
• May 1, CODY, Error Backpropagation, Bischop 5.3, and Support Vector Machines (SVM)
Bishop Ch 7.

• May 3, Class HW Bishop Ch 6-7, RVM, PCA dimensionality reduction
• May 8, CODY Machine Learning for finding oil, focusing on 1) robust seismic

denoising/interpolation using structured matrix approximation 2) seismic image clustering and
classification, using t-SNE(t-distributed stochastic neighbor embedding) and CNN. Weichang
Li, Goup Leader Aramco, Houston.

• May 10, Class HW First distribution of final projects. K-means. Dictionary learning, Mike
Bianco (half class) Bishop Ch 9

• May 15, CODY Seismology and Machine Learning, Daniel Trugman (half class), ch 9
• May 17, Class HW Ocean acoustic source tracking. Final projects. The main goal in the last 3

weeks is the Final project.
• May 22,
• May 24, Graphical models Bishop Ch 8
• May 31, No Class Workshop, Big Data and The Earth Sciences: Grand Challenges Workshop
• June 5, Discuss workshop.
• June 7, Workshop report. Importance of feature extraction, Aaron Thode (half class)
• June 16 Final report delivered

Solving a Rank-Deficient System
If A is m-by-n with m > n and full rank n, each of the three statements
x = A\b
x = pinv(A)*b
x = inv(A'*A)*A'*b
theoretically computes the same least-squares solution x, although
the backslash operator does it faster.

However, if A does not have full rank, the solution to the least-squares problem is not
unique. There are many vectors x that minimize
norm(A*x -b)

The solution computed by x = A\b is a basic solution; it has at most r nonzero
components, where r is the rank of A. The solution computed by x = pinv(A)*b is the
minimal norm solution because it minimizes norm(x). An attempt to compute a solution
with x = inv(A'*A)*A'*b fails because A'*A is singular.

Error back propagation

• To train a NN we need to update weights w. The
size of w is HUGE. Using gradient search or
higher order methods.

• We have N observations {xn , tn}

• For each observation we can compute !"($%,'%)
!𝒘

• The gradient is then computed as ∑ !"($%,'%)
!𝒘

+,'-.
%

Error backpropagation

Gaussian Kernels

Commonly used kernels

)(tanh),(

),(

)1.(),(

22 2/||||

d

s

-=

=

+=

--

x.yyx

yx

yxyx

yx

kK

eK

K pPolynomial:

Gaussian
radial basis
function

Neural net:

For the neural network kernel, there is one “hidden unit” per support vector,
so the process of fitting the maximum margin hyperplane decides how many
hidden units to use. Also, it may violate Mercer’s condition.

Parameters
that the user
must choose

Dual representation, Sec 6.2

𝐸 = 1
2
∑ 𝒘3𝒙% − 𝑡% 28
% + 9

2
𝒘 2

Solution

𝒘 = 𝑿;𝒕
= (𝑿3𝑿 + 𝜆𝑰𝑴)A𝟏𝑿3𝒕
= 𝑿3(𝑿𝑿𝑻 + 𝜆𝑰𝑵)A1𝒕
= 𝑿3(𝑲 + 𝜆𝑰𝑵)A1𝒕
= 𝑿3𝒂

Prediction
𝑦 = 𝒘3𝒙 = 𝒂3𝑿𝒙 = ∑ 𝑎%𝒙%3𝒙8

% = ∑ 𝑎%𝑘(𝒙% , 𝒙)8
%

Only kernels, no feature vectors

Kernels

Information unchanged, but now we
have a linear classifier on the
transformed points.

With the kernel trick, we just need kernel
𝑘 𝒂, 𝒃 = 𝜱(𝒂)3 𝜱(𝒃)

Say I want to predict whether a house on the real-estate market will sell today
or not:

x =

2

4 x(1)|{z}
house’s list price

, x(2)|{z}
estimated worth

, x(3)|{z}
length of time on market

, x(4)|{z}
in a good area

, ...

3

5 .

We might want to consider something more complicated than a linear model:

Example 1: [x(1), x(2)] ! �
�
[x(1), x(2)]

�
=

⇥
x(1)2, x(2)2, x(1)x(2)

⇤

The 2d space gets mapped to a 3d space. We could have the inner product in
the 3d space:

�(x)T�(z) = x(1)2z(1)2 + x(2)2z(2)2 + x(1)x(2)z(1)z(2).

Example 2:

[x(1), x(2), x(3)] ! �
⇣
[x(1), x(2), x(3)]

⌘

= [x(1)2, x(1)x(2), x(1)x(3), x(2)x(1), x(2)2, x(2)x(3), x(3)x(1), x(3)x(2), x(3)2]

and we can take inner products in the 9d space, similarly to the last example.

