
Introduction to Machine Learning 

Lecture 6: Sparse processing 



Sparse processing 

•  Linear regression (with sparsity constraints) 

•  Sparse algorithms : convex optimization, greedy search, 
Bayesian analysis 

•  Applications : compression, parameter estimation, signal 
reconstruction, classification, Ex. Beamforming 

Low-dimensional understanding of high-dimensional 
data sets 



Sparse signals /compressive signals are important 

•  We don’t need to sample at the Nyquist rate 
•  Many signals are sparse, but we have solved them under non-sparse 

assumptions 
–  Beamforming 
–  Fourier transform 
–  Layered structure  

•  Inverse methods are inherently sparse: We seek the simplest way to 
describe the data 

But all this requires new developments 
-  Mathematical theory 
-  New algorithms (interior point solvers, convex optimization) 
-  Signal processing 
-  New applications/demonstrations 



Slide 3 from Lecture-3 (Regression) 



Compressed sensing formulation 

•  An underdetermined system of equations has many solutions 
•  Utilizing x is sparse it can often be solved 
•  This depends on the structure of A (RIP!) 



Different applications, but the same math 

b A x 
Frequency signal  DFT matrix Time-signal 

Compressed-Image Random matrix Pixel-image 
 signals  Beam weight  Source-location 

Reflection sequence  Time delay  Layer-reflector 
 



Compressive Sensing / Sparse Recovery 
•  Alternative viewpoint: We try to find the sparsest solution which 

explains our noisy measurements 

•  Here, the l0-norm is  a shorthand notation for counting the number of 
non-zero elements in x.  
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|| x ||0 subject to ||Ax−b ||2< ε
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  for  p > 0

•  Classic choices for p are 1, 2, and ∞. 

•  We will abuse notation and allow also p = 0. 
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Solutions 

•  Regularized Inverse  

•  Orthogonal matching pursuit (OMP) 

•  Basis pursuit denoising 

•  Sparse Bayesian Learning 







 

y If the magnitudes of the non-zero elements in x0 are highly 
scaled, then the canonical sparse recovery problem 
should be easier. 
 
 
 
 

 
 

 
 

y The (approximate) Jeffreys distribution produces 
sufficiently scaled coefficients such that best solution can 
always be easily computed. 

Amplitude Distribution 

uniform coefficients (hard) 

x0 

scaled coefficients (easy) 

x0 

For strongly scaled coefficients, Matching Pursuit (or 
Orthogonal MP) works better. It picks one coefficient at a time. 
 

Easy Hard 



Basis Pursuit / LASSO 

•  The l0-norm minimization is not convex and requires combinatorial 
search. 

•  We convexify by substituting the l1-norm in place of the l0-norm. 

 
•  This can also be formulated as 

min
x

|| x ||1 +λ ||Ax -b ||2
min
x

||Ax -b ||2 + µ || x ||1

min
x

||Ax -b ||2 subject to || x ||1< δ

min
x

|| x ||1 subject to ||Ax−b ||2< ε



Basis Pursuit / LASSO 
•  Why is it legal to substitute the l1-norm for the l0-norm? 
•  What are the conditions such that the two problems have the same 

solution? 
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min
x

|| x ||1
subject to || Ax − b ||2< ε

min
x

|| x ||0
subject to || Ax − b ||2< ε

Restricted Isometry Property (RIP) 
 



The unconstrained -LASSO- formulation

Constrained formulation of the `1-norm minimization problem:

b

x`1(✏) = argmin
x2CN

kxk1 subject to ky � Axk2  ✏

Unconstrained formulation in the form of least squares optimization
with an `1-norm regularizer:

b

xLASSO(µ) = argmin
x2CN

ky � Axk22 + µkxk1

For every ✏ exists a µ so that the two formulations are equivalent

A. Xenaki (DTU/SIO) Paper F 42/40

Regularization parameter :  µ



Regularization parameter selection

The objective function of the LASSO problem:

