Introduction to Machine Learning

Lecture 6: Sparse processing

- Linear regression (with sparsity constraints)
- Sparse algorithms : convex optimization, greedy search, Bayesian analysis
- Applications : compression, parameter estimation, signal reconstruction, classification, Ex. Beamforming

Low-dimensional understanding of high-dimensional data sets

Sparse signals /compressive signals are important

- We don't need to sample at the Nyquist rate
- Many signals are sparse, but we have solved them under non-sparse assumptions
 - Beamforming
 - Fourier transform
 - Layered structure
- Inverse methods are inherently sparse: We seek the simplest way to describe the data

But all this requires new developments

- Mathematical theory
- New algorithms (interior point solvers, convex optimization)
- Signal processing
- New applications/demonstrations

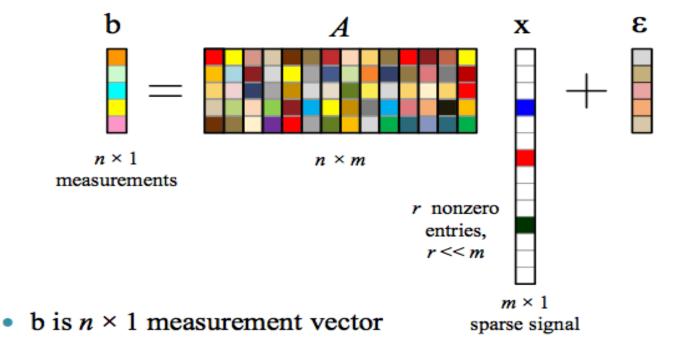
Linear Basis Function Models (2)

· Generally

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

- where $\phi_j(x)$ are known as basis functions.
- Typically, $\phi_0(x) = 1$, so that w_0 acts as a bias.
- In the simplest case, we use linear basis functions : $\phi_d(x) = x_d.$

Compressed sensing formulation

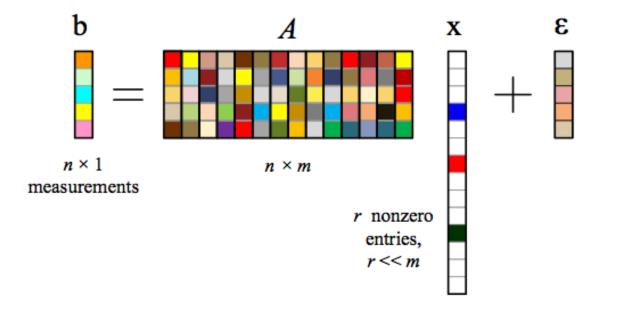


- A is $n \times m$ measurement/Dictionary matrix, m >> n
- x is $m \times 1$ desired vector which is sparse with r nonzero entries

0

- ε is the measurement noise
- An underdetermined system of equations has many solutions
- Utilizing x is sparse it can often be solved
- This depends on the structure of A (RIP!)

Different applications, but the same math



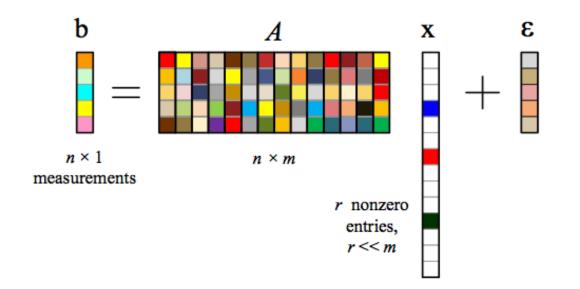
b	Α	x
Frequency signal	DFT matrix	Time-signal
Compressed-Image	Random matrix	Pixel-image
signals	Beam weight	Source-location
Reflection sequence	Time delay	Layer-reflector

Compressive Sensing / Sparse Recovery

• Alternative viewpoint: We try to find the sparsest solution which explains our noisy measurements

 $\min_{x} \|\mathbf{x}\|_{0} \qquad \text{subject to } \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2} < \varepsilon$

• Here, the *l*₀-norm is a shorthand notation for *counting the number of non-zero elements in x*.



$$\|x\|_{p} = \left(\sum_{m=1}^{M} |x_{m}|^{p}\right)^{1/p} \text{ for } p > 0$$

- Classic choices for p are 1, 2, and ∞ .
- We will abuse notation and allow also p = 0.