2

Input Space Feature Space

Image by MIT OpenCourseWare.

Say I want to predict whether a house on the real-estate market will sell today
or not:

x =

2

4 x(1)|{z}
house’s list price

, x(2)|{z}
estimated worth

, x(3)|{z}
length of time on market

, x(4)|{z}
in a good area

, ...

3

5 .

We might want to consider something more complicated than a linear model:

Example 1: [x(1), x(2)] ! �
�
[x(1), x(2)]

�
=

⇥
x(1)2, x(2)2, x(1)x(2)

⇤

The 2d space gets mapped to a 3d space. We could have the inner product in
the 3d space:

�(x)T�(z) = x(1)2z(1)2 + x(2)2z(2)2 + x(1)x(2)z(1)z(2).

Example 2:

[x(1), x(2), x(3)] ! �
⇣
[x(1), x(2), x(3)]

⌘

= [x(1)2, x(1)x(2), x(1)x(3), x(2)x(1), x(2)2, x(2)x(3), x(3)x(1), x(3)x(2), x(3)2]

and we can take inner products in the 9d space, similarly to the last example.

2

Input Space Feature Space

Image by MIT OpenCourseWare.

So we showed that k is an inner product for n = 2 because we found a feature
space corresponding to it.

For n = 3 we can also find a feature space, namely the 9d feature space from
Example 2 would give us the inner product k.
That is,

�(x) = (x(1)2, x(1)x(2), ..., x(3)2), and �(z) = (z(1)2, z(1)z(2), ..., z(3)2),

h�(x),�(z)i
R

9 = hx, zi2
R

3.

That’s nice.

We can even add a constant, so that k is the inner product plus a constant
squared.

Example 4:

k(x, z) = (xTz+ c)2 =

nX

j=1

x(j)z(j) + c

!
nX

`=1

x(`)z(`) + c

!

=
nX

j=1

nX

`=1

x(j)x(`)z(j)z(`) + 2c
nX

j=1

x(j)z(j) + c2

=
nX

j,`=1

(x(j)x(`))(z(j)z(`)) +
nX

j=1

(
p
2cx(j))(

p
2cz(j)) + c2,

and in n = 3 dimensions, one possible feature map is:

�(x) = [x(1)2, x(1)x(2), ..., x(3)2,
p
2cx(1),

p
2cx(2),

p
2cx(3), c]

and c controls the relative weight of the linear and quadratic terms in the inner
product.

Even more generally, if you wanted to, you could choose the kernel to be any
higher power of the regular inner product.

Example 5: For any integer d � 2

k(x, z) = (xTz+ c)d,

4

Lecture 9
Support Vector Machines

Non Bayesian!

Lagrange multiplier

max 𝑓 𝑥 subject	to		𝑔 𝑥 = 0

𝐿 𝑥, 𝜆 = 𝑓 𝑥 + 𝜆𝑔(𝑥)

Preprocessing the input vectors
• Instead predicting the answer directly from the raw inputs we

could start by extracting a layer of “features”.
– Sensible if certain combinations of input values would be

useful (e.g. edges or corners in an image).
• Instead of learning the features we could design them by hand.

– The hand-coded features are equivalent to a layer of non-
linear neurons with no need to be learned.

– Using a big set of features for a two-class problem, the
classes will almost certainly be linearly separable.

• But surely the linear separator gives poor generalization.

Is preprocessing cheating?
• Its cheating if using carefully designed set of task-specific,

hand-coded features and claim that the learning algorithm
solved the whole problem.
– The really hard bit is designing the features.

• Its not cheating if we learn the non-linear preprocessing.
– This makes learning more difficult and more interesting (e.g.

backpropagation after pre-training)
• Its not cheating if we use a very big set of non-linear features

that is task-independent.
– Support Vector Machines do this.
– They prevent overfitting (first half of lecture)
– They use a huge number of features without requiring as

much computation as seems to be necessary (second half).

A hierarchy of model classes

• Some model classes can be arranged in a hierarchy
of increasing complexity.

• How to pick the best level in the hierarchy for
modeling a given dataset?

A way to choose a model class
• A low error rate on unseen data.

– This is called “structural risk minimization”
• A guarantee of the following form is helpful:

Test error rate =< train error rate + f(N, h, p)
Where N = size of training set,

h = measure of the model complexity,
p = the probability that this bound fails

We need p to allow for really unlucky test sets.
• Then we choose the model complexity that minimizes the

bound on the test error rate.

