May 1, CODY, Error Backpropagation, Bischop 5.3, and Support Vector Machines (SVM)
Bishop Ch 7.

May 3, Class HW SVM, PCA, and K-means, Bishop Ch 12.1, 9.1

May 8, CODY Machine Learning for finding oil, focusing on 1) robust seismic
denoising/interpolation using structured matrix approximation 2) seismic image clustering and
classification, using t-SNE(t-distributed stochastic neighbor embedding) and CNN. Weichang
Li, Goup Leader Aramco, Houston.

May 10, Class HW First distribution of final projects. Bishop Ch 9
May 15, CODY Seismology and Machine Learning, Daniel Trugman (half class), ch 9

May 17, Class HW Ocean acoustic source tracking. Final projects. The main goal in the last 3
weeks is the Final project. ch 9

May 22, Dictionary learning, Mike Bianco (half class), Graphical models Bishop Ch 8

May 24, Graphical models Bishop Ch 8

May 31, No Class Workshop, Big Data and The Earth Sciences: Grand Challenges Workshop
June 5, Discuss workshop. Spiess Hall open for project discussion 11am-.

June 7, Workshop report. No class

June 12 Spiess Hall open for project discussion 9-11:30am and 2-7pm

June 16 Final report delivered. Beer time




SVMs are Perceptrons!

SVM'’s use each training case, X, to define a feature K(x, .)
where K is user chosen.

— So the user designs the features.

SVM do “feature selection” by picking support vectors, and
learn feature weighting from a big optimization problem.

So an SVM is a clever way to train a standard perceptron.

— All that a perceptron cannot do, cannot be done by SVM's
(but it's a long time since 1969 so people have forgotten
this).

SVM DOES:

— Margin maximization
— Kernel trick

— Sparse



SVM summarized--- Only kernels
Minimize with respect to w, wy,
CENT,+= w2 (Bishop 7.21)

Solution found in dual domain with Lagrange multipliers
- a,,n=1--Nand
This gives the support vectors S

w=)_ cca t @(xn) (Bishop 7.8)
Used for predictions

¥ =wo+wlekx) =w,+ 2 a,t,@(x,) 'o(x)

nes

— Wy + Z a, tk(x,, %) (Bishop 7.13)

nes



SVM Code for classification
case 'Classify’

% train
model = svmtrain(Y, X,['-c 7.46 -g ' gamma ' -q ' kernel]);
% predict
[predict_label,~, ~] = svmpredict(rand([length(Y),1]), X, model,'-q");

Radial Basis Function Kernel

>> modelmodel = struct with fields:
Parameters: [5%1 double]
nr_class: 2
e LT totalSV: 36
R B DR BRSO rho: 8.3220
R T L Label: [2x1 double]
sv_indices: [36%1 double]
ProbA: [] ProbB: []
nSV: [2x1 double]
sv_coef: [36%1 double]
SVs: [36%2 double]



Can be inner product in infinite dimensional space
Assume x € R and v > 0.
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Finding the Decision Function

@ w: maybe infinite variables
@ The dual problem

min }aTQa —e'a
e 2 Corresponds to
subject to <o < C,ir=1..., :
yTa =0, (Bishop 7.32)

where Q; = yiy;¢(x;) ¢(x;) and e = [1,...,1]" With y=t

@ At optimum

w =3 aiyig(x;)
@ A finite problem: #variables = #;craiging_da’ga

== DaAe

Using these results to eliminate w, b, and {£,, } from the Lagrangian, we obtain the
dual Lagrangian in the form

N N N
A At tmk (X, Xm) (7.32)
1

n=1 n=1 m=



Linear Kernel
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Unsupervised Learning

Unsupervised vs Supervised Learning:

e Most of this course focuses on supervised learning methods
such as regression and classification.

e In that setting we observe both a set of features
X1, Xa,...,X, for each object, as well as a response or
outcome variable Y. The goal is then to predict Y using

X1, Xo, ..., Xp.

e Here we instead focus on unsupervised learning, we where
observe only the features X, Xo,..., X,. We are not
interested in prediction, because we do not have an
associated response variable Y.



The Goals of Unsupervised Learning

e The goal is to discover interesting things about the
measurements: is there an informative way to visualize the
data? Can we discover subgroups among the variables or
among the observations?

e We discuss two methods:

o principal components analysis, a tool used for data
visualization or data pre-processing before supervised
techniques are applied, and

e clustering, a broad class of methods for discovering
unknown subgroups in data.