Norms

$$\|x\|_{p} = \left(\sum_{m=1}^{M} |x_{m}|^{p}\right)^{1/p}$$

$$x_{1}$$
equal-norm
contour
$$x_{1}$$

$$x_{2}$$

$$x_{1}$$

$$x_{2}$$

$$x_{1}$$

$$y = 1$$

$$p = 1$$

$$p > 1$$

Solutions

- Regularized Inverse
- Orthogonal matching pursuit (OMP)
- Basis pursuit denoising
- Sparse Bayesian Learning

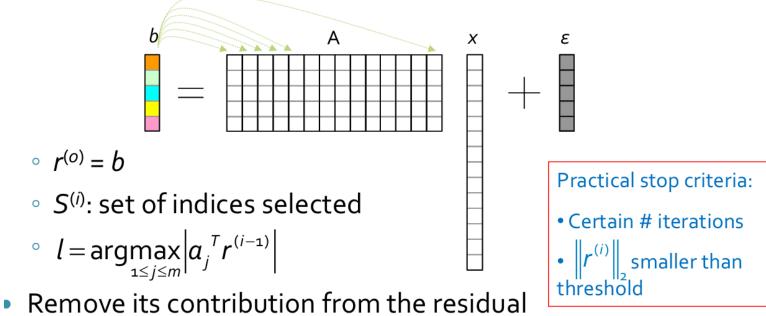
Inverse Techniques

- For the systems of equations Ax = b, the solution set is characterized by {x_s : x_s = A⁺ y + v; v ∈ N(A)}, where N(A) denotes the null space of A and A⁺ = A^T(AA^T)⁻¹.
- Minimum Norm solution: The minimum ℓ_2 norm solution $x_{mn} = A^+b$ is a popular solution
- Noisy Case: regularized ℓ_2 norm solution often employed and is given by

$$x_{reg} = A^{T}(AA^{T} + \lambda I)^{-1}b$$

Greedy Search Method: Matching Pursuit

Select a column that is most aligned with the current residual

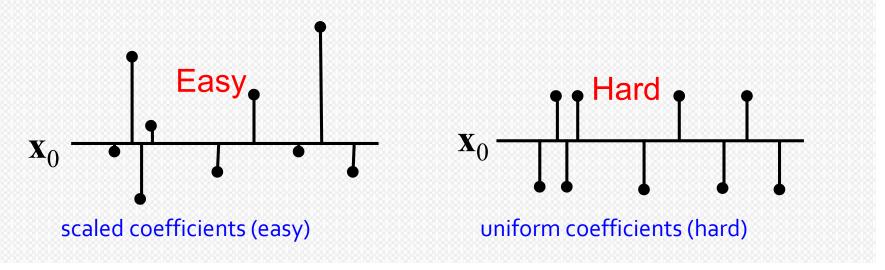


• Update $S^{(i)}$: If $l \notin S^{(i-1)}, S^{(i)} = S^{(i-1)} \bigcup \{l\}$. Or, keep $S^{(i)}$ the same

• Update
$$r^{(i)}$$
: $r^{(i)} = \mathsf{P}_{a_l}^{\perp} r^{(i-1)} = r^{(i-1)} - a_l a_l^{\top} r^{(i-1)}$

Amplitude Distribution

 If the magnitudes of the non-zero elements in x₀ are highly scaled, then the canonical sparse recovery problem should be easier.



For strongly scaled coefficients, Matching Pursuit (or Orthogonal MP) works better. It picks one coefficient at a time.

Basis Pursuit / LASSO

- The *l*₀-norm minimization is not convex and requires combinatorial search.
- We convexify by substituting the l_1 -norm in place of the l_0 -norm.

$$\min_{x} \|\mathbf{x}\|_{1} \qquad \text{subject to } \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2} < \varepsilon$$

• This can also be formulated as

$$\min_{x} \| \mathbf{x} \|_{1} + \lambda \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_{2}$$

$$\min_{x} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_{2} + \mu \| \mathbf{x} \|_{1}$$

$$\min_{x} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_{2} \qquad \text{subject to} \quad \| \mathbf{x} \|_{1} < \delta$$

Basis Pursuit / LASSO

- Why is it legal to substitute the l_1 -norm for the l_0 -norm?
- What are the conditions such that the two problems have the same solution?

 $\min_{x} \| x \|_{1} \qquad \qquad \min_{x} \| x \|_{0}$ subject to $\| Ax - b \|_{2} < \varepsilon$ subject to $\| Ax - b \|_{2} < \varepsilon$

Restricted Isometry Property (RIP)

$$(1 - \delta_s) \| \boldsymbol{u} \|_2 \le \| \boldsymbol{A}_{\boldsymbol{S}} \boldsymbol{u} \|_2 \le (1 + \delta_s) \| \boldsymbol{u} \|_2$$

The unconstrained -LASSO- formulation

Constrained formulation of the ℓ_1 -norm minimization problem:

$$\widehat{\mathbf{x}}_{\ell_1}(\epsilon) = \underset{\mathbf{x} \in \mathbb{C}^N}{\arg\min} \|\mathbf{x}\|_1 \text{ subject to } \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2 \le \epsilon$$

Unconstrained formulation in the form of least squares optimization with an ℓ_1 -norm regularizer:

$$\widehat{\mathbf{x}}_{\text{LASSO}}(\mu) = \underset{\mathbf{x}\in\mathbb{C}^{N}}{\arg\min} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \mu \|\mathbf{x}\|_{1}$$