L(x, µ) = ky � Axk22 + µkxk1

is minimized if
0 2 @

x

L(x, µ)

where the subgradient is

@
x

L(x, µ) = 2AH (Ax� y) + µ@
x

kxk1

thus, the global minimum is attained if

µ�1
r 2 @

x

kxk1, r = 2AH (y � A

b

x)
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Regularization parameter selection

The global minimum is attained if

µ�1
r 2 @

x

kxk1, r = 2AH (y � A

b

x)

The subgradient for the `1-norm is the set of vectors

@
x

kxk1 =
n

s : ksk1  1, sHx = kxk1
o

which implies
si =

xi
|xi | , xi 6= 0

|si |  1, xi = 0,

thus,
|ri | = µ, bxi 6= 0
|ri |  µ, bxi = 0

A. Xenaki (DTU/SIO) Paper F 46/40
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Figure 1: At x1, the convex function f is differentiable, and g1 (which is the
derivative of f at x1) is the unique subgradient at x1. At the point x2, f is not
differentiable. At this point, f has many subgradients: two subgradients, g2 and g3,
are shown.

epi f

(g,−1)

Figure 2: A vector g ∈ Rn is a subgradient of f at x if and only if (g,−1) defines
a supporting hyperplane to epi f at (x, f(x)).

f(z) = |z| ∂f(x)

z

x

1

−1

Figure 3: The absolute value function (left), and its subdifferential ∂f(x) as a
function of x (right).
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Lasso Path 
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Solving an underdetermined problem

y = AM⇥Nx,
M < N

x: K-sparse, K ⌧ N

l2-norm minimization (min energy)

min
x2CN

kxk2 subject to y = Ax

||x||1

x2

x1

x=xs=[x1, 0] 

y=Axy=Ax

||x||2

x1

x2

x

xs=[x1, 0]

||x||0

x2

x1

y=Ax

x=xs=[x1, 0] 

x̂ = A

H
⇣
AA

H
⌘�1

y

l0-norm minimization (min sparsity)

min
x2CN

kxk0 subject to y = Ax

||x||1

x2

x1

x=xs=[x1, 0] 

y=Axy=Ax

||x||2

x1

x2

x

xs=[x1, 0]

||x||0

x2

x1

y=Ax

x=xs=[x1, 0] 

x̂: combinatorial intractable problem

The l2-solution has minimum energy while the l0-solution is sparse
A. Xenaki (SIO/DTU) Compressive beamforming, JASA 2014 UA 2014 5 / 16



Compressive sensing

y = AM⇥Nx, M < N,
x: K-sparse, K ⌧ N, K < M

A = [a1, · · · , aN ] : |aHi aj |i 6=j < 1

l0-norm minimization (min sparsity)

min
x2CN

kxk0 subject to y = Ax

||x||1

x2

x1

x=xs=[x1, 0] 

y=Axy=Ax

||x||2

x1

x2

x

xs=[x1, 0]

||x||0

x2

x1

y=Ax

x=xs=[x1, 0] 

x̂: combinatorial intractable problem

l1-norm convex relaxation

min
x2CN

kxk1 subject to y = Ax

||x||1

x2

x1

x=xs=[x1, 0] 

y=Axy=Ax

||x||2

x1

x2

x

xs=[x1, 0]

||x||0

x2

x1

y=Ax

x=xs=[x1, 0] 

x̂ = argmin
x2CN

kxk1 subject to y = Ax

The l1-problem is both convex and promotes sparse solutions
A. Xenaki (SIO/DTU) Compressive beamforming, JASA 2014 UA 2014 6 / 16



Enhancing sparsity

argmin
x2Cn

J(x) subject to kAx� yk2  ✏

J(x) =

8

>
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>

:

kxkpp =
N
P

i=1
|xi |p, 0 < p < 1

N
P

i=1
ln (|xi |)

, concave

p = 2 p = 1 0 < p < 1

y=Ax

||x||2

x1

x2

x
||x||1

x2

x1

x

y=Ax

||x||p,0<p<1

x2

x1

y=Ax

x

Minimization of a concave function with an iterative majorization-minimization

algorithm
A. Xenaki (DTU/SIO) Papers C, D 20/40



Geometrical view 



Applications 
•  MEG/EEG/MRI source location (earthquake location) 
•  Channel equalization 
•  Compressive sampling (beyond Nyquist sampling!) 
•  Compressive camera! 