Challenge of unsupervised learning

e Unsupervised learning is more subjective than supervised
learning, as there is no simple goal for the analysis, such as
prediction of a response.

e But techniques for unsupervised learning are of growing
importance in a number of fields:

e subgroups of breast cancer patients grouped by their gene
expression measurements,

e croups of shoppers characterized by their browsing and
purchase histories,

e movies grouped by the ratings assigned by movie viewers.

However, it is often easier to work with unlabeled data.
* Think of the movie rating
* Past science history



Principal Components Analysis

Dimensionality reduction
Data-compression

less storage and easy learning
Data visualization

e PCA produces a low-dimensional representation of a
dataset. It finds a sequence of linear combinations of the
variables that have maximal variance, and are mutually
uncorrelated.

e Apart from producing derived variables for use in
supervised learning problems, PCA also serves as a tool for
data visualization.



PCA don’t work well for classification
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Principal Components Analysis: details

e The first principal component of a set of features
X1, X9,...,X, is the normalized linear combination of the
features

Z1 = o1 X1 + 91 Xo + ...+ o1 Xp

that has the largest variance. By normalized, we mean that
P2
j=1951 =

e We refer to the elements ¢11,...,¢p1 as the loadings of the

first principal component; together, the loadings make up
the principal component loading vector,

¢1 = (d11 P21 - dp1)?.

e We constrain the loadings so that their sum of squares is
equal to one, since otherwise setting these elements to be
arbitrarily large in absolute value could result in an
arbitrarily large variance.






Computation of Principal Components

e Suppose we have a n X p data set X. Since we are only
interested in variance, we assume that each of the variables
in X has been centered to have mean zero (that is, the
column means of X are zero).

e We then look for the linear combination of the sample
feature values of the form

Zil = P11Ti1 + P21Ti2 + ...+ Pp1Tip (1)

for : = 1,...,n that has largest sample variance, subject to
the constraint that Y0_, ¢35, = 1.

e Since each of the x;; has mean zero, then so does z;; (for
any values of ¢;1). Hence the sample variance of the z;;
can be written as + > 1 | 2.



Computation: continued

e Plugging in (1) the first principal component loading vector
solves the optimization problem

2

1 n p p
maximize — Z Z Dj1%ij subject to Z ¢]21 = 1.
j=1

PEREE n - .
G115, Pp1 i1 iz

e This problem can be solved via a singular-value
decomposition of the matrix X, a standard technique in
linear algebra.

e We refer to Z; as the first principal component, with
realized values z11,...,2zn1



Further principal components

e The second principal component is the linear combination
of X1,...,X, that has maximal variance among all linear
combinations that are uncorrelated with 2.

e The second principal component scores zi2, 299, ..., Zn2
take the form

Zio = Q121 + P22Ti2 + . .. + PpaZip,

where @9 is the second principal component loading vector,
with elements §b12, qbgg, coey ¢p2.



Test Data

Mean A\ = 3.4-10° Ao = 2.8 10° A3 = 2.4-10° A = 1.6-10°
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« PCAVS Regression

« PCA vs Fisher

e PCA looks for a low-dimensional representation of the

Scatter plot of data-set

Marginal Distribution after Eigenv. transf.

piy)

Marginal Distribution after Fisher transf.

L

Marginal Distribution after Eigenv. transf.

observations that explains a good fraction of the variance.

e (Clustering looks for homogeneous subgroups among the

observations.




Proportion Variance Explained

e To understand the strength of each component, we are

interested in knowing the proportion of variance explained
(PVE) by each one.

o The total variance present in a data set (assuming that the
variables have been centered to have mean zero) is defined

as
ZVar Y wa’

and the variance explained by the mth principal
component 18

1
Var(Zy,) = — Y 27
n “
1=1
e It can be shown that Z§:1 Var(X;) = 2%21 Var(Z,),

with M = min(n — 1, p).



Proportion Variance Explained: continued

e Therefore, the PVE of the mth principal component is
given by the positive quantity between 0 and 1

D i1 Zim
?:1 D i 5’3% |
e The PVEs sum to one. We sometimes display the
cumulative PVEs.
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How many principal components should we use?”

If we use principal components as a summary of our data, how
many components are sufficient?
e No simple answer to this question, as cross-validation is not
available for this purpose.

o Why not?
e When could we use cross-validation to select the number of
components?

e the “scree plot” on the previous slide can be used as a
guide: we look for an “elbow”.



Clustering

Clustering refers to a very broad set of techniques for
finding subgroups, or clusters, in a data set.

We seek a partition of the data into distinct groups so that
the observations within each group are quite similar to
each other,

It make this concrete, we must define what it means for
two or more observations to be similar or different.

