performance
• SVM work very well in practice. 

– The user must choose the kernel function and its 
parameters, but the rest is automatic.

– The test performance is very good.
• They can be expensive in time and space for big datasets

– The computation of the maximum-margin hyper-plane 
depends on the square of  number of training cases.

– Need storing all the support vectors.
• SVM’s are good if you have no idea about what structure to 

impose.
• The kernel trick can also be used for PCA in a high-D space, 

thus giving a non-linear PCA in the original space.



SVMs are Perceptrons!
• SVM’s use each training case, x, to define a feature K(x, .) 

where K is user chosen. 
– So the user designs the features.

• SVM do “feature selection” by picking support vectors, and 
learn feature weighting from a big optimization problem.

• So an SVM is a clever way to train a standard perceptron.
– All that a perceptron cannot do, cannot be done by SVM’s 

(but it’s a long time since 1969 so people have forgotten 
this).

• SVM DOES:
– Margin maximization
– Kernel trick
– Sparse



•NOT USED