Lots of low hanging fruits 
•  Beamforming 
•  Fathometer 
•  Geoacoustic inversion 
•  Sequential estimation 
•  Bayesian 
•  Grid free methods 



Beamforming / DOA estimation  

DOA estimation with sensor arrays
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The DOA estimation is formulated as a linear problem
A. Xenaki (DTU/SIO) 10 / 40



Sparse representation of the DOA estimation problem

Underdetermined problem

y = Ax, M < N

Prior information

x: K-sparse, K ⌧ N

xn

n

kxk0 =
N
X

n=1

1xn 6=0 = K

Not really a norm: kaxk0 = kxk0 6= |a|kxk0

There are only few sources with unknown locations and amplitudes

A. Xenaki (DTU/SIO) 11 / 40















CS approach to geophysical data analysis

CS of Earthquakes

Yao, GRL 2011, PNAS 2013

Sequential CS

Mecklenbrauker, TSP 2013

a) Sequential h0=0.5

5 10 15 20 25 30 35 40 45 50
0

45

90

135

180

Time

DO
A 

(d
eg

)

 

 

b) Sequential h0=0.05
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CS beamforming

Xenaki, JASA 2014, 2015
Gerstoft JASA 2015

CS fathometer

Yardim, JASA 2014

CS Sound speed estimation

Bianco, JASA 2016 Gemba, JASA 2016

CS matched field



Resources 



Bayesian interpretation of LASSO 

MAP estimate via the unconstrained -LASSO- formulation

b

xLASSO(µ) = argmin
x2CN

ky � Axk22 + µkxk1

Bayes rule:

p(x|y) = p(y|x)p(x)
p(y)

MAP estimate:

b

xMAP = argmax
x

ln p(x|y)

= argmax
x

[ln p(y|x) + ln p(x)]

= argmin
x

[� ln p(y|x)� ln p(x)]

A. Xenaki (DTU/SIO) Paper F 43/40



MAP estimate via the unconstrained -LASSO- formulation
Bayes rule:

p(x|y) = p(y|x)p(x)
p(y)

MAP estimate:

b

xMAP = argmin
x

[� ln p(y|x)� ln p(x)]

Gaussian likelihood:

p(y|x) / e�
ky�Axk22

�2

Laplace-like prior:

p(x) /
N
Y

i=1

e�
p

(<xi )
2+(=xi )

2

⌫ = e�
kxk1
⌫

MAP estimate (LASSO):

b

xMAP=argmin
x

⇥

ky � Axk22 + µkxk1
⇤

=bxLASSO(µ), µ =
�2

⌫

A. Xenaki (DTU/SIO) Paper F 44/40



MAP– LASSO path 
Likelihood (noise complex Gaussian) p(y | x)∝ exp −

Ax − y
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Maximum A Posteriori (MAP)

solutions. The choice of the (unconstrained) LASSO for-
mulation (8) over the constrained formulation (7) allows
the sparse reconstruction method to be interpreted in a
statistical Bayesian setting, where the unknowns x and
the observations y are both treated as stochastic (ran-
dom) processes, by imposing a prior distribution on the
solution vector x which promotes sparsity14–16.

The Bayes theorem32 connects the posterior distribu-
tion p(x|y), of the model parameters x conditioned on
the data y, with the data likelihood p(y|x), the prior dis-
tribution of the model parameters p(x) and the marginal
distribution of the data p(y),

p(x|y) = p(y|x)p(x)
p(y)

. (9)

From the Bayes rule (9), the maximum a posteriori
(MAP) estimate is,

x̂MAP = argmax
x

ln p(x|y)

= argmax
x

[ln p(y|x) + ln p(x)]

= argmin
x

[� ln p(y|x)� ln p(x)] ,

(10)

where the marginal distribution of the data p(y) is omit-
ted since it is independent of the model x.