For every ϵ exists a μ so that the two formulations are equivalent

Regularization parameter : μ

Regularization parameter selection

The objective function of the LASSO problem:

$$L(\mathbf{x}, \mu) = \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \mu \|\mathbf{x}\|_1$$

is minimized if

$$\mathbf{0}\in\partial_{\mathbf{x}}L(\mathbf{x},\mu)$$

where the subgradient is

$$\partial_{\mathbf{x}} L(\mathbf{x}, \mu) = 2\mathbf{A}^{H} (\mathbf{A}\mathbf{x} - \mathbf{y}) + \mu \partial_{\mathbf{x}} \|\mathbf{x}\|_{1}$$

thus, the global minimum is attained if

$$\mu^{-1}\mathbf{r} \in \partial_{\mathbf{x}} \|\mathbf{x}\|_{1}, \quad \mathbf{r} = 2\mathbf{A}^{H} \left(\mathbf{y} - \mathbf{A}\widehat{\mathbf{x}}\right)$$

Regularization parameter selection

The global minimum is attained if

$$\mu^{-1} \mathbf{r} \quad \in \quad \partial_{\mathbf{x}} \| \mathbf{x} \|_1, \quad \mathbf{r} = 2 \mathbf{A}^H \left(\mathbf{y} - \mathbf{A} \widehat{\mathbf{x}}
ight)$$

The subgradient for the ℓ_1 -norm is the set of vectors

$$\partial_{\mathbf{x}} \| \mathbf{x} \|_1 = \left\{ \mathbf{s} : \| \mathbf{s} \|_{\infty} \le 1, \; \mathbf{s}^H \mathbf{x} = \| \mathbf{x} \|_1
ight\}$$

which implies

$$egin{aligned} s_i &= rac{x_i}{|x_i|}, \quad x_i
eq 0 \ |s_i| &\leq 1, \quad x_i = 0, \end{aligned}$$

thus,

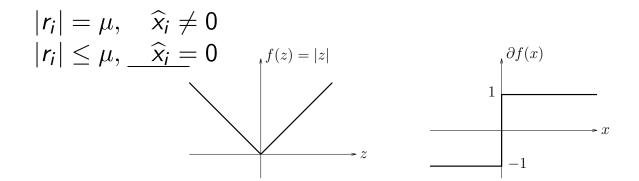
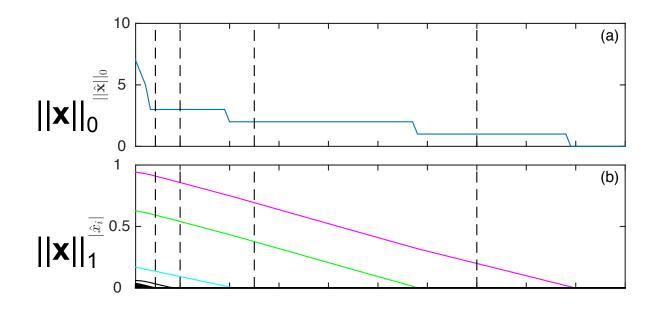


Figure 3: The absolute value function (left), and its subdifferential $\partial f(x)$ as a function of x (right).

Lasso Path



μ

Solving an underdetermined problem

$$\mathbf{y} = \mathbf{A}_{M \times N} \mathbf{x},$$

$$M < N$$

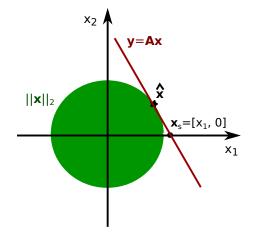
x: K-sparse, $K \ll N$

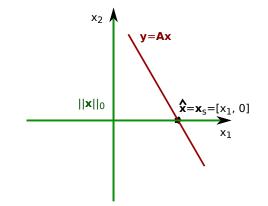
 I_2 -norm minimization (min energy)

 $\label{eq:subject_to_y} \underset{\textbf{x} \in \mathbb{C}^N}{\text{min}} \| \textbf{x} \|_2 \text{ subject to } \textbf{y} = \textbf{A}\textbf{x}$



 $\underset{\textbf{x} \in \mathbb{C}^{N}}{\min} \|\textbf{x}\|_{0} \text{ subject to } \textbf{y} = \textbf{A}\textbf{x}$





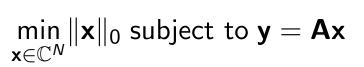
 $\hat{\mathbf{x}} = \mathbf{A}^H \left(\mathbf{A}\mathbf{A}^H\right)^{-1} \mathbf{y}$ $\hat{\mathbf{x}}$: combinatorial intractable problem The I_2 -solution has minimum energy while the I_0 -solution is sparse Compressive sensing

