
02457 Non-Linear Signal Processing: Exercise 3

This exercise is based on C.M. Bishop: Machine Learning and Pattern Recognition, sec-
tions 3.1, 4.1.

Your task is to use the MATLAB software to illustrate and discuss the linear model
for prediction and Fisher’s linear discriminant for classification.

Print and comment on the figures produced by the software main3a.m to main3c.m as
outlined below at the three checkpoints.

Linear Models

Let y(x) be a function of the vector x, where x = (x1, . . . , xd)
⊤. To estimate y(x) we

have a dataset, D = {(xn, tn)}, n = 1, . . . , N of N corresponding values of x and noisy
observations of y(x).

Let us model the function y(x) with the linear expression

y(x) = w0 +
d∑

i=1

wixi = w0 +w⊤x, (1)

where w is a weight vector.
The constant term in equation (1) can be included in the weight vector, w, where

another term is also added to x, such that x = (1, x1, . . . , xd)
⊤. This reduces equation (1)

to

y(x) =
d∑

i=0

wixi = w⊤x. (2)

The weight-vector, w, that models the given data-set (training-set) best is found
through minimizing an error function. Here we shall use the sum-of-squares error function
given by

E(w) =
1

2

N∑
n=1

{y(xn;w)− tn}2 (3)

=
1

2

N∑
n=1

{
w⊤xn − tn

}2
. (4)

Introducing the matrix,X, whereX⊤ = (x1 x2 . . .xN) and the vector, t = (t1, t2, . . . , tN)
⊤,

equation (4) can be rewritten as

E(w) =
1

2

(
w⊤X⊤Xw + t⊤t− 2w⊤X⊤t

)
. (5)

Since equation (5) is quadratic in w, the exact value of w minimizing E(w) can be found
analytically by equating the derivative of equation (5) to zero. This gives the normal
equations for the least-squares problem:

X⊤Xw = X⊤t. (6)

1

Solving forw gives the optimalw. SinceX is anN×(d+1) matrix,X⊤X is a (d+1)×(d+1)
square matrix. Thus the solution to equation (6) is given by

w = (X⊤X)−1X⊤t ≡ X†t, (7)

where X† is a (d+1)×N matrix known as the pseudo-inverse of X. X† has the property
that X†X = I, whereas XX† ̸= I in general.

Checkpoint 3.1:

Use the program main3a.m to create a training-set with a 2-dimensional input variable
and a 1-dimensional output variable. Compare the estimated weight vector with the true
one and the dependence on both the noise level and number of points in the training-set.
Note, the software rounds N to be a square number, due to the lattice presentation.

Time Series Prediction

An example where the linear model can be used is in time series prediction. To illustrate
this, consider the example of the sunspot measurements. The number of sunspots oscil-
lates almost periodically over a period of some years. The average number of sunspots
has been measured yearly since 1700. Imagine we want to predict the average number of
sunspots next year. The linear model can be used for this.

Let the number of sunspots in year n be xn. Let’s assume that the number of sunspots
in year n only depends on the number of sunspots in the previous d years. This is
reasonable since there must be a limit as to how far back one can expect a correlation.
This can be expressed as

xn = f(xn−1, xn−2, . . . xn−d). (8)

Approximating the function f with a linear model gives

xn = w0 +
d∑

j=1

wjxn−j. (9)

This corresponds to equation (1), and hence is the same problem given by equations (2)
to (7), where the training set is given by

xn = (1, xn−d, . . . , xn−1)
⊤

tn = xn

}
n = 1, . . . , N − d− 1. (10)

Note the important difference in the notations xn and xn. The weights can be found using
equation (7), and the predicted value, xn+1, can be found from

xn+1 = y(xn) = w⊤xn. (11)

Checkpoint 3.2:

Use the program main3b.m to perform a time series prediction of the number of sunspots.
Compare the actual measurements with the predicted values as a function of the number
of weights, d, (hence years) included in the model.

2

Fisher’s Linear Discriminant

In exercise 2, we saw that a multidimensional variable can be projected onto the directions
of largest covariance by a coordinate transformation to the coordinate system spanned by
the eigenvectors of the covariance matrix. This may facilitate classification of the data.
However, there are also some cases, where the direction that maximizes class separation
doesn’t correspond to any of the eigenvectors. In such a case, the coordinate transforma-
tion does not solve the problem. However, the direction of maximum class separation can
be found using Fisher’s linear discriminant.

Consider a two-class problem in which there are N1 points of class C1 and N2 points
of class C2. The mean vectors of the two classes are given by

m1 =
1

N1

∑
n∈C1

xn (12)

m2 =
1

N2

∑
n∈C2

xn. (13)

Let the projection of a data vector, x, onto a the direction of maximum class separation
be

y = w⊤x. (14)

This is the direction along which the probability density functions of the two classes,
p(y|C1) and p(y|C2), overlap the least. It can be shown by maximizing Fisher’s criterion
that the direction vector for the projection, w, is given by

w ∝ S−1
w (m2 −m1), (15)

where Sw is the total within-class variation matrix, given by

Sw =
∑
n∈C1

(xn −m1)(xn −m1)
⊤ +

∑
n∈C2

(xn −m2)(xn −m2)
⊤. (16)

Checkpoint 3.3:

Use the program main3c.m to find the direction maximizing class separation for a two-class
problem. In the figure class C1 is color coded as blue and class C2 as red. Compare the
projection of the data-set onto one-dimension with the projections found using eigenvector
transformation as illustrated in exercise 2. Compose different data-sets and compare the
performance of the two methods in each case.

DTU, September 2009,

Karam Sidaros, Lars Kai Hansen

3

