
SVM summarized--- Only kernels
• Minimize with respect to 𝒘,w0
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• Solution found in dual domain with Lagrange multipliers
– 𝑎𝑛	, 𝑛 = 1⋯𝑁	and 

• This gives the support vectors S
𝒘4 = ∑ 𝑎𝑛)∈6 𝑡𝑛𝝋(𝑥𝑛) (Bishop 7.8)

• Used for predictions
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Basic concepts

Finding the Decision Function

w: maybe infinite variables
The dual problem

min
α

1

2
αTQα − e

Tα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

y
Tα = 0,

where Qij = yiyjφ(xi)Tφ(xj) and e = [1, . . . , 1]T

At optimum

w =
∑l

i=1 αiyiφ(xi)

A finite problem: #variables = #training data
Chih-Jen Lin (National Taiwan Univ.) MLSS 2006, Taipei 10 / 98

Corresponds to 
(Bishop 7.32)
With y=t
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where {an ! 0} and {µn ! 0} are Lagrange multipliers. The corresponding set of
KKT conditions are given byAppendix E

an ! 0 (7.23)
tny(xn) − 1 + ξn ! 0 (7.24)

an (tny(xn) − 1 + ξn) = 0 (7.25)
µn ! 0 (7.26)
ξn ! 0 (7.27)

µnξn = 0 (7.28)

where n = 1, . . . , N .
We now optimize out w, b, and {ξn} making use of the definition (7.1) of y(x)

to give

∂L

∂w
= 0 ⇒ w =

N∑

n=1

antnφ(xn) (7.29)

∂L

∂b
= 0 ⇒

N∑

n=1

antn = 0 (7.30)

∂L

∂ξn
= 0 ⇒ an = C − µn. (7.31)

Using these results to eliminate w, b, and {ξn} from the Lagrangian, we obtain the
dual Lagrangian in the form

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.32)

which is identical to the separable case, except that the constraints are somewhat
different. To see what these constraints are, we note that an ! 0 is required because
these are Lagrange multipliers. Furthermore, (7.31) together with µn ! 0 implies
an " C. We therefore have to minimize (7.32) with respect to the dual variables
{an} subject to

0 " an " C (7.33)
N∑

n=1

antn = 0 (7.34)

for n = 1, . . . , N , where (7.33) are known as box constraints. This again represents
a quadratic programming problem. If we substitute (7.29) into (7.1), we see that
predictions for new data points are again made by using (7.13).

We can now interpret the resulting solution. As before, a subset of the data
points may have an = 0, in which case they do not contribute to the predictive



• May 8, CODY Machine Learning for finding oil, focusing on 1) robust seismic 
denoising/interpolation using structured matrix approximation 2) seismic image clustering and 
classification, using t-SNE(t-distributed stochastic neighbor embedding) and CNN. Weichang
Li, Goup Leader Aramco, Houston.

• May 10, Class HW First distribution of final projects. Ocean acoustic source tracking. 
Final projects. Final project is the main goal in last month. Bishop Ch 9 Mixture models

• May 15, CODY Seismology and Machine Learning, Daniel Trugman (half class), ch 8
• May 17, Class HW ch 8
• May 22, Dictionary learning, Mike Bianco (half class), Graphical models Bishop Ch 8
• May 24, Graphical models Bishop Ch 8
• May 31, No Class. Workshop, Big Data and The Earth Sciences: Grand Challenges 

Workshop
• June 5, Discuss workshop, ch13. Spiess Hall open for project discussion 11am-.
• June 7, Workshop report. No class 
• June 12 Spiess Hall open for project discussion 9-11:30am and 2-7pm
• June 16 Final report delivered. Beer time

For final project discussion every afternoon Mark and I  will be available

• Chapter 13 Sequential data



• Problems
– Ocean source tracking X
– Re-implement Source Localization in an Ocean Waveguide using Supervised Machine Learning 
– X-ray spectrum absorption interpretation using NN
– Neural decoding
– Plankton
– Transfer learning and deep feature extraction for planktonic image data sets
– Speaker tagger
– Coral
– Amazon rainforest (Kaggle)
– Myshake Seismic

• Please ask questions
– Mark and I available all afternoons. Just come or email for time slots.
– Spiess hall 330 is open Monday 5 and 12 June. If interested I can book it at other times

• Report 
– Rather concise than long.
– Larger group can do more.
– Start with some very simple example. To show your idea and that it is working.
– End with showing the advanced abilities
– Several figures.
– Equations are nice.