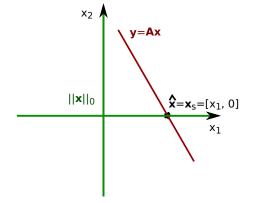
$$\mathbf{y} = \mathbf{A}_{M \times N} \mathbf{x}, \ M < N,$$

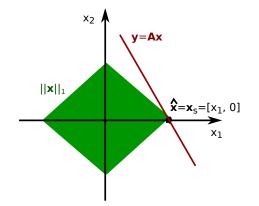
 $\mathbf{x}: \ \mathsf{K}$ -sparse, $K \ll N, \ K < M$
 $\mathbf{A} = [\mathbf{a}_1, \cdots, \mathbf{a}_N] : \ |\mathbf{a}_i^H \mathbf{a}_i|_{i \neq i} < 1$

*I*₀-norm minimization (min sparsity)

 I_1 -norm convex relaxation

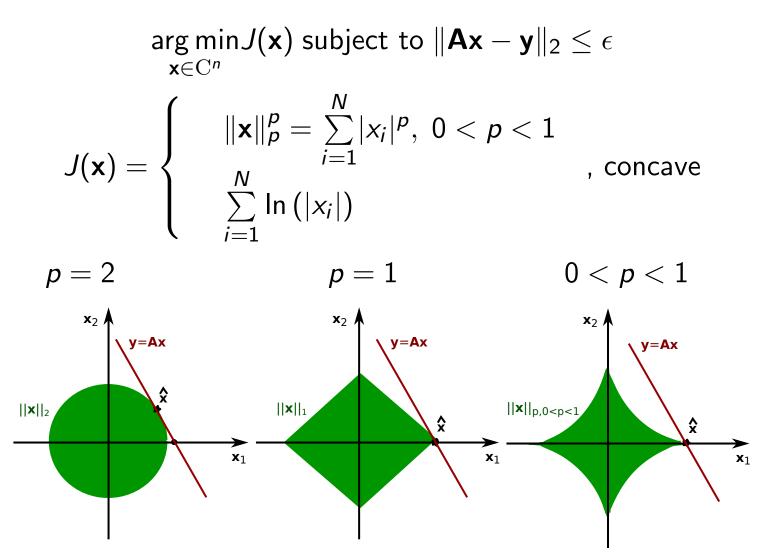




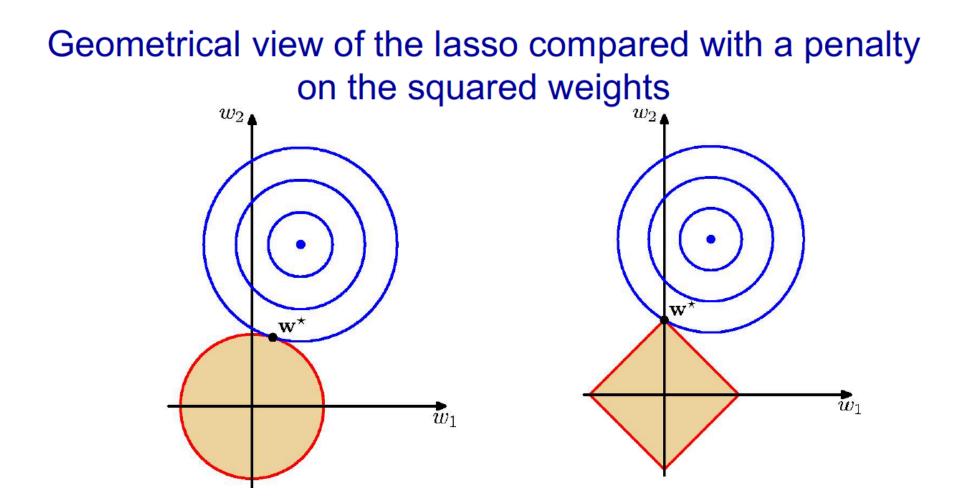


$$\label{eq:relation} \begin{split} \hat{\mathbf{x}} &= \text{argmin} \|\mathbf{x}\|_1 \text{ subject to } \mathbf{y} = \mathbf{A}\mathbf{x} \\ \hat{\mathbf{x}} &: \text{ combinatorial intractable problem } \mathbf{x} \in \mathbb{C}^N \\ \text{ The } \textit{I}_1 \text{-problem is both convex and promotes sparse solutions} \end{split}$$

Enhancing sparsity



Minimization of a concave function with an iterative majorization-minimization algorithm

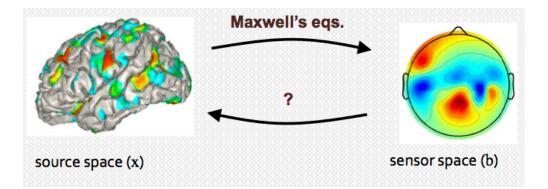


Applications

- MEG/EEG/MRI source location (earthquake location)
- Channel equalization
- Compressive sampling (beyond Nyquist sampling!)
- Compressive camera!

