
• May 1, CODY, Error Backpropagation, Bischop 5.3, and Support Vector Machines (SVM) 
Bishop Ch 7.

• May 3, Class HW SVM, PCA, and K-means, Bishop Ch 12.1, 9.1
• May 8, CODY Machine Learning for finding oil, focusing on 1) robust seismic 

denoising/interpolation using structured matrix approximation 2) seismic image clustering and 
classification, using t-SNE(t-distributed stochastic neighbor embedding) and CNN. Weichang
Li, Goup Leader Aramco, Houston.

• May 10, Class HW First distribution of final projects. Bishop Ch 9
• May 15, CODY Seismology and Machine Learning, Daniel Trugman (half class), ch 9
• May 17, Class HW Ocean acoustic source tracking. Final projects. The main goal in the last 3 

weeks is the Final project. ch 9
• May 22, Dictionary learning, Mike Bianco (half class), Graphical models Bishop Ch 8
• May 24, Graphical models Bishop Ch 8
• May 31, No Class Workshop, Big Data and The Earth Sciences: Grand Challenges Workshop
• June 5, Discuss workshop. Spiess Hall open for project discussion 11am-.
• June 7, Workshop report. No class 
• June 12 Spiess Hall open for project discussion 9-11:30am and 2-7pm
• June 16 Final report delivered. Beer time



SVMs are Perceptrons!
• SVM’s use each training case, x, to define a feature K(x, .) 

where K is user chosen. 
– So the user designs the features.

• SVM do “feature selection” by picking support vectors, and 
learn feature weighting from a big optimization problem.

• So an SVM is a clever way to train a standard perceptron.
– All that a perceptron cannot do, cannot be done by SVM’s 

(but it’s a long time since 1969 so people have forgotten 
this).

• SVM DOES:
– Margin maximization
– Kernel trick
– Sparse



SVM summarized--- Only kernels
• Minimize with respect to 𝒘,w0

𝐶 ∑ 𝜁𝑛(
) + +

,
𝒘 2 (Bishop 7.21)

• Solution found in dual domain with Lagrange multipliers
– 𝑎𝑛	, 𝑛 = 1⋯𝑁	and 

• This gives the support vectors S
𝒘4 = ∑ 𝑎𝑛)∈6 𝑡𝑛𝝋(𝑥𝑛) (Bishop 7.8)

• Used for predictions

𝑦= = w0 +𝒘>𝝋 𝑥 = w0 +?𝑎𝑛
)∈6

𝑡𝑛𝝋 𝑥𝑛 T𝝋 𝑥

= w0 +?𝑎𝑛
)∈6

𝑡𝑛𝑘 𝑥𝑛, 𝑥 																							
(Bishop 7.13)



SVM  Code for classification
case 'Classify'

% train
model = svmtrain(Y, X,['-c 7.46 -g ' gamma ' -q ' kernel]);

% predict
[predict_label,~, ~] = svmpredict(rand([length(Y),1]), X, model,'-q'); 

>> modelmodel =   struct with fields:   
Parameters: [5×1 double]     
nr_class: 2       
totalSV: 36           
rho: 8.3220         
Label: [2×1 double]    
sv_indices: [36×1 double]         
ProbA: []         ProbB: []           
nSV: [2×1 double]       
sv_coef: [36×1 double]           
SVs: [36×2 double]



Basic concepts

Can be inner product in infinite dimensional space
Assume x ∈ R1 and γ > 0.
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Basic concepts

Finding the Decision Function

w: maybe infinite variables
The dual problem

min
α

1

2
αTQα − e

Tα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

y
Tα = 0,

where Qij = yiyjφ(xi)Tφ(xj) and e = [1, . . . , 1]T

At optimum

w =
∑l

i=1 αiyiφ(xi)

A finite problem: #variables = #training data
Chih-Jen Lin (National Taiwan Univ.) MLSS 2006, Taipei 10 / 98

Corresponds to 
(Bishop 7.32)
With y=t
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where {an ! 0} and {µn ! 0} are Lagrange multipliers. The corresponding set of
KKT conditions are given byAppendix E

an ! 0 (7.23)
tny(xn) − 1 + ξn ! 0 (7.24)

an (tny(xn) − 1 + ξn) = 0 (7.25)
µn ! 0 (7.26)
ξn ! 0 (7.27)