• Delivery Zip file (Friday 16)
– Main code (not all). It should be able to run.
– Report (pdf preferred).

Final Report



Mixtures of Gaussians (1)

Single	Gaussian Mixture	of	two	Gaussians

Old Faithful geyser:
The time between eruptions has a bimodal distribution, with the mean interval being either 65 or 91 
minutes, and is dependent on the length of the prior eruption. Within a margin of error of ±10 
minutes, Old Faithful will erupt either 65 minutes after an eruption lasting less than  2 1⁄2 minutes, or 
91 minutes after an eruption lasting more than  2 1⁄2 minutes.



Mixtures of Gaussians (2)

Combine simple models 
into a complex model:

Component

Mixing	coefficient

K=3



Mixtures of Gaussians (3)



Mixture of Gaussians
• Mixtures of Gaussians

• Expressed with latent variable z

• Posterior probability: responsibility

430 9. MIXTURE MODELS AND EM

The image segmentation problem discussed above also provides an illustration
of the use of clustering for data compression. Suppose the original image has N
pixels comprising {R, G, B} values each of which is stored with 8 bits of precision.
Then to transmit the whole image directly would cost 24N bits. Now suppose we
first run K-means on the image data, and then instead of transmitting the original
pixel intensity vectors we transmit the identity of the nearest vector µk. Because
there are K such vectors, this requires log2 K bits per pixel. We must also transmit
the K code book vectors µk, which requires 24K bits, and so the total number of
bits required to transmit the image is 24K + N log2 K (rounding up to the nearest
integer). The original image shown in Figure 9.3 has 240 × 180 = 43, 200 pixels
and so requires 24 × 43, 200 = 1, 036, 800 bits to transmit directly. By comparison,
the compressed images require 43, 248 bits (K = 2), 86, 472 bits (K = 3), and
173, 040 bits (K = 10), respectively, to transmit. These represent compression ratios
compared to the original image of 4.2%, 8.3%, and 16.7%, respectively. We see that
there is a trade-off between degree of compression and image quality. Note that our
aim in this example is to illustrate the K-means algorithm. If we had been aiming to
produce a good image compressor, then it would be more fruitful to consider small
blocks of adjacent pixels, for instance 5×5, and thereby exploit the correlations that
exist in natural images between nearby pixels.

9.2. Mixtures of Gaussians

In Section 2.3.9 we motivated the Gaussian mixture model as a simple linear super-
position of Gaussian components, aimed at providing a richer class of density mod-
els than the single Gaussian. We now turn to a formulation of Gaussian mixtures in
terms of discrete latent variables. This will provide us with a deeper insight into this
important distribution, and will also serve to motivate the expectation-maximization
algorithm.

Recall from (2.188) that the Gaussian mixture distribution can be written as a
linear superposition of Gaussians in the form

p(x) =
K∑

k=1

πkN (x|µk,Σk). (9.7)

Let us introduce a K-dimensional binary random variable z having a 1-of-K repre-
sentation in which a particular element zk is equal to 1 and all other elements are
equal to 0. The values of zk therefore satisfy zk ∈ {0, 1} and

∑
k zk = 1, and we

see that there are K possible states for the vector z according to which element is
nonzero. We shall define the joint distribution p(x, z) in terms of a marginal dis-
tribution p(z) and a conditional distribution p(x|z), corresponding to the graphical
model in Figure 9.4. The marginal distribution over z is specified in terms of the
mixing coefficients πk, such that

p(zk = 1) = πk
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Figure 9.4 Graphical representation of a mixture model, in which
the joint distribution is expressed in the form p(x, z) =
p(z)p(x|z).

