
Introduction to Machine Learning

Lecture 3: Linear regression



Linear Basis Function Models (1)
• Example: Polynomial Curve Fitting



Linear Basis Function Models (2)

• Generally

• where fj(x) are known as basis functions.
• Typically, f0(x) = 1, so that w0 acts as a bias.
• In the simplest case, we use linear basis functions : 
fd(x) = xd.



Some types of basis function in 1-D

Sigmoids Gaussians                Polynomials

Sigmoid and Gaussian basis functions can also be used in multilayer 
neural networks, but neural networks learn the parameters of the basis 
functions. This is much more powerful but also much harder and messier.



Two types of linear model that are equivalent 
with respect to learning

• The first and second model has the same number of adaptive 
coefficients as the number of basis functions +1.

• Once we have replaced the data by the outputs of the basis 
functions, fitting the second model is exactly the same problem 
as fitting the first model (unless we use the kernel trick)
– So its silly to clutter up the math with basis functions
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Minimizing squared error
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Maximum Likelihood and Least Squares (1)

• Assume observations from a deterministic function with added 
Gaussian noise:

• or,

• Given observed inputs,                            , and targets
, we obtain the likelihood function  

where



Maximum Likelihood and Least Squares (2)
• Taking the logarithm, we get

• Where the sum-of-squares error is



• Computing the gradient and setting it to zero yields

• Solving for w, 

• where

Maximum Likelihood and Least Squares (3)

The	Moore-Penrose	
pseudo-inverse,							.



Maximum Likelihood and Least Squares (4)
Maximizing with respect to the bias, w0, alone, 

We can also maximize with respect to b, giving



Geometry of Least Squares

N-dimensional
M-dimensional

Consider

S is spanned by                    

wML minimizes the distance 
between t and its orthogonal 
projection on S, i.e. y.



When is minimizing the squared error equivalent to Maximum 
Likelihood Learning?

Minimizing the squared residuals is 
equivalent to maximizing the log 
probability of the correct answer under a 
Gaussian centered at the model’s guess.

t = correct
answer

y = model’s estimate 
of most probable 
value
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sigma is same for 
every case



Multiple outputs
• If there are multiple outputs we can often treat the learning 

problem as a set of independent problems, one per output.
– Not true if the output noise is correlated and changes 

from case to case.
• Even though they are independent problems we can save 

work by only multiplying the input vectors by the inverse 
covariance of the input components once. For output k: 
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Contribution	of	the	Nth data	point,	xN

Sequential Estimation (FROM lecture 2)

correction	given	xN
Correction	weight
old	estimate



Least mean squares: An alternative approach for big datasets

• This is called “online“ learning. It can be more efficient if the dataset is 
very redundant and it is simple to implement in hardware.
– It is called stochastic gradient descent if the training cases are 

picked randomly.
– Care must be taken with the learning rate to prevent divergent 

oscillations, and the rate must decrease with tau to get a good fit.
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Regularized least squares
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The penalty on the squared weights is mathematically compatible 
with the squared error function, so we get a nice closed form for 
the optimal weights with this regularizer:

identity matrix



A picture of the effect of the regularizer
• The overall cost function is the sum of 

two parabolic bowls. 
• The sum is also a parabolic bowl.
• The combined minimum lies on the 

line between the minimum of the 
squared error and the origin.

• The regularizer just shrinks the 
weights.



A problem with the regularizer
• We would like the solution we find to be independent of the units we use to 

measure the components of the input vector.
• If different components have different units (e.g. age and height), we have a 

problem.
– If we measure age in months and height in meters, the relative values of 

the two weights are very different than if we use years and millemeters. 
So the squared penalty has very different effects.

• One way to avoid the units problem: Whiten the data so that the input 
components all have unit variance and no covariance. This stops the 
regularizer from being applied to the whitening matrix.

– But this can cause other problems when two input components are 
almost perfectly correlated.

– We really need a prior on the weight on each input component.  
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Other regularizers

• We do not need to use the squared error, 
provided we are willing to do more computation.

• Other powers of the weights can be used.



The lasso: penalizing the absolute values of the weights

• Finding the minimum requires quadratic programming but its 
still unique because the cost function is convex (a bowl plus an 
inverted pyramid)

• As lambda is increased, many of the weights go to exactly 
zero. 
– This is great for interpretation, and it is also pretty good for 

preventing overfitting.
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Geometrical view of the lasso compared with a penalty 
on the squared weights

Notice w1=0 at the 
optimum



Minimizing the absolute error

• This minimization involves solving a linear programming 
problem.

• It corresponds to maximum likelihood estimation if the output 
noise is modeled by a Laplacian instead of a Gaussian.
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The bias-variance trade-off
(a figment of the frequentists lack of imagination?)

• Imagine that the training set was drawn at random from a 
whole set of training sets. 

• The squared loss can be decomposed into a “bias” term 
and a “variance” term. 
– Bias = systematic error in the model’s estimates
– Variance = noise in the estimates cause by sampling 

noise in the training set. 
• There is also an additional loss due to the fact that the 

target values are noisy. 
– We eliminate this extra, irreducible loss from the math 

by using the average target values (i.e. the unknown, 
noise-free values)
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angle brackets are 
physics notation 
for expectation 
over D

The “bias” term is the squared error of the  
average, over all training datasets, of the 
estimates.

The “variance” term is the variance, over all training 
datasets, of the model’s estimate.

see Bishop page 149 for a derivation using a different notation

The bias-variance decomposition



How the regularization parameter affects the bias and 
variance terms

low bias high bias

low variancehigh variance
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An example of the bias-variance trade-off



Beating the bias-variance trade-off
• We can reduce the variance term by averaging lots of models 

trained on different datasets. 
– This seems silly. If we had lots of different datasets it would 

be better to combine them into one big training set.
• With more training data there will be much less variance.

• Weird idea: We can create different datasets by bootstrap 
sampling of our single training dataset. 
– This is called “bagging” and it works surprisingly well.

• But if we have enough computation its better to do the right 
Bayesian thing: 
– Combine the predictions of many models using the posterior 

probability of each parameter vector as the combination 
weight.



The Bayesian approach
• Consider a simple linear model that only has two parameters:

• It is possible to display the full posterior distribution over the 
two-dimensional parameter space.

• The likelihood term is a Gaussian, so if we use a Gaussian prior 
the posterior will be Gaussian:
– This is a conjugate prior. It means that the prior is just like 

having already observed some data.
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variance of 
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b
al =The Bayesian interpretation of 

the regularization parameter:



With no data we sample 
lines from the prior.

With 20 data points, the 
prior has little effect