µnξn = 0 (7.28)

where n = 1, . . . , N .
We now optimize out w, b, and {ξn} making use of the definition (7.1) of y(x)

to give

∂L

∂w
= 0 ⇒ w =

N∑

n=1

antnφ(xn) (7.29)

∂L

∂b
= 0 ⇒

N∑

n=1

antn = 0 (7.30)

∂L

∂ξn
= 0 ⇒ an = C − µn. (7.31)

Using these results to eliminate w, b, and {ξn} from the Lagrangian, we obtain the
dual Lagrangian in the form

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.32)

which is identical to the separable case, except that the constraints are somewhat
different. To see what these constraints are, we note that an ! 0 is required because
these are Lagrange multipliers. Furthermore, (7.31) together with µn ! 0 implies
an " C. We therefore have to minimize (7.32) with respect to the dual variables
{an} subject to

0 " an " C (7.33)
N∑

n=1

antn = 0 (7.34)

for n = 1, . . . , N , where (7.33) are known as box constraints. This again represents
a quadratic programming problem. If we substitute (7.29) into (7.1), we see that
predictions for new data points are again made by using (7.13).

We can now interpret the resulting solution. As before, a subset of the data
points may have an = 0, in which case they do not contribute to the predictive
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Unsupervised Learning

Unsupervised vs Supervised Learning:

• Most of this course focuses on supervised learning methods
such as regression and classification.

• In that setting we observe both a set of features
X1, X2, . . . , Xp for each object, as well as a response or
outcome variable Y . The goal is then to predict Y using
X1, X2, . . . , Xp.

• Here we instead focus on unsupervised learning, we where
observe only the features X1, X2, . . . , Xp. We are not
interested in prediction, because we do not have an
associated response variable Y .
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The Goals of Unsupervised Learning

• The goal is to discover interesting things about the
measurements: is there an informative way to visualize the
data? Can we discover subgroups among the variables or
among the observations?

• We discuss two methods:
• principal components analysis, a tool used for data

visualization or data pre-processing before supervised
techniques are applied, and

• clustering, a broad class of methods for discovering
unknown subgroups in data.
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The Challenge of Unsupervised Learning

• Unsupervised learning is more subjective than supervised
learning, as there is no simple goal for the analysis, such as
prediction of a response.

• But techniques for unsupervised learning are of growing
importance in a number of fields:

• subgroups of breast cancer patients grouped by their gene
expression measurements,

• groups of shoppers characterized by their browsing and
purchase histories,

• movies grouped by the ratings assigned by movie viewers.

3 / 50

Challenge of unsupervised learning

However, it is often easier to work with unlabeled data. 
• Think of the movie rating
• Past science history 



Principal Components Analysis

• PCA produces a low-dimensional representation of a
dataset. It finds a sequence of linear combinations of the
variables that have maximal variance, and are mutually
uncorrelated.

• Apart from producing derived variables for use in
supervised learning problems, PCA also serves as a tool for
data visualization.
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Dimensionality reduction
Data-compression

less storage and easy learning
Data visualization



PCA don’t work well  for classification



Principal Components Analysis: details

• The first principal component of a set of features
X1, X2, . . . , Xp is the normalized linear combination of the
features

Z1 = �11X1 + �21X2 + . . .+ �p1Xp

that has the largest variance. By normalized, we mean thatPp
j=1 �

2
j1 = 1.

• We refer to the elements �11, . . . ,�p1 as the loadings of the
first principal component; together, the loadings make up
the principal component loading vector,
�1 = (�11 �21 . . . �p1)T .

• We constrain the loadings so that their sum of squares is
equal to one, since otherwise setting these elements to be
arbitrarily large in absolute value could result in an
arbitrarily large variance.
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Computation of Principal Components

• Suppose we have a n⇥ p data set X. Since we are only
interested in variance, we assume that each of the variables
in X has been centered to have mean zero (that is, the
column means of X are zero).

• We then look for the linear combination of the sample
feature values of the form

zi1 = �11xi1 + �21xi2 + . . .+ �p1xip (1)

for i = 1, . . . , n that has largest sample variance, subject to
the constraint that

Pp
j=1 �

2
j1 = 1.