x

z

where the parameters {πk} must satisfy

0 ! πk ! 1 (9.8)

together with
K∑

k=1

πk = 1 (9.9)

in order to be valid probabilities. Because z uses a 1-of-K representation, we can
also write this distribution in the form

p(z) =
K∏

k=1

πzk
k . (9.10)

Similarly, the conditional distribution of x given a particular value for z is a Gaussian

p(x|zk = 1) = N (x|µk,Σk)

which can also be written in the form

p(x|z) =
K∏

k=1

N (x|µk,Σk)zk . (9.11)

The joint distribution is given by p(z)p(x|z), and the marginal distribution of x is
then obtained by summing the joint distribution over all possible states of z to giveExercise 9.3

p(x) =
∑

z

p(z)p(x|z) =
K∑

k=1

πkN (x|µk,Σk) (9.12)

where we have made use of (9.10) and (9.11). Thus the marginal distribution of x is
a Gaussian mixture of the form (9.7). If we have several observations x1, . . . ,xN ,
then, because we have represented the marginal distribution in the form p(x) =∑

z p(x, z), it follows that for every observed data point xn there is a corresponding
latent variable zn.

We have therefore found an equivalent formulation of the Gaussian mixture in-
volving an explicit latent variable. It might seem that we have not gained much
by doing so. However, we are now able to work with the joint distribution p(x, z)
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instead of the marginal distribution p(x), and this will lead to significant simplifica-
tions, most notably through the introduction of the expectation-maximization (EM)
algorithm.

Another quantity that will play an important role is the conditional probability
of z given x. We shall use γ(zk) to denote p(zk = 1|x), whose value can be found
using Bayes’ theorem

γ(zk) ≡ p(zk = 1|x) =
p(zk = 1)p(x|zk = 1)

K∑

j=1

p(zj = 1)p(x|zj = 1)

=
πkN (x|µk,Σk)

K∑

j=1

πjN (x|µj ,Σj)

. (9.13)

We shall view πk as the prior probability of zk = 1, and the quantity γ(zk) as the
corresponding posterior probability once we have observed x. As we shall see later,
γ(zk) can also be viewed as the responsibility that component k takes for ‘explain-
ing’ the observation x.

We can use the technique of ancestral sampling to generate random samplesSection 8.1.2
distributed according to the Gaussian mixture model. To do this, we first generate a
value for z, which we denote ẑ, from the marginal distribution p(z) and then generate
a value for x from the conditional distribution p(x|ẑ). Techniques for sampling from
standard distributions are discussed in Chapter 11. We can depict samples from the
joint distribution p(x, z) by plotting points at the corresponding values of x and
then colouring them according to the value of z, in other words according to which
Gaussian component was responsible for generating them, as shown in Figure 9.5(a).
Similarly samples from the marginal distribution p(x) are obtained by taking the
samples from the joint distribution and ignoring the values of z. These are illustrated
in Figure 9.5(b) by plotting the x values without any coloured labels.

We can also use this synthetic data set to illustrate the ‘responsibilities’ by eval-
uating, for every data point, the posterior probability for each component in the
mixture distribution from which this data set was generated. In particular, we can
represent the value of the responsibilities γ(znk) associated with data point xn by
plotting the corresponding point using proportions of red, blue, and green ink given
by γ(znk) for k = 1, 2, 3, respectively, as shown in Figure 9.5(c). So, for instance,
a data point for which γ(zn1) = 1 will be coloured red, whereas one for which
γ(zn2) = γ(zn3) = 0.5 will be coloured with equal proportions of blue and green
ink and so will appear cyan. This should be compared with Figure 9.5(a) in which
the data points were labelled using the true identity of the component from which
they were generated.