Indeed, this is often a domain-specific consideration that
must be made based on knowledge of the data being
studied.



Two clustering methods

o In K -means clustering, we seek to partition the
observations into a pre-specified number of clusters.

e In hierarchical clustering, we do not know in advance how
many clusters we want; in fact, we end up with a tree-like
visual representation of the observations, called a
dendrogram, that allows us to view at once the clusterings
obtained for each possible number of clusters, from 1 to n.



K-means
N K
ernk“xn — llkaz
n=1 k=1

Solving for r.,

{1 if k = argmin; ||x, — p
Fnk =

0O otherwise.

Differentiating for p,

N
QZrnk(xn — ) =0
n=1

which we can easily solve for pu;. to give

17

(9.1)

(9.2)

(9.3)

9.4)
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K-means clustering

K=2 K=3 K=4

.. [} °
‘.. ..q .:
8

A simulated data set with 150 observations in 2-dimensional
space. Panels show the results of applying K-means clustering
with different values of K, the number of clusters. The color of
each observation indicates the cluster to which it was assigned
using the K-means clustering algorithm. Note that there is no
ordering of the clusters, so the cluster coloring is arbitrary.
These cluster labels were not used in clustering; instead, they
are the outputs of the clustering procedure.



K-Means Clustering Algorithm

. Randomly assign a number, from 1 to K, to each of the
observations. These serve as initial cluster assignments for
the observations.

. Iterate until the cluster assignments stop changing:

2.1 For each of the K clusters, compute the cluster centroud.
The kth cluster centroid is the vector of the p feature means
for the observations in the kth cluster.

2.2 Assign each observation to the cluster whose centroid is
closest (where closest is defined using Fuclidean distance).



Properties of the Algorithm

e This algorithm is guaranteed to decrease the value of the
objective (4) at each step. Why? Note that

S‘ S‘xm ajzg —QS‘S‘ZI%] xkj )

zzEij 1 1€Cl, 1=1

where Zp; = |Ck:| D _icc, Tij 1s the mean for feature j in
cluster CY.

e however it is not guaranteed to give the global minimum.
Why not?
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Example

The progress of the K-means algorithm with K=3.

Top left: The observations are shown.

Top center: In Step 1 of the algorithm, each observation is
randomly assigned to a cluster.

Top right: In Step 2(a), the cluster centroids are computed.
These are shown as large colored disks. Initially the
centroids are almost completely overlapping because the
initial cluster assignments were chosen at random.

Bottom left: In Step 2(b), each observation is assigned to
the nearest centroid.

Bottom center: Step 2(a) is once again performed, leading
to new cluster centroids.

Bottom right: The results obtained after 10 iterations.



235.8

235.8

Different starting values

K-means clustering performed six times on the data from
previous figure with K = 3, each time with a different random
assignment of the observations in Step 1 of the K-means
algorithm.

Above each plot is the value of the objective (4).

Three different local optima were obtained, one of which
resulted in a smaller value of the objective and provides better
separation between the clusters.

Those labeled in red all achieved the same best solution, with
an objective value of 235.8



Hierarchical Clustering

e K-means clustering requires us to pre-specify the number
of clusters K. This can be a disadvantage (later we discuss
strategies for choosing K)

e Hierarchical clustering is an alternative approach which

does not require that we commit to a particular choice of
K.

e In this section, we describe bottom-up or agglomerative
clustering. This is the most common type of hierarchical
clustering, and refers to the fact that a dendrogram is built
starting from the leaves and combining clusters up to the
trunk.



Hierarchical Clustering Algorithm

The approach in words:
e Start with each point in its own cluster.
e Identify the closest two clusters and merge them.
e Repeat.
e Ends when all points are in a single cluster.

Dendrogram
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An Example
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45 observations generated in 2-dimensional space. In reality
there are three distinct classes, shown in separate colors.
However, we will treat these class labels as unknown and will
seek to cluster the observations in order to discover the classes
from the data.
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there are three distinct classes, shown in separate colors. . \ W . \ W
However, we will treat these class labels as unknown and will

seek to cluster the observations in order to discover the classes e Left: Dendrogram obtained from hierarchically clustering
from the data. the data from previous slide, with complete linkage and
Euclidean distance.

45 observations ggnerated in 2-dimensional space. In reality | \

e (enter: The dendrogram from the left-hand panel, cut at a
height of 9 (indicated by the dashed line). This cut results
in two distinct clusters, shown in different colors.

e Right: The dendrogram from the left-hand panel, now cut
at a height of 5. This cut results in three distinct clusters,
shown in different colors. Note that the colors were not
used in clustering, but are simply used for display purposes
in this figure
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