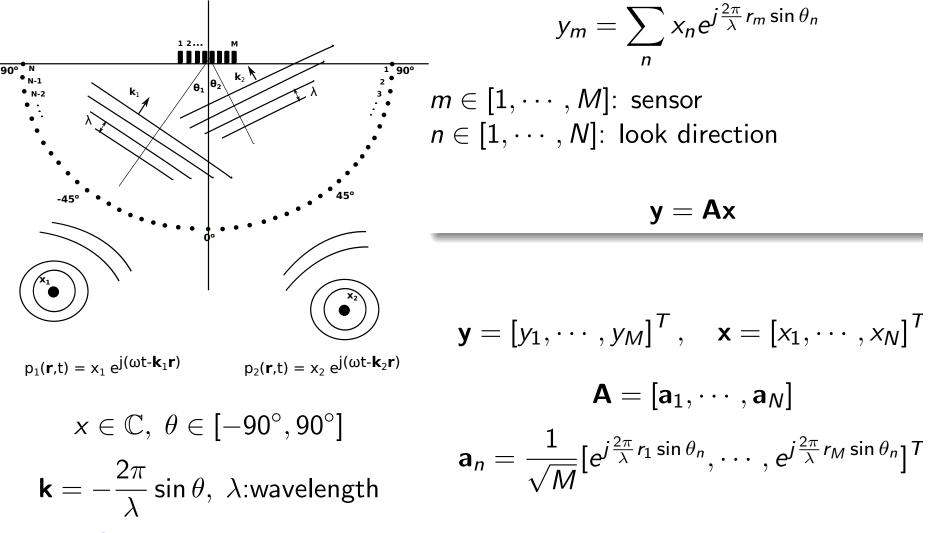
Lots of low hanging fruits

- Beamforming
- Fathometer
- Geoacoustic inversion
- Sequential estimation
- Bayesian
- Grid free methods



Beamforming / DOA estimation

DOA estimation with sensor arrays



The DOA estimation is formulated as a linear problem

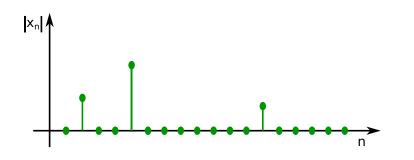
Sparse representation of the DOA estimation problem

Underdetermined problem

$$\mathbf{y} = \mathbf{A}\mathbf{x}, \quad M < N$$

Prior information

x: K-sparse, $K \ll N$

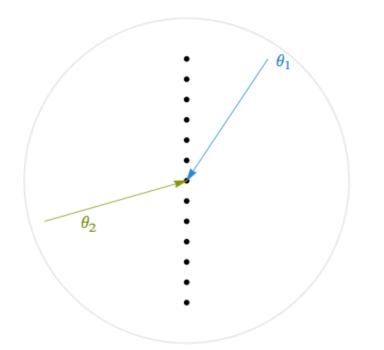


$$\|\mathbf{x}\|_0 = \sum_{n=1}^N \mathbf{1}_{x_n \neq 0} = K$$

Not really a norm: $\|\mathbf{a}\mathbf{x}\|_0 = \|\mathbf{x}\|_0 \neq |\mathbf{a}|\|\mathbf{x}\|_0$

There are only few sources with unknown locations and amplitudes

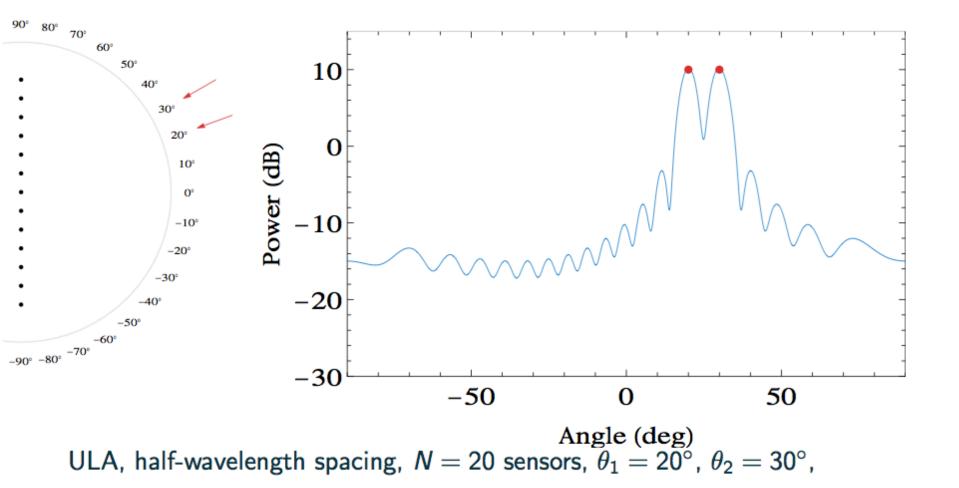
Direction of arrival estimation



Plane waves from a source/interferer impinging on an array/antenna True DOA is sparse in the angle domain $\Theta = \{0, \dots, 0, \theta_1, 0, \dots, 0, \theta_2, 0, \dots, 0\}$