9.2.1 Maximum likelihood
Suppose we have a data set of observations {x1, . . . ,xN}, and we wish to model

this data using a mixture of Gaussians. We can represent this data set as an N × D

p(z)p(x|z)      N iid {xn} with latent {zn}
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Gaussian components are shown as blue and red circles. Plot (b) shows the result
of the initial E step, in which each data point is depicted using a proportion of blue
ink equal to the posterior probability of having been generated from the blue com-
ponent, and a corresponding proportion of red ink given by the posterior probability
of having been generated by the red component. Thus, points that have a significant
probability for belonging to either cluster appear purple. The situation after the first
M step is shown in plot (c), in which the mean of the blue Gaussian has moved to
the mean of the data set, weighted by the probabilities of each data point belonging
to the blue cluster, in other words it has moved to the centre of mass of the blue ink.
Similarly, the covariance of the blue Gaussian is set equal to the covariance of the
blue ink. Analogous results hold for the red component. Plots (d), (e), and (f) show
the results after 2, 5, and 20 complete cycles of EM, respectively. In plot (f) the
algorithm is close to convergence.

Note that the EM algorithm takes many more iterations to reach (approximate)
convergence compared with the K-means algorithm, and that each cycle requires
significantly more computation. It is therefore common to run the K-means algo-
rithm in order to find a suitable initialization for a Gaussian mixture model that is
subsequently adapted using EM. The covariance matrices can conveniently be ini-
tialized to the sample covariances of the clusters found by the K-means algorithm,
and the mixing coefficients can be set to the fractions of data points assigned to the
respective clusters. As with gradient-based approaches for maximizing the log like-
lihood, techniques must be employed to avoid singularities of the likelihood function
in which a Gaussian component collapses onto a particular data point. It should be
emphasized that there will generally be multiple local maxima of the log likelihood
function, and that EM is not guaranteed to find the largest of these maxima. Because
the EM algorithm for Gaussian mixtures plays such an important role, we summarize
it below.

EM for Gaussian Mixtures

Given a Gaussian mixture model, the goal is to maximize the likelihood function
with respect to the parameters (comprising the means and covariances of the
components and the mixing coefficients).

1. Initialize the means µk, covariances Σk and mixing coefficients πk, and
evaluate the initial value of the log likelihood.

2. E step. Evaluate the responsibilities using the current parameter values

γ(znk) =
πkN (xn|µk,Σk)

K∑

j=1

πjN (xn|µj ,Σj)

. (9.23)
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3. M step. Re-estimate the parameters using the current responsibilities

µnew
k =

1
Nk

N∑

n=1

γ(znk)xn (9.24)

Σnew
k =

1
Nk

N∑

n=1

γ(znk) (xn − µnew
k ) (xn − µnew

k )T (9.25)

πnew
k =

Nk

N
(9.26)

where

Nk =
N∑

n=1

γ(znk). (9.27)

4. Evaluate the log likelihood

ln p(X|µ,Σ, π) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
(9.28)

and check for convergence of either the parameters or the log likelihood. If
the convergence criterion is not satisfied return to step 2.

9.3. An Alternative View of EM

In this section, we present a complementary view of the EM algorithm that recog-
nizes the key role played by latent variables. We discuss this approach first of all
in an abstract setting, and then for illustration we consider once again the case of
Gaussian mixtures.

The goal of the EM algorithm is to find maximum likelihood solutions for mod-
els having latent variables. We denote the set of all observed data by X, in which the
nth row represents xT

n , and similarly we denote the set of all latent variables by Z,
with a corresponding row zT

n . The set of all model parameters is denoted by θ, and
so the log likelihood function is given by

ln p(X|θ) = ln

{
∑

Z

p(X,Z|θ)

}
. (9.29)

Note that our discussion will apply equally well to continuous latent variables simply
by replacing the sum over Z with an integral.

A key observation is that the summation over the latent variables appears inside
the logarithm. Even if the joint distribution p(X,Z|θ) belongs to the exponential
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family, the marginal distribution p(X|θ) typically does not as a result of this sum-
mation. The presence of the sum prevents the logarithm from acting directly on the
joint distribution, resulting in complicated expressions for the maximum likelihood
solution.

Now suppose that, for each observation in X, we were told the corresponding
value of the latent variable Z. We shall call {X,Z} the complete data set, and we
shall refer to the actual observed data X as incomplete, as illustrated in Figure 9.5.
The likelihood function for the complete data set simply takes the form ln p(X,Z|θ),
and we shall suppose that maximization of this complete-data log likelihood function
is straightforward.

