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Dictionary learning
• Means of estimating sparse causes for given classes of signals, 

e.g. natural images, audio 
• Originated in the neurosciences to estimate structure of V1 visual 

cortex cells from natural images 
• Useful for regularization of general image denoising inverse 

problem, but only recent applications in the geosciences 
• Seismic survey image denoising 
• Dictionary learning of ocean sound speed profiles (SSPs)
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Olshausen 2009

Beckouche 2014
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Dictionary learning: Olshausen and Field 1997
• Seminal paper on learning dictionaries from a given class of signals 
• Possible strategy of mammalian visual system for reducing 

redundancy in natural images
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"Natural images"

Observe random 
patches from corpus of 
natural images 

Vectorize patches to 
obtain observations Y

"Dictionary"

Estimate "dictionary"     of 
basis functions which 
explain the structure 
observed in all the image 
patches 

Overcomplete means # of functions > dimension of signal



Olshausen and Field 1997: image model with sparse prior
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Assume that each image patch described by linear system 

Goal: estimate bases     from observations  
Probability of image patch arising from bases phi is 
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Image patches

Likelihood Prior Posterior

, with

Likelihood Independent, sparse prior



Olshausen and Field 1997- sparse prior induces sparse 
coefficients

Sparsity inducing prior

"Cauchy distribution"

Derivative of prior induces 
sparsity in solution, as we’ll 
see…



Olshausen and Field 1997 - derivation of Error function
Learn basis functions      by minimizing Kullback-Leibler (KL) divergence 
between true images and those reproduced by model

Since               is fixed, KL is minimized by maximizing 
log-likelihood (or minimizing negative log-likelihood) of 
image patches generated from model, hence

Given:



Olshausen and Field 1997 - gradients for network model
Rewriting Error function, take derivatives to find gradient

Update to          with network (inner loop)              

with

Update to            with gradient descent 
(outer loop)            

"Hebbian" update



Olshausen and Field 1997 - gradients for network model

Can be rephrased as more recent canonical models, with Laplacian prior

Coefficients calculated using gradient descent, then dictionary updated by

This idea of iterative refinement is familiar: solving for 
coefficients, then updating basis functions
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Iterative refinement: Vector Quantization and K-means
Vector quantization (VQ): means of compressing a 
set of data observations                               using a 
nearest neighbor metric with codebook 

2D example

K-means: finds optimal codebook for VQ
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Relationship to canonical sparse processor

{ {Sparse 
processor

VQ 
operators

Dictionary learning 
objective

K-means Gain-shape VQ
K-means 
G-S VQ



MOD algorithm:
1. COEFFICIENTS: Solve for coefficients X=[x_1…x_i] for fixed Q 

using orthogonal matching pursuit (OMP) 
2. DICTIONARY UPDATE: Solve for dictionary Q=[q_1…q_i], by 

inverting the coefficient matrix X, and normalizing dictionary 
entries to have unit norm. 

…. repeat until convergence

MOD algorithm: Extending K-means to dictionary 
learning problem

Method of Optimal Directions (MOD) [Engan 2000]

bQ = YXT (XXT )�1

Simple and flexible but, a few drawbacks: 
• computationally expensive to invert coefficient matrix X
• since keeping coefficients in X fixed during dictionary update, slow convergence
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2D exampleK-SVD algorithm:
1. Solve for coefficients X=[x_1…x_i] for 

fixed Q using OMP 
2. Solve (1) for dictionary Q=[q_1…q_i], 

updating both Q and X from the SVD of 
representation error 

update q_k, x_k by SVD 

…. repeat until convergence

K-SVD algorithm
K-SVD [Aharon 2006]: Learn optimal dictionary for sparse representation 
of data
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Example: Denoising alphabet with K-SVD algorithm
True alphabet Recovered alphabet (no noise)

Recovered alphabet (noise std = .01) Recovered alphabet (noise std = .5)



Dictionary learning of SSPs: motivation

• Acoustic observations from ocean contain information about 
ocean environment 

• The inversion of environment parameters is limited by physics 
and signal processing assumptions
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Source 
(active or noise)

Hydrophones
Sound speed 
profile c(z)

⍴1, c1

⍴2, c2



Sound speed profiles
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• Sound speed profiles (SSPs) in the ocean are often highly variable 
with fine scale fluctuations 

• Acoustic inversion of SSPs is ill-posed and traditionally regularized 
using EOFs 

• Dictionaries obtained via unsupervised learning may provide better 
representation of SSP dynamics
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Dictionary learning of sound speed profiles
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‘Learned Dictionary’