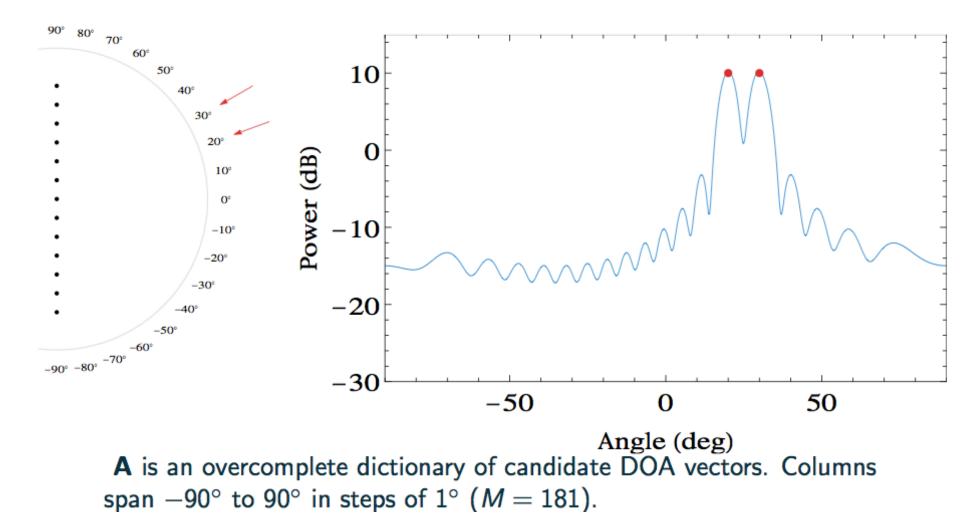
Conventional beamforming Plane wave weight vector $\mathbf{w}_i = [1, e^{-\imath \sin(\theta_i)}, \cdots, e^{-\imath(N-1)\sin(\theta_i)}]^T$

 $\mathcal{B}(\theta) = |\mathbf{w}^H(\theta)\mathbf{b}|^2$



Conventional beamforming Equivalent to solving the ℓ_2 problem with $\mathbf{A} = [\mathbf{w}_1, \cdots, \mathbf{w}_M]$, M > N.

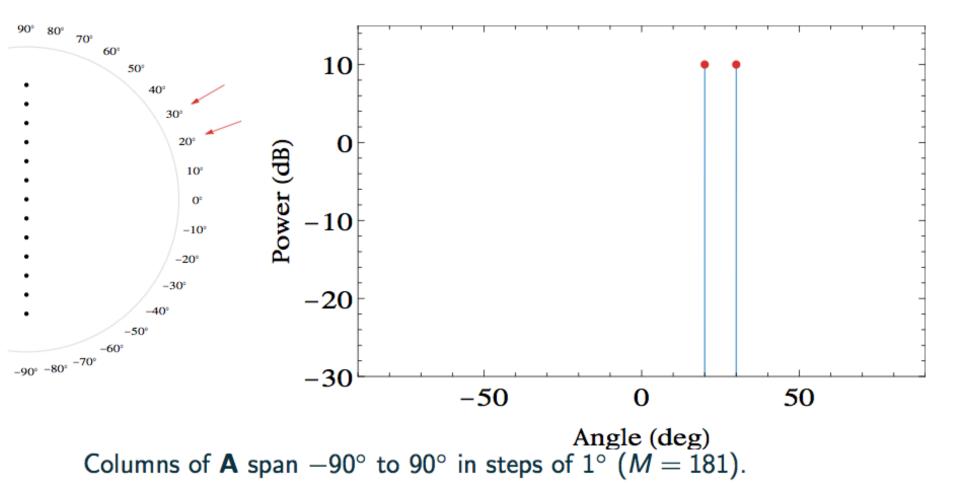
min $\|\mathbf{x}\|_2$ subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$