In practice, however, we are not given the complete data set {X,Z}, but only
the incomplete data X. Our state of knowledge of the values of the latent variables
in Z is given only by the posterior distribution p(Z|X, θ). Because we cannot use
the complete-data log likelihood, we consider instead its expected value under the
posterior distribution of the latent variable, which corresponds (as we shall see) to the
E step of the EM algorithm. In the subsequent M step, we maximize this expectation.
If the current estimate for the parameters is denoted θold, then a pair of successive
E and M steps gives rise to a revised estimate θnew. The algorithm is initialized by
choosing some starting value for the parameters θ0. The use of the expectation may
seem somewhat arbitrary. However, we shall see the motivation for this choice when
we give a deeper treatment of EM in Section 9.4.

In the E step, we use the current parameter values θold to find the posterior
distribution of the latent variables given by p(Z|X, θold). We then use this posterior
distribution to find the expectation of the complete-data log likelihood evaluated for
some general parameter value θ. This expectation, denoted Q(θ, θold), is given by

Q(θ, θold) =
∑

Z

p(Z|X, θold) ln p(X,Z|θ). (9.30)

In the M step, we determine the revised parameter estimate θnew by maximizing this
function

θnew = arg max
θ

Q(θ, θold). (9.31)

Note that in the definition of Q(θ, θold), the logarithm acts directly on the joint
distribution p(X,Z|θ), and so the corresponding M-step maximization will, by sup-
position, be tractable.

The general EM algorithm is summarized below. It has the property, as we shall
show later, that each cycle of EM will increase the incomplete-data log likelihood
(unless it is already at a local maximum).Section 9.4

The General EM Algorithm

Given a joint distribution p(X,Z|θ) over observed variables X and latent vari-
ables Z, governed by parameters θ, the goal is to maximize the likelihood func-
tion p(X|θ) with respect to θ.

1. Choose an initial setting for the parameters θold.9.3. An Alternative View of EM 441

2. E step Evaluate p(Z|X, θold).

3. M step Evaluate θnew given by

θnew = arg max
θ

Q(θ, θold) (9.32)

where
Q(θ, θold) =

∑

Z

p(Z|X, θold) ln p(X,Z|θ). (9.33)

4. Check for convergence of either the log likelihood or the parameter values.
If the convergence criterion is not satisfied, then let

θold ← θnew (9.34)

and return to step 2.

The EM algorithm can also be used to find MAP (maximum posterior) solutions
for models in which a prior p(θ) is defined over the parameters. In this case the EExercise 9.4
step remains the same as in the maximum likelihood case, whereas in the M step the
quantity to be maximized is given by Q(θ, θold) + ln p(θ). Suitable choices for the
prior will remove the singularities of the kind illustrated in Figure 9.7.

Here we have considered the use of the EM algorithm to maximize a likelihood
function when there are discrete latent variables. However, it can also be applied
when the unobserved variables correspond to missing values in the data set. The
distribution of the observed values is obtained by taking the joint distribution of all
the variables and then marginalizing over the missing ones. EM can then be used
to maximize the corresponding likelihood function. We shall show an example of
the application of this technique in the context of principal component analysis in
Figure 12.11. This will be a valid procedure if the data values are missing at random,
meaning that the mechanism causing values to be missing does not depend on the
unobserved values. In many situations this will not be the case, for instance if a
sensor fails to return a value whenever the quantity it is measuring exceeds some
threshold.

9.3.1 Gaussian mixtures revisited
We now consider the application of this latent variable view of EM to the spe-

cific case of a Gaussian mixture model. Recall that our goal is to maximize the log
likelihood function (9.14), which is computed using the observed data set X, and we
saw that this was more difficult than for the case of a single Gaussian distribution
due to the presence of the summation over k that occurs inside the logarithm. Sup-
pose then that in addition to the observed data set X, we were also given the values
of the corresponding discrete variables Z. Recall that Figure 9.5(a) shows a ‘com-
plete’ data set (i.e., one that includes labels showing which component generated
each data point) while Figure 9.5(b) shows the corresponding ‘incomplete’ data set.
The graphical model for the complete data is shown in Figure 9.9.
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αnew
i =

1
m2

i + Σii
(9.67)