Preventing overfitting when using big sets of features
• Suppose we use a big set of features to ensure

that two classes are linearly separable. What is
the best separating line?

• The Bayesian answer is to use them all
(including ones that do not separate the data.)

• Weight each line by its posterior probability (how
well it fits the data and how well it fits the prior).

• Is there an efficient way to approximate the
correct Bayesian answer?

• A Bayesian Interpretation: Using the maximum
margin separator often gives a pretty good
approximation to using all separators weighted
by their posterior probabilities.

Support Vector Machines
• The line that maximizes the minimum

margin is a good bet.
– The model class of “hyper-planes with a margin m”

has a low VC dimension if m is big.

• This maximum-margin separator is
determined by a subset of the datapoints.
– Datapoints in this subset are called

“support vectors”.
– It is useful computationally if only few

datapoints are support vectors, because
the support vectors decide which side of
the separator a test case is on.

The support vectors are
indicated by the circles around
them.

Large margin500 Chapter 14. Kernels

Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin.
Right: a separating hyper-plane with small margin.

R1

R0

y = 0

y > 0

y < 0

w

x

r = f(x)
∥w∥

x⊥

−w0
∥w∥

(a)

y = 0

y = 1

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

(b)

Figure 14.12 (a) Illustration of the geometry of a linear decision boundary in 2d. A point x is classified
as belonging in decision region R1 if f(x) > 0, otherwise it belongs in decision region R2; here f(x)
is known as a discriminant function. The decision boundary is the set of points such that f(x) = 0.
w is a vector which is perpendicular to the decision boundary. The term w0 controls the distance of
the decision boundary from the origin. The signed distance of x from its orthogonal projection onto the
decision boundary, x⊥, is given by f(x)/||w||. Based on Figure 4.1 of (Bishop 2006a). (b) Illustration of
the soft margin principle. Points with circles around them are support vectors. We also indicate the value
of the corresponding slack variables. Based on Figure 7.3 of (Bishop 2006a).

500 Chapter 14. Kernels

Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin.
Right: a separating hyper-plane with small margin.

R1

R0

y = 0

y > 0

y < 0

w

x

r = f(x)
∥w∥

x⊥

−w0
∥w∥

(a)

y = 0

y = 1

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

(b)

Figure 14.12 (a) Illustration of the geometry of a linear decision boundary in 2d. A point x is classified
as belonging in decision region R1 if f(x) > 0, otherwise it belongs in decision region R2; here f(x)
is known as a discriminant function. The decision boundary is the set of points such that f(x) = 0.
w is a vector which is perpendicular to the decision boundary. The term w0 controls the distance of
the decision boundary from the origin. The signed distance of x from its orthogonal projection onto the
decision boundary, x⊥, is given by f(x)/||w||. Based on Figure 4.1 of (Bishop 2006a). (b) Illustration of
the soft margin principle. Points with circles around them are support vectors. We also indicate the value
of the corresponding slack variables. Based on Figure 7.3 of (Bishop 2006a).

Training a linear SVM
• To find the maximum margin separator, we have to solve the

following optimization problem:

• This is tricky but it’s a convex problem. There is only one
optimum and we can find it without fiddling with learning rates
or weight decay or early stopping.
– Don’t worry about the optimization problem. It has been

solved. Its called quadratic programming.
– It takes time proportional to N^2 which is bad for big

datasets
• so for big datasets we end up doing approximate optimization!

possibleassmallasisand

casesnegativeforb

casespositiveforb
c

c

2||||

1.

1.

w

xw

xw

-<+

+>+

Testing a linear SVM
• The separator is defined as the set of points for

which:

casenegativeaitssaybifand

casepositiveaitssaybifso

b

c

c

0.

0.

0.

<+

>+

=+

xw

xw

xw

What to do if there is no separating plane
• Use a bigger set of features.

– Makes the computation slow, but
the “kernel” trick makes the
computation fast even with many
features.

• Extend definition of maximum
margin to allow non-separating
planes.
– Can be done by using “slack”

variables

500 Chapter 14. Kernels

Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin.
Right: a separating hyper-plane with small margin.