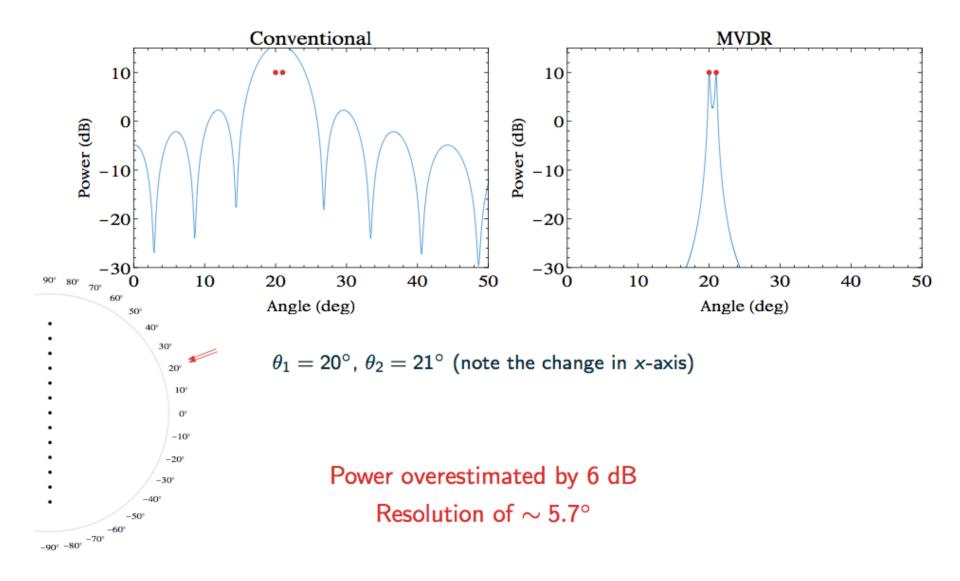
ℓ_1 minimization

In contrast ℓ_1 minimization provides a sparse solution with exact recovery:

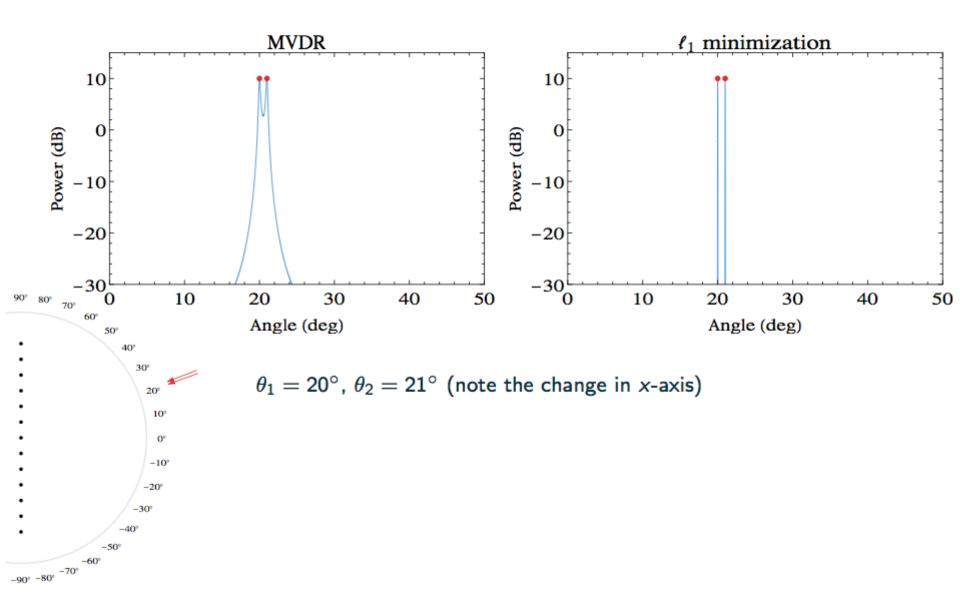
min $\|\mathbf{x}\|_1$ subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$