(βnew)−1 =
∥t − ΦmN∥2 + β−1

∑
i γi

N
(9.68)

These re-estimation equations are formally equivalent to those obtained by direct
maxmization.Exercise 9.23

9.4. The EM Algorithm in General

The expectation maximization algorithm, or EM algorithm, is a general technique for
finding maximum likelihood solutions for probabilistic models having latent vari-
ables (Dempster et al., 1977; McLachlan and Krishnan, 1997). Here we give a very
general treatment of the EM algorithm and in the process provide a proof that the
EM algorithm derived heuristically in Sections 9.2 and 9.3 for Gaussian mixtures
does indeed maximize the likelihood function (Csiszàr and Tusnàdy, 1984; Hath-
away, 1986; Neal and Hinton, 1999). Our discussion will also form the basis for the
derivation of the variational inference framework.Section 10.1

Consider a probabilistic model in which we collectively denote all of the ob-
served variables by X and all of the hidden variables by Z. The joint distribution
p(X,Z|θ) is governed by a set of parameters denoted θ. Our goal is to maximize
the likelihood function that is given by

p(X|θ) =
∑

Z

p(X,Z|θ). (9.69)

Here we are assuming Z is discrete, although the discussion is identical if Z com-
prises continuous variables or a combination of discrete and continuous variables,
with summation replaced by integration as appropriate.

We shall suppose that direct optimization of p(X|θ) is difficult, but that opti-
mization of the complete-data likelihood function p(X,Z|θ) is significantly easier.
Next we introduce a distribution q(Z) defined over the latent variables, and we ob-
serve that, for any choice of q(Z), the following decomposition holds

ln p(X|θ) = L(q, θ) + KL(q∥p) (9.70)

where we have defined

L(q, θ) =
∑

Z

q(Z) ln
{

p(X,Z|θ)
q(Z)

}
(9.71)

KL(q∥p) = −
∑

Z

q(Z) ln
{

p(Z|X, θ)
q(Z)

}
. (9.72)

Note that L(q, θ) is a functional (see Appendix D for a discussion of functionals)
of the distribution q(Z), and a function of the parameters θ. It is worth studying
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Z

q(Z) ln
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Z
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Note that L(q, θ) is a functional (see Appendix D for a discussion of functionals)
of the distribution q(Z), and a function of the parameters θ. It is worth studying
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Figure 9.11 Illustration of the decomposition given
by (9.70), which holds for any choice
of distribution q(Z). Because the
Kullback-Leibler divergence satisfies
KL(q∥p) ! 0, we see that the quan-
tity L(q, θ) is a lower bound on the log
likelihood function ln p(X|θ).

ln p(X|θ)L(q, θ)

KL(q||p)

carefully the forms of the expressions (9.71) and (9.72), and in particular noting that
they differ in sign and also that L(q, θ) contains the joint distribution of X and Z
while KL(q∥p) contains the conditional distribution of Z given X. To verify the
decomposition (9.70), we first make use of the product rule of probability to giveExercise 9.24

ln p(X,Z|θ) = ln p(Z|X, θ) + ln p(X|θ) (9.73)

which we then substitute into the expression for L(q, θ). This gives rise to two terms,
one of which cancels KL(q∥p) while the other gives the required log likelihood
ln p(X|θ) after noting that q(Z) is a normalized distribution that sums to 1.

From (9.72), we see that KL(q∥p) is the Kullback-Leibler divergence between
q(Z) and the posterior distribution p(Z|X, θ). Recall that the Kullback-Leibler di-
vergence satisfies KL(q∥p) ! 0, with equality if, and only if, q(Z) = p(Z|X, θ). ItSection 1.6.1
therefore follows from (9.70) that L(q, θ) " ln p(X|θ), in other words that L(q, θ)
is a lower bound on ln p(X|θ). The decomposition (9.70) is illustrated in Fig-
ure 9.11.