• Since each of the xij has mean zero, then so does zi1 (for
any values of �j1). Hence the sample variance of the zi1

can be written as 1
n

Pn
i=1 z

2
i1.
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Computation: continued

• Plugging in (1) the first principal component loading vector
solves the optimization problem

maximize
�11,...,�p1

1

n

nX

i=1

0

@
pX

j=1

�j1xij

1

A
2

subject to
pX

j=1

�

2
j1 = 1.

• This problem can be solved via a singular-value
decomposition of the matrix X, a standard technique in
linear algebra.

• We refer to Z1 as the first principal component, with
realized values z11, . . . , zn1
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Further principal components

• The second principal component is the linear combination
of X1, . . . , Xp that has maximal variance among all linear
combinations that are uncorrelated with Z1.

• The second principal component scores z12, z22, . . . , zn2
take the form

zi2 = �12xi1 + �22xi2 + . . .+ �p2xip,

where �2 is the second principal component loading vector,
with elements �12,�22, . . . ,�p2.
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Test Data





• PCA VS Regression

• PCA vs Fisher

PCA vs Clustering

• PCA looks for a low-dimensional representation of the
observations that explains a good fraction of the variance.

• Clustering looks for homogeneous subgroups among the
observations.
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Proportion Variance Explained

• To understand the strength of each component, we are
interested in knowing the proportion of variance explained
(PVE) by each one.

• The total variance present in a data set (assuming that the
variables have been centered to have mean zero) is defined
as

pX

j=1

Var(Xj) =
pX

j=1

1

n

nX

i=1

x

2
ij ,

and the variance explained by the mth principal
component is

Var(Zm) =
1

n

nX

i=1

z

2
im.

• It can be shown that
Pp

j=1Var(Xj) =
PM

m=1Var(Zm),
with M = min(n� 1, p).
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Proportion Variance Explained: continued
• Therefore, the PVE of the mth principal component is
given by the positive quantity between 0 and 1

Pn
i=1 z

2
imPp

j=1

Pn
i=1 x

2
ij

.

• The PVEs sum to one. We sometimes display the
cumulative PVEs.
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How many principal components should we use?

If we use principal components as a summary of our data, how
many components are su�cient?

• No simple answer to this question, as cross-validation is not
available for this purpose.

• Why not?
• When could we use cross-validation to select the number of

components?

• the “scree plot” on the previous slide can be used as a
guide: we look for an “elbow”.
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Clustering

• Clustering refers to a very broad set of techniques for
finding subgroups, or clusters, in a data set.

• We seek a partition of the data into distinct groups so that
the observations within each group are quite similar to
each other,

• It make this concrete, we must define what it means for
two or more observations to be similar or di↵erent.

• Indeed, this is often a domain-specific consideration that
must be made based on knowledge of the data being
studied.
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Two clustering methods

• In K-means clustering, we seek to partition the
observations into a pre-specified number of clusters.

• In hierarchical clustering, we do not know in advance how
many clusters we want; in fact, we end up with a tree-like
visual representation of the observations, called a
dendrogram, that allows us to view at once the clusterings
obtained for each possible number of clusters, from 1 to n.
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424 9. MIXTURE MODELS AND EM

view of mixture distributions in which the discrete latent variables can be interpreted
as defining assignments of data points to specific components of the mixture. A gen-Section 9.2
eral technique for finding maximum likelihood estimators in latent variable models
is the expectation-maximization (EM) algorithm. We first of all use the Gaussian
mixture distribution to motivate the EM algorithm in a fairly informal way, and then
we give a more careful treatment based on the latent variable viewpoint. We shallSection 9.3
see that the K-means algorithm corresponds to a particular nonprobabilistic limit of
EM applied to mixtures of Gaussians. Finally, we discuss EM in some generality.Section 9.4

Gaussian mixture models are widely used in data mining, pattern recognition,
machine learning, and statistical analysis. In many applications, their parameters are
determined by maximum likelihood, typically using the EM algorithm. However, as
we shall see there are some significant limitations to the maximum likelihood ap-
proach, and in Chapter 10 we shall show that an elegant Bayesian treatment can be
given using the framework of variational inference. This requires little additional
computation compared with EM, and it resolves the principal difficulties of maxi-
mum likelihood while also allowing the number of components in the mixture to be
inferred automatically from the data.