Based on a complex Gaussian noise model with i.i.d.
real and imaginary parts, n ⇠ CN (0,�2

I), the likelihood
of the data is also complex Gaussian distributed p(y|x) ⇠
N (Ax,�

2
I),

p(y|x) / e

� ky�Axk22
�

2
. (11)

Assuming that the coe�cients of the solution vector x

have i.i.d. Laplace (i.e., double exponential) priors33,

p(x) /
N
Y

i=1

e

(� |x
i

|
⌫

) = e

(� kxk1
⌫

)
, (12)

the LASSO estimate (8) can be interpreted as the maxi-
mum a posteriori (MAP)estimate,

x̂MAP = argmin
x

⇥

ky �Axk22 + µkxk1
⇤

= x̂LASSO(µ),

(13)
where µ = �

2
/⌫. The Laplace prior distribution encour-

ages sparse solutions with many zero components since it
concentrates more mass near 0 than in the tails. There-
fore, the model selected by the LASSO optimization al-
gorithm has the highest posterior probability under the
Bayesian framework.

V. REGULARIZATION PARAMETER SELECTION

The choice of the regularization parameter µ in (8),
also called LASSO shrinkage parameter, is crucial as it
controls the balance between the degree of sparsity of
the estimated solution and the data fit determining the
quality of the reconstruction.

For large µ, the solution is very sparse (with small `1-
norm) but the data fit is poor. As µ decreases towards
zero, the data fit is gradually improved since the cor-
responding solutions become less sparse. Note that for
µ = 0 the solution (8) becomes the unconstrained least
squares solution.

A. The LASSO path

As the regularization parameter µ evolves from 1 to 0,
the LASSO solution (8) changes continuously following
a piecewise smooth trajectory referred to as the solution
path or the LASSO path18,19,34. In this section, we show
that the singularity points in the LASSO path are as-
sociated with a change in the degree of sparsity of the
solution and can be used to indicate a proper value for
µ.
We obtain the full solution path using convex optimiza-

tion to solve (8) iteratively for di↵erent values of µ. We
use the cvx toolbox for disciplined convex optimization
which is available in the Matlab environment. It uses
interior point solvers to obtain the global solution of a
well-defined optimization problem17,28,29.

Let L(x, µ) denote the objective function in (8),

L(x, µ) = ky �Axk22 + µkxk1. (14)

The value x̂ minimizing (14) is found by di↵erentiation,

g(µ) = inf
x2CN

L(x, µ),

@

x

L(x, µ) = 2AH (Ax� y) + µ@

x

kxk1,
(15)

where the subdi↵erential operator @
x

is a generalization
of the partial di↵erential operator for functions that are
not di↵erentiable everywhere (Ref.29 p.338). The sub-
gradient for the `1-norm is the set of vectors defined as,

@

x

kxk1 =
�

s : ksk1  1, sHx = kxk1
 

, (16)

which implies,

si =
x
i

|x
i

| , xi 6= 0
|si| < 1, xi = 0,

(17)

i.e., for every active element xi 6= 0 of the vector x 2
CN , the corresponding element of the subgradient is a
unit vector in the direction of xi. For every null element
xi = 0 the corresponding element of the subgradient has
amplitude less than unity. Thus, the amplitude of the
subgradient is uniformly bounded by unity, ksk1  1.
Denote,

r = 2AH (y �Ax̂) , (18)

the beamformed residual vector for the estimated solu-
tion x̂. The minimum (15) is attained if,

0 2 @

x

L(x, µ) ) r 2 µ@

x

kxk1. (19)

Then, from (17) and (19), the coe�cients ri =
2aHi (y �Ax̂) of the beamformed residual vector r 2 CN

have amplitude such that,

|ri| = µ, x̂i 6= 0
|ri| < µ, x̂i = 0,

(20)

Compressive beamforming 3

µ =
σ 2

ν

µ large: x = 0

µ small: x minumum norm

LASSO=Least Absolute Shrinkage and Selection Operator  
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We can predict the jump in support 