The EM algorithm is a two-stage iterative optimization technique for finding
maximum likelihood solutions. We can use the decomposition (9.70) to define the
EM algorithm and to demonstrate that it does indeed maximize the log likelihood.
Suppose that the current value of the parameter vector is θold. In the E step, the
lower bound L(q, θold) is maximized with respect to q(Z) while holding θold fixed.
The solution to this maximization problem is easily seen by noting that the value
of ln p(X|θold) does not depend on q(Z) and so the largest value of L(q, θold) will
occur when the Kullback-Leibler divergence vanishes, in other words when q(Z) is
equal to the posterior distribution p(Z|X, θold). In this case, the lower bound will
equal the log likelihood, as illustrated in Figure 9.12.

In the subsequent M step, the distribution q(Z) is held fixed and the lower bound
L(q, θ) is maximized with respect to θ to give some new value θnew. This will
cause the lower bound L to increase (unless it is already at a maximum), which will
necessarily cause the corresponding log likelihood function to increase. Because the
distribution q is determined using the old parameter values rather than the new values
and is held fixed during the M step, it will not equal the new posterior distribution
p(Z|X, θnew), and hence there will be a nonzero KL divergence. The increase in the
log likelihood function is therefore greater than the increase in the lower bound, as
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Figure 9.12 Illustration of the E step of
the EM algorithm. The q
distribution is set equal to
the posterior distribution for
the current parameter val-
ues θold, causing the lower
bound to move up to the
same value as the log like-
lihood function, with the KL
divergence vanishing. ln p(X|θold)L(q, θold)

KL(q||p) = 0

shown in Figure 9.13. If we substitute q(Z) = p(Z|X, θold) into (9.71), we see that,
after the E step, the lower bound takes the form

L(q, θ) =
∑

Z

p(Z|X, θold) ln p(X,Z|θ) −
∑

Z

p(Z|X, θold) ln p(Z|X, θold)

= Q(θ, θold) + const (9.74)

where the constant is simply the negative entropy of the q distribution and is there-
fore independent of θ. Thus in the M step, the quantity that is being maximized is the
expectation of the complete-data log likelihood, as we saw earlier in the case of mix-
tures of Gaussians. Note that the variable θ over which we are optimizing appears
only inside the logarithm. If the joint distribution p(Z,X|θ) comprises a member of
the exponential family, or a product of such members, then we see that the logarithm
will cancel the exponential and lead to an M step that will be typically much simpler
than the maximization of the corresponding incomplete-data log likelihood function
p(X|θ).

The operation of the EM algorithm can also be viewed in the space of parame-
ters, as illustrated schematically in Figure 9.14. Here the red curve depicts the (in-

Figure 9.13 Illustration of the M step of the EM
algorithm. The distribution q(Z)
is held fixed and the lower bound
L(q, θ) is maximized with respect
to the parameter vector θ to give
a revised value θnew. Because the
KL divergence is nonnegative, this
causes the log likelihood ln p(X|θ)
to increase by at least as much as
the lower bound does.

ln p(X|θnew)L(q, θnew)

KL(q||p)
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view of mixture distributions in which the discrete latent variables can be interpreted
as defining assignments of data points to specific components of the mixture. A gen-Section 9.2
eral technique for finding maximum likelihood estimators in latent variable models
is the expectation-maximization (EM) algorithm. We first of all use the Gaussian
mixture distribution to motivate the EM algorithm in a fairly informal way, and then
we give a more careful treatment based on the latent variable viewpoint. We shallSection 9.3
see that the K-means algorithm corresponds to a particular nonprobabilistic limit of
EM applied to mixtures of Gaussians. Finally, we discuss EM in some generality.Section 9.4

Gaussian mixture models are widely used in data mining, pattern recognition,
machine learning, and statistical analysis. In many applications, their parameters are
determined by maximum likelihood, typically using the EM algorithm. However, as
we shall see there are some significant limitations to the maximum likelihood ap-
proach, and in Chapter 10 we shall show that an elegant Bayesian treatment can be
given using the framework of variational inference. This requires little additional
computation compared with EM, and it resolves the principal difficulties of maxi-
mum likelihood while also allowing the number of components in the mixture to be
inferred automatically from the data.

