
02457 Non-Linear Signal Processing,

Exercise 10: Speech and sequence processing

This exercise is based on Christopher Bishop: Machine Learning and Pattern Recognition,
section 13.1.

Print and comment on the figures produced by the software as outlined below at the
Checkpoints.

Speech recognition

Consider a system where the task is to recognize a single spoken word, generally referred
to as isolated word recognition. Thus, assume we have a vocabulary of R words to be
recognized and that each word is to be modeled by a distinct sequence model. This
involves the following steps:

• Feature Extraction: A frame based spectral and/or temporal analysis of the speech
signals is performed to give observation vectors, yt, which can be used to train the
sequence models.

• Symbol identification: Use a training set of L occurrences of each spoken word, i.e.,
L×R sequences, to derive a codebook containing K possible observation (feature)
vectors using vector quantization methods. Subsequently, any observation vector
used for either training or recognition is quantized using this codebook.

• Training of the sequence models based on a training set.

• Recognition using the sequence models.

Feature Extraction

The feature vector sequence {y1,y2, . . . ,yT} is obtained from front-end spectral analysis
of the speech samples. Many features have been used as observations, but most prevalent
are the LP parameters, cepstral parameters, and related quantities.

First, the sampled speech signal is blocked into frames of N samples, for example
N = 320 corresponding to 32 ms at 10 kHz sampling frequency. Consecutive frames are
spaced ∆N samples apart, e.g., ∆N = 80 samples, such that the analysis frame end-
times are m = {320, 400, . . . , Ns} which become observation times t = {1, 2, . . . , T}. For
a typical word utterance lasting 1 sec, the signal length Ns = 10000 samples and the
number of frames are T = 122.

Each frame is multiplied by an N -sample window (Hamming), and the autocorrelation
function is found to lag M , where M is the order of a Linear Predictive Coding (LPC)
analysis of the spectral envelope (we use M = 12). The LPC coefficients are computed
by using the Levinson-Durbin recursion, and then converted to Q = 12 so-called cepstral
coefficients. To add dynamic information, Q temporal difference cepstral coefficients are
computed and concatenated to form a 2Q dimensional vector representing each frame.
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Checkpoint 10.1

Use the matlab script main10a.m to perform feature extraction on a speech signal using
the above described procedure. The script produces four figures. A figure shows the time
functions for letters s,o,f. A figure shows the spectrograms (short term time frequency
analysis using the Fourier transform).

A figure shows the temporal development of the ceptral coefficients. Each letter has
two instances that we here refer to as the training and test cases. Locate the parts of
the images that ‘belong’ to each of the three letters. Comment on the similarity and
differences between the letter features and the relation between training and test sets.

A final figure shows a scatter plot of data projected on the two most variant directions
in feature space (principal component analysis). Comment on the clustering of the feature
vectors for the three letters s,o,f.

Symbol identification

In speech recognition sequence models based on discrete observation symbols, rather than
the continuous feature vectors above. Therefore we apply a clustering algorithm to derive
a codebook containing K values to quantize the short time features. Thus, for each occur-
rence of a word, the feature extraction creates a sequence {y1,y2, . . . ,yT} of observation
vectors (one for each frame), which are quantized into one of the permissible set resulting
in the scalar, discrete observation sequence {y1, y2, . . . , yT}, where each of the variables
yt may take only integer values k (codebook index) in the range 1 ≤ k ≤ K.

When we finally assemble a speech recognizer (exercise 12) we will use the K-means
algorithm to form the codebook. Here we will simply assume that each window now is
represented by a single number.

Training simple sequence model

Given discrete observation sequences from the words in the vocabulary, we next would like
to estimate sequence models for each word, i.e., compute the probabilities P ({yn}|word).
Using the Bayes rule

P (word|{yn}) =
P ({yn}|word)P (word)

P ({yn}) (1)

we can compute the posterior probability of each word given a sequence.
Here we will investigate a simple Markov chain model, in exercise 11 (next Thursday)

we will generalize this to hidden Markov models. Let yn be a sequence of N symbols with
K states. Let aj,j′ be the probability of jumping from j to j′. To ensure that we always
jump to some state, the matrix aj,j′ must satisfy

∑
j′ aj,j′ = 1. a can be estimated by

maximum likelihood:

P ({yn}|a) = P (y1)
N∏

n=2

P (yn|yn−1, a)

= P (y1)
∏

j,j′
(aj,j′)

nj,j′
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where nj,j′ is the occurrence of the transition, and P (y1) is the probability of starting
in state y1. Since we only have one sequence for training we will let this be estimated
as P (y1) = 1/K. Using softmax to ensure the normalization condition

∑
j′ aj,j′ = 1 we

obtain the solution,

âj,j′ =
nj,j′∑
j′ nj,j′

Checkpoint 10.2

Use the matlab script main10b.m to create a random transition matrix. This matrix is
used as a teacher that can create training and test sequences. First, we find the stationary
distribution of symbols which is the probability distribution that satisfies,

P ∗(j′) =
∑
j=1

P ∗(j)aj,j′ .

Explain the role of the stationary distribution and explain how the program estimates
the stationary distribution.

Use the transition matrix to create increasing length sequences, and observe how the
histogram of the observed sequences converge to the stationary distribution. Explain the
function getint.m.

Verify the maximum likelihood estimate of the transition matrix. Use the matlab
script (main10b.m) to generate increasing length sequences. Train a student transition
matrix on these sequences and show that the relative error of the student matrix converge
to zero, hence, the student matrix converge to the teacher matrix for large training sets.

Peter S. K. Hansen and Lars Kai Hansen, November, 2001, 2007.
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