R1

R0

y = 0

y > 0

y < 0

w

x

r = f(x)
∥w∥

x⊥

−w0
∥w∥

(a)

y = 0

y = 1

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

(b)

Figure 14.12 (a) Illustration of the geometry of a linear decision boundary in 2d. A point x is classified
as belonging in decision region R1 if f(x) > 0, otherwise it belongs in decision region R2; here f(x)
is known as a discriminant function. The decision boundary is the set of points such that f(x) = 0.
w is a vector which is perpendicular to the decision boundary. The term w0 controls the distance of
the decision boundary from the origin. The signed distance of x from its orthogonal projection onto the
decision boundary, x⊥, is given by f(x)/||w||. Based on Figure 4.1 of (Bishop 2006a). (b) Illustration of
the soft margin principle. Points with circles around them are support vectors. We also indicate the value
of the corresponding slack variables. Based on Figure 7.3 of (Bishop 2006a).

𝜉 = 𝑡% − 𝑦 𝒙%

14.5. Support vector machines (SVMs) 497

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

L2

ε−insensitive

huber

(a)

x

y(x)

y − ϵ

y

y + ϵ

ξ∗ > 0

ξ > 0

(b)

Figure 14.10 (a) Illustration of ℓ2, Huber and ϵ-insensitive loss functions, where ϵ = 1.5. Figure generated
by huberLossDemo. (b) Illustration of the ϵ-tube used in SVM regression. Points above the tube have
ξi > 0 and ξ∗

i = 0. Points below the tube have ξi = 0 and ξ∗
i > 0. Points inside the tube have

ξi = ξ∗
i = 0. Based on Figure 7.7 of (Bishop 2006a).

originally designed for binary classification, but can be extended to regression and multi-class
classification as we explain below.
Note that SVMs are very unnatural from a probabilistic point of view. First, they encode

sparsity in the loss function rather than the prior. Second, they encode kernels by using an
algorithmic trick, rather than being an explicit part of the model. Finally, SVMs do not result in
probabilistic outputs, which causes various difficulties, especially in the multi-class classification
setting (see Section 14.5.2.4 for details).
It is possible to obtain sparse, probabilistic, multi-class kernel-based classifiers, which work as

well or better than SVMs, using techniques such as the L1VM or RVM, discussed in Section 14.3.2.
However, we include a discussion of SVMs, despite their non-probabilistic nature, for two main
reasons. First, they are very popular and widely used, so all students of machine learning should
know about them. Second, they have some computational advantages over probabilistic methods
in the structured output case; see Section 19.7.

14.5.1 SVMs for regression

The problem with kernelized ridge regression is that the solution vector w depends on all the
training inputs. We now seek a method to produce a sparse estimate.
Vapnik (Vapnik et al. 1997) proposed a variant of the Huber loss function (Section 7.4) called

the epsilon insensitive loss function, defined by

Lϵ(y, ŷ) !
{

0 if |y − ŷ| < ϵ
|y − ŷ| − ϵ otherwise

(14.46)

This means that any point lying inside an ϵ-tube around the prediction is not penalized, as in
Figure 14.10.
The corresponding objective function is usually written in the following form

J = C
N∑

i=1

Lϵ(yi, ŷi) +
1

2
||w||2 (14.47)

14.5. Support vector machines (SVMs) 497

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

L2

ε−insensitive

huber

(a)

x

y(x)

y − ϵ

y

y + ϵ

ξ∗ > 0

ξ > 0

(b)

Figure 14.10 (a) Illustration of ℓ2, Huber and ϵ-insensitive loss functions, where ϵ = 1.5. Figure generated
by huberLossDemo. (b) Illustration of the ϵ-tube used in SVM regression. Points above the tube have
ξi > 0 and ξ∗

i = 0. Points below the tube have ξi = 0 and ξ∗
i > 0. Points inside the tube have

ξi = ξ∗
i = 0. Based on Figure 7.7 of (Bishop 2006a).

originally designed for binary classification, but can be extended to regression and multi-class
classification as we explain below.

Note that SVMs are very unnatural from a probabilistic point of view. First, they encode
sparsity in the loss function rather than the prior. Second, they encode kernels by using an
algorithmic trick, rather than being an explicit part of the model. Finally, SVMs do not result in
probabilistic outputs, which causes various difficulties, especially in the multi-class classification
setting (see Section 14.5.2.4 for details).

It is possible to obtain sparse, probabilistic, multi-class kernel-based classifiers, which work as
well or better than SVMs, using techniques such as the L1VM or RVM, discussed in Section 14.3.2.
However, we include a discussion of SVMs, despite their non-probabilistic nature, for two main
reasons. First, they are very popular and widely used, so all students of machine learning should
know about them. Second, they have some computational advantages over probabilistic methods
in the structured output case; see Section 19.7.

14.5.1 SVMs for regression

The problem with kernelized ridge regression is that the solution vector w depends on all the
training inputs. We now seek a method to produce a sparse estimate.