9.1. K-means Clustering

We begin by considering the problem of identifying groups, or clusters, of data points
in a multidimensional space. Suppose we have a data set {x1, . . . ,xN} consisting
of N observations of a random D-dimensional Euclidean variable x. Our goal is to
partition the data set into some number K of clusters, where we shall suppose for
the moment that the value of K is given. Intuitively, we might think of a cluster as
comprising a group of data points whose inter-point distances are small compared
with the distances to points outside of the cluster. We can formalize this notion by
first introducing a set of D-dimensional vectors µk, where k = 1, . . . , K, in which
µk is a prototype associated with the kth cluster. As we shall see shortly, we can
think of the µk as representing the centres of the clusters. Our goal is then to find
an assignment of data points to clusters, as well as a set of vectors {µk}, such that
the sum of the squares of the distances of each data point to its closest vector µk, is
a minimum.

It is convenient at this point to define some notation to describe the assignment
of data points to clusters. For each data point xn, we introduce a corresponding set
of binary indicator variables rnk ∈ {0, 1}, where k = 1, . . . , K describing which of
the K clusters the data point xn is assigned to, so that if data point xn is assigned to
cluster k then rnk = 1, and rnj = 0 for j ̸= k. This is known as the 1-of-K coding
scheme. We can then define an objective function, sometimes called a distortion
measure, given by

J =
N∑

n=1

K∑

k=1

rnk∥xn − µk∥2 (9.1)

which represents the sum of the squares of the distances of each data point to its

K-means
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assigned vector µk. Our goal is to find values for the {rnk} and the {µk} so as to
minimize J . We can do this through an iterative procedure in which each iteration
involves two successive steps corresponding to successive optimizations with respect
to the rnk and the µk. First we choose some initial values for the µk. Then in the first
phase we minimize J with respect to the rnk, keeping the µk fixed. In the second
phase we minimize J with respect to the µk, keeping rnk fixed. This two-stage
optimization is then repeated until convergence. We shall see that these two stages
of updating rnk and updating µk correspond respectively to the E (expectation) and
M (maximization) steps of the EM algorithm, and to emphasize this we shall use theSection 9.4
terms E step and M step in the context of the K-means algorithm.

Consider first the determination of the rnk. Because J in (9.1) is a linear func-
tion of rnk, this optimization can be performed easily to give a closed form solution.
The terms involving different n are independent and so we can optimize for each
n separately by choosing rnk to be 1 for whichever value of k gives the minimum
value of ∥xn − µk∥2. In other words, we simply assign the nth data point to the
closest cluster centre. More formally, this can be expressed as

rnk =
{

1 if k = arg minj ∥xn − µj∥2

0 otherwise.
(9.2)

Now consider the optimization of the µk with the rnk held fixed. The objective
function J is a quadratic function of µk, and it can be minimized by setting its
derivative with respect to µk to zero giving

2
N∑

n=1

rnk(xn − µk) = 0 (9.3)

which we can easily solve for µk to give

µk =
∑

n rnkxn∑
n rnk

. (9.4)

The denominator in this expression is equal to the number of points assigned to
cluster k, and so this result has a simple interpretation, namely set µk equal to the
mean of all of the data points xn assigned to cluster k. For this reason, the procedure
is known as the K-means algorithm.

The two phases of re-assigning data points to clusters and re-computing the clus-
ter means are repeated in turn until there is no further change in the assignments (or
until some maximum number of iterations is exceeded). Because each phase reduces
the value of the objective function J , convergence of the algorithm is assured. How-Exercise 9.1
ever, it may converge to a local rather than global minimum of J . The convergence
properties of the K-means algorithm were studied by MacQueen (1967).

The K-means algorithm is illustrated using the Old Faithful data set in Fig-Appendix A
ure 9.1. For the purposes of this example, we have made a linear re-scaling of the
data, known as standardizing, such that each of the variables has zero mean and
unit standard deviation. For this example, we have chosen K = 2, and so in this
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Figure 11.6 (a) Some data fit with three separate regression lines. (b) Gating functions for three different
“experts”. (c) The conditionally weighted average of the three expert predictions. Figure generated by
mixexpDemo.
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Figure 11.7 (a) A mixture of experts. (b) A hierarchical mixture of experts.


