Introduction to Machine Learning

Lecture 6: Sparse processing



Sparse processing

Linear regression (with sparsity constraints)

Sparse algorithms : convex optimization, greedy search,
Bayesian analysis

Applications : compression, parameter estimation, signal
reconstruction, classification, Ex. Beamforming

Low-dimensional understanding of high-dimensional
data sets



Sparse signals /compressive signals are important

« We don’t need to sample at the Nyquist rate

« Many signals are sparse, but we have solved them under non-sparse
assumptions
— Beamforming
— Fourier transform
— Layered structure

* Inverse methods are inherently sparse: We seek the simplest way to
describe the data

But all this requires new developments

- Mathematical theory

- New algorithms (interior point solvers, convex optimization)
- Signal processing

- New applications/demonstrations



Slide 3 from Lecture-3 (Regression)

Linear Basis Function Models (2)

Generally
M—-1
Y, w) = > w;g;(x) = w'p(x)
j=0

where ¢;(x) are known as basis functions.
Typically, ¢,(x) =1, so that w, acts as a bias.
In the simplest case, we use linear basis functions :

ha(x) = Xq.



Compressed sensing formulation

b A X €
nxl nxm | |
measurements —
¥ nonzero
entries, ||
r<<m
. mx1
e bisn X 1 measurement vector sparse signal

* A is n X m measurement/Dictionary matrix, m >> n
» x is m X 1 desired vector which is sparse with » nonzero entries

e g is the measurement noise

* An underdetermined system of equations has many solutions
« Ultilizing x is sparse it can often be solved
* This depends on the structure of A (RIP!)



Different applications, but the same math
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Frequency signal
Compressed-Image
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Reflection sequence
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Random matrix
Beam weight
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Time-signal
Pixel-image

Source-location
Layer-reflector



Compressive Sensing / Sparse Recovery

Alternative viewpoint: We try to find the sparsest solution which
explains our noisy measurements

min |l x I, subjectto Il Ax—-bll,<¢&

X

Here, the /,-norm is a shorthand notation for counting the number of
non-zero elements in x.

nxl
measurements

¥ nonzero
entries,
r<<m




[ -Norms

1/p

M
Ixll,=| ¥ix, | for p>0

m

m=1

« Classic choices for p are 1, 2, and .

* We will abuse notation and allow also p = 0.
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Solutions

Regularized Inverse
Orthogonal matching pursuit (OMP)
Basis pursuit denoising

Sparse Bayesian Learning



Inverse Techniques

» Forthe systems of equations Ax = b, the solution set is
characterized by {x, : x, = A* y + v; v e N(A)}, where N(A)
denotes the null space of A and A* = AT(AAT )2,

e Minimum Norm solution: The minimum ¢, norm solution

X, =A*bis a popular solution

» Noisy Case: regularized 4, norm solution often employed and
is given by

Xreg = AT(AAT +A1)2b



Greedy Search Method: Matching
Pursuit

» Select a column that is most aligned with the current residual
b A

Q:

o) r(o)z b

o S0: set of indices selected

+

HEEEERY

Practical stop criteria:

a -Tr(i_l)

[=argmaxi|a,

1<j<m

» Remove its contribution from the residual
o Update S: If [¢S"™,S” =S"Y Ui} . Or, keep S?the same

> Update r. = P;r("l) — pli-1) _a[a[Tr(f—l)

LT TTTTTTTITTITIT]X>

e Certain # iterations

. Hf(l) smaller than
2

threshold




Amplitude Distribution

e If the magnitudes of the non-zero elements in x, are highly
scaled, then the canonical sparse recovery problem

should be easie

Easy

I.

T

X, al’ ]

scaled coefficients (easy)

Hard

.
G

T
i

uniform coefficients (hard)

For strongly scaled coefficients, Matching Pursuit (or
Orthogonal MP) works better. It picks one coefficient at a time.



Basis Pursuit / LASSO

The /,-norm minimization is not convex and requires combinatorial
search.

We convexify by substituting the /,-norm in place of the /,-norm.

min |l x |l subjectto Ax—-Dbll,<¢&

X

This can also be formulated as

minlIxIl, +A 11 Ax-b I,
X

IlelIl”AX—b”z + wll x|l

min |l Ax-b ll, subjectto IIxIl,<o



Basis Pursuit / LASSO

Why is it legal to substitute the /,-norm for the /,-norm??

What are the conditions such that the two problems have the same
solution?

min |l x I, min |l x |l
X X

subjectto Il Ax-bll,<e subjectto lAx-bll,<¢

Restricted Isometry Property (RIP)

(I =do)llull2 < [Asullz < (1 4 d5)llull2

15



The unconstrained -LASSO- formulation

Constrained formulation of the £1-norm minimization problem:

X¢, (€) = arg min||x||1 subject to ||y — Ax|]s < e
xeCN

Unconstrained formulation in the form of least squares optimization
with an /1-norm regularizer:

XLasso(p) = argmin [ly — Ax||5 + ul|x||1
xcCN

For every € exists a 11 so that the two formulations are equivalent

Regqularization parameter : L




Regularization parameter selection

The objective function of the LASSO problem:
L(x, 1) = lly — Ax|3 + pIx]lx

IS minimized if
0 € OxL(x, i)

where the subgradient is
OxL(x, p) = 2A" (Ax — y) + pd||x|1
thus, the global minimum is attained if

e e Ox|li, r=2A"(y — AX)



Regularization parameter selection

The global minimum is attained if
1 . H ~
w7 e Bk, r=2AH (y - AR)
The subgradient for the /1-norm is the set of vectors
Oullxlln = {s: lIsfloe <1, s"x = |Ix]l1}

which implies

thus,

|r,-| < u, Xi= f(2) = || af(x)

_ -1

Figure 3: The absolute value function (left), and its subdifferential df(z) as a
function of x (right).