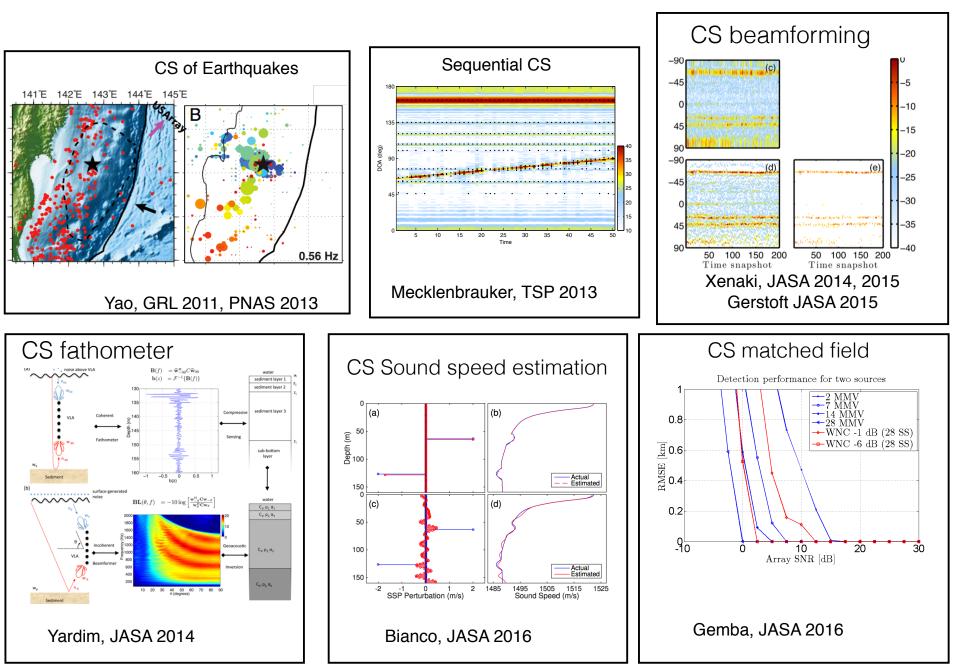
Resolving closely spaced signals



Resolving closely spaced signals



CS approach to geophysical data analysis



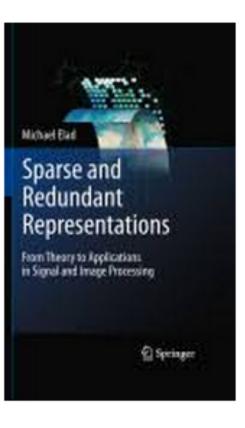
Resources

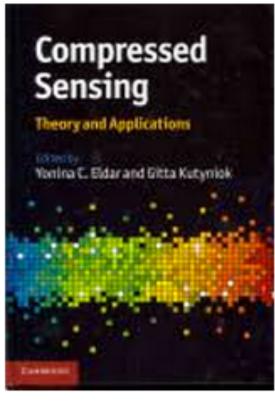
Applied and Numerical Harmonic Analysis

Simon Foucart Holger Rauhut

A Mathematical Introduction to Compressive Sensing

🕅 Birkhäuser





MAP estimate via the unconstrained -LASSO- formulation

$$\widehat{\mathbf{x}}_{\text{LASSO}}(\mu) = \underset{\mathbf{x}\in\mathbb{C}^{N}}{\arg\min} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \mu \|\mathbf{x}\|_{1}$$

Bayes rule:

$$ho(\mathbf{x}|\mathbf{y}) = rac{
ho(\mathbf{y}|\mathbf{x})
ho(\mathbf{x})}{
ho(\mathbf{y})}$$

MAP estimate:

$$\begin{split} \widehat{\mathbf{x}}_{\mathsf{MAP}} &= \arg\max_{\mathbf{x}} \ \ln p(\mathbf{x}|\mathbf{y}) \\ &= \arg\max_{\mathbf{x}} \ \left[\ln p(\mathbf{y}|\mathbf{x}) + \ln p(\mathbf{x}) \right] \\ &= \arg\min_{\mathbf{x}} \ \left[- \ln p(\mathbf{y}|\mathbf{x}) - \ln p(\mathbf{x}) \right] \end{split}$$

MAP estimate via the unconstrained -LASSO- formulation Bayes rule:

$$p(\mathbf{x}|\mathbf{y}) = rac{
ho(\mathbf{y}|\mathbf{x})
ho(\mathbf{x})}{
ho(\mathbf{y})}$$

MAP estimate:

$$\widehat{\mathbf{x}}_{\mathsf{MAP}} = \underset{\mathbf{x}}{\operatorname{arg\,min}} \left[-\ln p(\mathbf{y}|\mathbf{x}) - \ln p(\mathbf{x}) \right]$$

Gaussian likelihood:

$$p(\mathbf{y}|\mathbf{x}) \propto \mathrm{e}^{-rac{\|\mathbf{y}-\mathbf{A}\mathbf{x}\|_2^2}{\sigma^2}}$$

Laplace-like prior:

$$p(\mathbf{x}) \propto \prod_{i=1}^{N} e^{-rac{\sqrt{(\Re x_i)^2 + (\Im x_i)^2}}{
u}} = e^{-rac{\|\mathbf{x}\|_1}{
u}}$$

MAP estimate (LASSO):

$$\widehat{\mathbf{x}}_{\mathsf{MAP}} = \underset{\mathbf{x}}{\operatorname{arg\,min}} \left[\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \mu \|\mathbf{x}\|_{1} \right] = \widehat{\mathbf{x}}_{\mathsf{LASSO}}(\mu), \ \mu = \frac{\sigma^{2}}{\nu}$$

MAP-LASSO path

Likelihood (noise complex Gaussian)

$$p(y \mid x) \propto \exp\left(-\frac{\|Ax - y\|_2^2}{\sigma^2}\right)$$

Prior (Laplacian)

$$p(x) \propto \exp\left(-\frac{\|x\|_1}{v}\right)$$

Bayes rule $p(x|y) \propto p(y|x)p(x) \propto \exp\left(-\frac{\|Ax - y\|_2^2}{\sigma^2} - \frac{\|x\|_1}{v}\right)$

Maximum A Posteriori (MAP)

$$\hat{\mathbf{x}}_{\text{MAP}} = \underset{-}{\operatorname{arg\,min}} \left[\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \mu \|\mathbf{x}\|_{1} \right] = \hat{\mathbf{x}}_{\text{LASSO}}(\mu),$$

LASSO=Least Absolute Shrinkage and Selection Operator