9.1. K-means Clustering

We begin by considering the problem of identifying groups, or clusters, of data points
in a multidimensional space. Suppose we have a data set {x1, . . . ,xN} consisting
of N observations of a random D-dimensional Euclidean variable x. Our goal is to
partition the data set into some number K of clusters, where we shall suppose for
the moment that the value of K is given. Intuitively, we might think of a cluster as
comprising a group of data points whose inter-point distances are small compared
with the distances to points outside of the cluster. We can formalize this notion by
first introducing a set of D-dimensional vectors µk, where k = 1, . . . , K, in which
µk is a prototype associated with the kth cluster. As we shall see shortly, we can
think of the µk as representing the centres of the clusters. Our goal is then to find
an assignment of data points to clusters, as well as a set of vectors {µk}, such that
the sum of the squares of the distances of each data point to its closest vector µk, is
a minimum.

It is convenient at this point to define some notation to describe the assignment
of data points to clusters. For each data point xn, we introduce a corresponding set
of binary indicator variables rnk ∈ {0, 1}, where k = 1, . . . , K describing which of
the K clusters the data point xn is assigned to, so that if data point xn is assigned to
cluster k then rnk = 1, and rnj = 0 for j ̸= k. This is known as the 1-of-K coding
scheme. We can then define an objective function, sometimes called a distortion
measure, given by

J =
N∑

n=1

K∑

k=1

rnk∥xn − µk∥2 (9.1)

which represents the sum of the squares of the distances of each data point to its

K-means
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assigned vector µk. Our goal is to find values for the {rnk} and the {µk} so as to
minimize J . We can do this through an iterative procedure in which each iteration
involves two successive steps corresponding to successive optimizations with respect
to the rnk and the µk. First we choose some initial values for the µk. Then in the first
phase we minimize J with respect to the rnk, keeping the µk fixed. In the second
phase we minimize J with respect to the µk, keeping rnk fixed. This two-stage
optimization is then repeated until convergence. We shall see that these two stages
of updating rnk and updating µk correspond respectively to the E (expectation) and
M (maximization) steps of the EM algorithm, and to emphasize this we shall use theSection 9.4
terms E step and M step in the context of the K-means algorithm.

Consider first the determination of the rnk. Because J in (9.1) is a linear func-
tion of rnk, this optimization can be performed easily to give a closed form solution.
The terms involving different n are independent and so we can optimize for each
n separately by choosing rnk to be 1 for whichever value of k gives the minimum
value of ∥xn − µk∥2. In other words, we simply assign the nth data point to the
closest cluster centre. More formally, this can be expressed as

rnk =
{

1 if k = arg minj ∥xn − µj∥2

0 otherwise.
(9.2)

Now consider the optimization of the µk with the rnk held fixed. The objective
function J is a quadratic function of µk, and it can be minimized by setting its
derivative with respect to µk to zero giving

2
N∑

n=1

rnk(xn − µk) = 0 (9.3)

which we can easily solve for µk to give

µk =
∑

n rnkxn∑
n rnk

. (9.4)

The denominator in this expression is equal to the number of points assigned to
cluster k, and so this result has a simple interpretation, namely set µk equal to the
mean of all of the data points xn assigned to cluster k. For this reason, the procedure
is known as the K-means algorithm.

The two phases of re-assigning data points to clusters and re-computing the clus-
ter means are repeated in turn until there is no further change in the assignments (or
until some maximum number of iterations is exceeded). Because each phase reduces
the value of the objective function J , convergence of the algorithm is assured. How-Exercise 9.1
ever, it may converge to a local rather than global minimum of J . The convergence
properties of the K-means algorithm were studied by MacQueen (1967).