Vapnik (Vapnik et al. 1997) proposed a variant of the Huber loss function (Section 7.4) called
the epsilon insensitive loss function, defined by

Lϵ(y, ŷ) !
{

0 if |y − ŷ| < ϵ
|y − ŷ| − ϵ otherwise

(14.46)

This means that any point lying inside an ϵ-tube around the prediction is not penalized, as in
Figure 14.10.

The corresponding objective function is usually written in the following form

J = C
N∑

i=1

Lϵ(yi, ŷi) +
1

2
||w||2 (14.47)

Introducing slack variables
• Slack variables are non-negative. When greater than zero they

allow us to cheat by putting the plane closer to the datapoint
than the margin. We need to minimize the amount of cheating.
This means we have to pick a value for lamba (this sounds
familiar!)

possibleassmallasand

callforwith

casesnegativeforb

casespositiveforb

c

c

c

cc

cc

å+

³

+-£+

-+³+

xl

x

x

x

2
||||

0

1.

1.

2w

xw

xw

A picture of the best plane with a slack variable

The story so far
• Using a large set of non-adaptive features, we might make the

two classes linearly separable.
– But just fitting any separating plane, it will not generalize well

to new cases.
• Fitting the separating plane maximizing the margin (minimum

distance to any data points), gives better generalization.
– Intuitively, maximizing the margin squeezes the surplus

capacity that came from using a high-dimensional feature
space.

• This isjustified by a lot of clever mathematics which shows that
– large margin separators have lower VC dimension.
– models with lower VC dimension have a smaller gap between training and test error rates.

How to make a plane curved
• Fitting hyperplanes as separators is

mathematically easy.
– The mathematics is linear.

• Replacing the raw input variables
with a much larger set of features we
get a nice property:
– A planar separator in high-D

feature space is a curved
separator in the low-D input
space. A planar separator in a 20-D

feature space projected back
to the original 2-D space

A potential problem and a magic solution
• Mapping input vectors into a very high-D feature space, surely

finding the maximum-margin separator is computationally
intractable?
– The mathematics is all linear, but the vectors have a huge

number of components.
– Taking the scalar product of two vectors is expensive.

• The way to keep things tractable is “the kernel trick”

• The kernel trick makes your brain hurt when you first learn
about it, but it is actually simple.

What the kernel trick achieves
• All computations to find the maximum-margin separator is

expressed as scalar products between pairs of datapoints (in
high-D feature space).

• These scalar products are the only part of the computation that
depends on the dimensionality of the high-D space.
– We need a fast way to do the scalar products to solve the

learning problem in the high-D space.
• The kernel trick is a magic way of doing scalar products a lot

faster.
– It relies on choosing a way of mapping to the high-D feature

space that allows fast scalar products.

Dealing with the test data
• Choosing a high-D mapping for which the kernel trick works,

we do not use much CPU time for the high-D when finding the
best hyper-plane.
– We cannot express the hyperplane by using its normal

vector in the high-D space because this vector is huge.
– Luckily, we express it in terms of the support vectors.

• What about the test data. We cannot compute the scalar
product because its in the high-D space.)(. xw f

• Deciding which side of the separating hyperplane a test point
lies on, requires a scalar product .

• We express this scalar product as a weighted average of
scalar products using stored support vectors
– Could be slow many support vectors.

)(. xw f

The classification rule
• The classification rule is simple:

• The cleverness is in selecting the support vectors maximizing
the margin and computing the weight for each support vector.

• Need choosing a good kernel function and maybe choosing a
lambda for non-separable cases.

å >+
SVs

stest
s xxKwbias

e
0),(

The set of
support vectors

Performance
• SVM work very well in practice.

– The user must choose the kernel function and its
parameters, but the rest is automatic.

– The test performance is very good.
• They can be expensive in time and space for big datasets

– The computation of the maximum-margin hyper-plane
depends on the square of number of training cases.

– Need storing all the support vectors.
• SVM’s are good if you have no idea about what structure to

impose.
• The kernel trick can also be used for PCA in a high-D space,

thus giving a non-linear PCA in the original space.

SVMs are Perceptrons!
• SVM’s use each training case, x, to define a feature K(x, .)

where K is user chosen.
– So the user designs the features.

• SVM do “feature selection” by picking support vectors, and
learn feature weighting from a big optimization problem.

• So an SVM is a clever way to train a standard perceptron.
– All that a perceptron cannot do, cannot be done by SVM’s

(but it’s a long time since 1969 so people have forgotten
this).

• SVM DOES:
– Margin maximization
– Kernel trick
– Sparse

•NOT USED