Lasso Path




Solving an underdetermined problem

M < N

Y = AmxnX, x: K-sparse, K < N

k-norm minimization (min energy) lo-norm minimization (min sparsity)

xrgalcr']\/||x||2 subject toy = Ax min ||x||o subject to y = Ax

xeCN

[1xIlo

~1
x = A" (AAH) y X: combinatorial intractable problem

The h-solution has minimum energy while the fy-solution is sparse



Compressive sensing

x: K-sparse, K K N, K < M
— A/\/l NX, M < N7 ’ ’

d g A=[a, - ,an]: [af'a)liz <1

lo-norm minimization (min sparsity)  [;-norm convex relaxation

min [|X||g subject to y = Ax - : _
xe@NH lo subj y xrgqur)vﬂxm subject to y = Ax

X2 A

I1xllo

X = argmin||x||1 subject toy = Ax
X: combinatorial intractable problem xeCN
The /1-problem is both convex and promotes sparse solutions



Enhancing sparsity

arg minJ(x) subject to ||[Ax —y||2 < €
xeCn

( N
IE = S lxl?, 0< p < 1
=1 concave

N
> In(]xil)
=1

O0<p<l

Minimization of a concave function with an iterative majorization-minimization
algorithm

S~ =1 I~ A~ —~ —~ —~



Geometrical view

Geometrical view of the lasso compared with a penalty
on the squared weights
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Applications

« MEG/EEG/MRI source location (earthquake location)
« Channel equalization

« Compressive sampling (beyond Nyquist sampling!)
 Compressive camera!

Lots of low hanging fruits
« Beamforming
 Fathometer

« Geoacoustic inversion

» Sequential estimation

« Bayesian

» Grid free methods

source space (x) sensor space (b)



Beamforming / DOA estimation

DOA estimation with sensor arrays

Vm = anej%rmsin 0,
1'90° n
me [1,---, M]: sensor
ne[l,---,N]: look direction
y = Ax
y:[_yl,"',_)/M]T, X:[X]_,"',XN]T
p1(rt) = x4 ol (wt-kyr) p,(r,t) = X, ol (wt-k,r)
A = [al7"' 7aN]
x € C, 6 €[-90°,90°] 1 . e, g _2 T
= — S rsiny ejTWrMsm n]
2 dn [ej A ) )
k= —="sin 0, A:wavelength VM

A
The DOA estimation is formulated as a linear problem



Sparse representation of the DOA estimation problem

Underdetermined problem

y=Ax, M<N

Prior information

x: K-sparse, K < N

| A

N
Ixllo=> Lero=K
n=1

Lo

n Not really a norm: [ax[lo = [Ixllo # |alllxllo

There are only few sources with unknown locations and amplitudes



Direction of arrival estimation

Plane waves from a source/interferer
impinging on an array/antenna

True DOA is sparse in the angle domain

92{0) ,0,91,0,"’ a0a92a0)'°' ,0}




Conventional beamforming
Plane wave weight vector w; = [1, e—esin(8i) ... ,e—z(N—l)sin(Oi)]T

B(6) = [w"(6)bl?
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Conventional beamforming

Equivalent to solving the #; problem with A = [wy,---

90"
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A is an overcomplete dictionary of candidate DOA vectors. Columns

span —90° to 90° in steps of 1° (M = 181).




/1 minimization
In contrast £; minimization provides a sparse solution with exact recovery:

min ||x||1 subject to Ax=Db
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Resolving closely spaced signals
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Resolving closely spaced signals

{1 minimization
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CS approach to geophysical data analysis

CS beamforming
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CS fathometer o CS matched field
CS Sound speed estimation
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Resources

Compressed

Simon Foucart

Holger Rauhut . Se n Si n g

A Mathematical B coryond ppiti

Sparse and

Introduction to Redundant
Compressive Representations
Sensing

@ Birkhauser




Bayesian interpretation of LASSO

MAP estimate via the unconstrained -LASSO- formulation

XLasso() = argmin [ly — Ax||5 + ul|x|l1
xcCN

Bayes rule:

_ plylx)p(x)

MAP estimate:
Xmap = arg max In p(x|y)
X

= argmax {In p(y[x) +In p(x)]

= argmin [—In p(y|x) — In p(x)]



MAP estimate via the unconstrained -LASSO- formulation

Bayes rule:
p(y|x)p(x)

p(y)

p(xly) =
MAP estimate:
XMAP = argxmin [— In p(y|x) — In p(x)]
Gaussian likelihood:

2
lly—Axl3

p(ylx) e o2

Laplace-like prior:

MAP estimate (LASSO):

~ . ~ 0
Xmap=arg min [[ly — Ax||3 + ulx[|l1]=XLasso (1), 1= v
X



MAP— LASSO path

Likelihood (noise complex Gaussian) p(ylx)« exp[_—”Ax —2y 2 J
o
Prior (Laplacian) p(x) xexp (_M)
v
Bayes rule p(xly) o« p(ylx)p(x) CXp[— ||AX - y||§ _ ||x||1 )
o’ v

Maximum A Posteriori (MAP)
Xvap = argmin [[ly — Ax|[|3 + pllx|l1] = Xrasso(w),

LASSO=Least Absolute Shrinkage and Selection Operator

M=7 6 |_9_
u large: x=0 o We can predict the jump in support
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