The K-means algorithm is illustrated using the Old Faithful data set in Fig-Appendix A
ure 9.1. For the purposes of this example, we have made a linear re-scaling of the
data, known as standardizing, such that each of the variables has zero mean and
unit standard deviation. For this example, we have chosen K = 2, and so in this
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Solving for rnk

Differentiating for		𝜇𝑘



K-means



K-means clustering
K=2 K=3 K=4

A simulated data set with 150 observations in 2-dimensional
space. Panels show the results of applying K-means clustering
with di↵erent values of K, the number of clusters. The color of
each observation indicates the cluster to which it was assigned
using the K-means clustering algorithm. Note that there is no
ordering of the clusters, so the cluster coloring is arbitrary.
These cluster labels were not used in clustering; instead, they
are the outputs of the clustering procedure.
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K-Means Clustering Algorithm

1. Randomly assign a number, from 1 to K, to each of the
observations. These serve as initial cluster assignments for
the observations.

2. Iterate until the cluster assignments stop changing:
2.1 For each of the K clusters, compute the cluster centroid.

The kth cluster centroid is the vector of the p feature means
for the observations in the kth cluster.

2.2 Assign each observation to the cluster whose centroid is
closest (where closest is defined using Euclidean distance).
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Properties of the Algorithm

• This algorithm is guaranteed to decrease the value of the
objective (4) at each step. Why? Note that

1

|Ck|
X

i,i02Ck

pX

j=1

(xij � xi0j)
2 = 2

X

i2Ck

pX

j=1

(xij � x̄kj)
2
,

where x̄kj =
1

|Ck|
P

i2Ck
xij is the mean for feature j in

cluster Ck.

• however it is not guaranteed to give the global minimum.
Why not?
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Example
Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results
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Details of Previous Figure

The progress of the K-means algorithm with K=3.

• Top left: The observations are shown.

• Top center: In Step 1 of the algorithm, each observation is
randomly assigned to a cluster.

• Top right: In Step 2(a), the cluster centroids are computed.
These are shown as large colored disks. Initially the
centroids are almost completely overlapping because the
initial cluster assignments were chosen at random.

• Bottom left: In Step 2(b), each observation is assigned to
the nearest centroid.

• Bottom center: Step 2(a) is once again performed, leading
to new cluster centroids.

• Bottom right: The results obtained after 10 iterations.
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Example: di↵erent starting values
320.9 235.8 235.8

235.8 235.8 310.9
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Different starting values
Details of Previous Figure

K-means clustering performed six times on the data from
previous figure with K = 3, each time with a di↵erent random
assignment of the observations in Step 1 of the K-means
algorithm.
Above each plot is the value of the objective (4).
Three di↵erent local optima were obtained, one of which
resulted in a smaller value of the objective and provides better
separation between the clusters.
Those labeled in red all achieved the same best solution, with
an objective value of 235.8
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Hierarchical Clustering

•
K-means clustering requires us to pre-specify the number
of clusters K. This can be a disadvantage (later we discuss
strategies for choosing K)

• Hierarchical clustering is an alternative approach which
does not require that we commit to a particular choice of
K.

• In this section, we describe bottom-up or agglomerative
clustering. This is the most common type of hierarchical
clustering, and refers to the fact that a dendrogram is built
starting from the leaves and combining clusters up to the
trunk.
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Hierarchical Clustering Algorithm
The approach in words:

• Start with each point in its own cluster.
• Identify the closest two clusters and merge them.
• Repeat.
• Ends when all points are in a single cluster.

A B
C

D
E

0
1

2
3

4

Dendrogram

D E B A C
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An Example

−6 −4 −2 0 2

−
2

0
2

4

X1

X
2

45 observations generated in 2-dimensional space. In reality
there are three distinct classes, shown in separate colors.
However, we will treat these class labels as unknown and will
seek to cluster the observations in order to discover the classes
from the data.
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Example
Application of hierarchical clustering
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Details of previous figure

• Left: Dendrogram obtained from hierarchically clustering
the data from previous slide, with complete linkage and
Euclidean distance.

• Center: The dendrogram from the left-hand panel, cut at a
height of 9 (indicated by the dashed line). This cut results
in two distinct clusters, shown in di↵erent colors.

• Right: The dendrogram from the left-hand panel, now cut
at a height of 5. This cut results in three distinct clusters,
shown in di↵erent colors. Note that the colors were not
used in clustering, but are simply used for display purposes
in this figure
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An Example
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45 observations generated in 2-dimensional space. In reality
there are three distinct classes, shown in separate colors.
However, we will treat these class labels as unknown and will
seek to cluster the observations in order to discover the classes
from the data.
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