Dictionary 
Learning

ym = cm � c̄

SSP Variability

HF-97 Experiment
• 30 hours of SSP data 
• Used 1000 profiles for 

dictionary learning 
• K = 30 point SSP’s 

(interpolated from 15 
measurements)
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Bianco and Gerstoft JASA 2017 (published)
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SSP reconstruction error using Dictionary Learning

• One entry from Learned Dictionary fits SSP data better than 6 EOFs 
• Learned dictionary (LD) reconstruction error less than 50% of EOF 

error

Based on 1000 profiles from HF-97
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LS: Least squares 
OMP: Sparse processor 

Mean Error (ME): 

ME =
1

KM
kY � bYk1



HF-97: One coefficient from Learned Dictionary vs. One EOF coefficient
SSP reconstruction using Dictionary Learning
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Learning dictionary from HF-97 SSP variation
Q random initialized, converges within 15 iterations



LD solution space much smaller than EOFs

1 2 3 4 5 6 7
T

100

105

1010

1015

1020

1025

S

Sfixed

Scomb

Inversion for SSP: 

Assuming a potentially non-linear mapping: 
• EOF solution: T leading order coefficients 

(fixed indices) 

• LD solution: T-non-zero coefficients 
(combinatorial indices)

EOF sol’n

LD sol’n

S
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S
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• Since 6 EOFs or 1 LD entry required, if coefficients discretized in H=100 
coefficients number of possible solutions are
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Adaptive patch based seismic tomography: motivation
• The earth contains both smooth and discontinuous variations in wave speed 

(e.g. Moho, faults) at multiple scales 
• Most existing inversion methods regularize inversion of seismic data by 

assuming exclusively smooth, discontinuous, or block constant wave speeds for 
inversion, which may be unrealistic 

• Propose adaptive approach based on image denoising algorithms 
• Want to avoid Markov-chain Monte Carlo (MCMC) formulations of seismic 

inversion

21
Southern California Seismic Network



Travel time tomography
2D map of wave speedFrom the basic relation, 

get travel time: t =
d

c
c = wave speed x1

x3

x2

x4

Travel time for ray from station i to j (r ij)

"slowness"For discrete blocks

Can write formulation in matrix notation
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Example Inversion (unrealistic but illustrative)

322 elementsClassic Patch sparsity

Semi-gaussian distributed 
stations:
64 stations 
2016 ray paths

Dictionary (local priors)



Patch based image denoising

24

Elad 2006

• Patch-based image denoising works by assuming that, 
at the local or ‘patch’ level within a digital image, the 
causes are sparse 

• Example: each 8x8 pixel patch within image is 
represented using few atoms from dictionary trained on 
noisy image patches 

• Iterative 2 step process: (1) local and (2) global solution

Learned dictionary (256 atoms, 8x8 pixels) 



Seismic dictionaries?
Image dictionary (256 atoms, 8x8 pixels) Potential seismic dictionary (267 atoms, 10x10 pixels) 

• Since true seismic wave speed maps have smooth and discontinuous 
features, good candidates for locally sparse priors, similar to natural 
images 

• Questions: (1) can we estimate a dictionary of local seismic patch 
priors from seismic data, and (2) could this improve results



• Local solution: 
• Overlapping patches are raster-scanned from image and vectorized for 

dictionary learning: become training set Y
• Solved by dictionary learning (K-SVD) 

•   Global solution: denoised patches are effectively averaged by solving 

Some details of patch based image denoising
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Learned dictionary (256 atoms, 8x8 pixels) 

Alternate between local and global solutions until convergence



Dictionary learning from seismic data: checkerboard 
(unknown dictionary, to be estimated)

With noise, std of 1% of mean travel time

Dictionary learned directly from image 
data (K-SVD, T=1)

Dictionary learned from simulated 
seismic data (K-SVD, T=2) Iteration error



Rayleigh wave tomographic inversion:  
microseism observations on the Southern California Seismic Array

Dictionary learned directly from 
seismic data (K-SVD, T=2) Iteration error

Patch sparsity Classic method

• 1 month of data 
• 151 stations 
• SNRmin = 15dB 
• ~5000 ray paths



Conclusions: Adaptive patch-based seismic inversion

• Seismic inversion regularized with adaptive dictionaries 
appears to give improved results over at least classic 
methods 

• This method avoids complications associated with MCMC 
based techniques 

• Method currently does not give a posteriori error distributions for 
model estimate

29


