Workshop report Due June 7 | will email dropbox link
1. Daniels report is on website

Don’t expect to write it based on listening to one project (we had 6
only 2 was sufficient quality)

3. |suggest writing it on one presentation.
4. Include figures (from a related paper or their presentation)
5. Include references

From email to attendees: There will be a very diverse group of people
attending the workshop, including over 60 learning-hungry students.

Update: We are all set to have your students attend. We will not register
them, so they can come and go as needed. food is for the registered
participants and please allow them to eat first. Currently we have 70
registered participants and plan to order food for ~100.



4:15-4:30: Bruce Cornuelle, Scripps Institution of Oceanography
“A less grand challenge: How can we merge machine learning with data assimilation? ”

Peter: | propose that if data assimilation is posed “correctly” it is already machine
leaning. Anyway looking forward to your talk.

Bruce: | agree, but most machine learning | know about doesn't build in prior known
dynamics or let you understand what the machine has learned. If you have examples
to the contrary, please give me references. | know about the attempts to "invert" the
networks, though.

| also want to know the pdfs that the machine learning technique is optimal for, both
in the data and the unknowns, in the way that L2 is optimal for gaussians and L1 is
optimal for exponentials.



May 24, Class HW Bishop Ch 8/13
MAY 30 CODY (kmeans, Ksvd, Kalman)
May 31, No Class. Workshop, Big Data and The Earth Sciences: Grand Challenges Workshop

June 5, Discuss workshop, Discuss final project. Spiess Hall open for project discussion 11am-7pm.

June 7, Workshop report. No class
June 12 Spiess Hall open for project discussion 9-11:30am and 2-7pm

June 16 Final report delivered. Beer time

For final project discussion every afternoon Mark and | will be available. Please discuss with Mark or
me



Final Report

June 5

In class on July 5 a status report from each group is mandatory. Maximum 2min/person, (i.e. a
5-member group have 10min), shorter is fine. Have presentation on memory stick or email
Mark. Class might run longer, so we could start earlier.

For the Final project (Due 16 June 5Pm). Delivery Dropbox request <2GB (details to follow).:

1)
2)
3)
4)
5)

1)

A) Deliver a code:

Assume we have reasonable compilers installed (we use Mac OsX)
Give instructions if any additional software should be installed.

You can ask us to download a dataset. Or include it in this submission
Don’t include all developed codes. Just key elements.

We should not have to reprogram your code.

B) Report

The report should include all the following sections: Summary -> Introduction->Physical and
Mathematical framework->Results.

Summary is a combination of an abstract and conclusion.

Plagiarism is not acceptable! When citing use “ “ for quotes and citations for relevant
papers.

Don’t write anything you don’t understand.

Everyone in the group should understand everything that is written. If we do not
understand a section during grading we should be able to ask any member of the group to
clarify. You can delegate the writing, but not the understanding.

Use citations. Any concepts which are not fully explained should have a citation with an
explanation.

Please be concise. Equations are good. Figures essential. Write as though your report is to
be published in a scientific journal.

| have attached a sample report from Mark, though shorter is preferred.



Discrete Variables (1)

General joint distribution: K?-1 parameters
X1 X2 K
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Independent joint dlstrlbutlon 2(K 1) parameters
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General joint distribution over M variables: KM -1parameters
M-node Markov chain: K-1 + (M-1) K(K-1) parameters




K-SVD algorithm

K-SVD [Aharon 2006]: Learn optimal dictionary for sparse representation
of data

mcizn{m)énHY — QX% subject to Vm, ||xXm|lo < T}

K-SVD algorithm: 2D example

1. Solve for coefficients X=[x_1...x_i] for 1 ' 7
fixed Q using OMP

2. Solve (1) for dictionary Q=[q_1...q_1],
updating both Q and X from the SVD of
representation error

IIY—QXHF:H( quxT) et

J#k

F

w
= |Ex — arx7p|
update q_k, x_k by SVD
E¢ = USV’

ar = U(;,1),x7 = V(:,1)S(1, 1)
.. repeat until convergence

12



Dictionary learning for SSP
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Learned dictionaries and sparsity

EOFs: Learned dictionary:
Orthogonal, fill RE ,. Non-orthogonal, fill feature space

2D Example
K= 30D shape 2|3 = |
functions e
-1 :3’1 - | b - - A ‘?: 1
amplitude amplitude

Learned dictionary: Spanning SSP feature space likelihood that few
shapes functions explain a given SSP
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The Model

Consider the discrete, linear system,
xk-|-1:kak+wk7 k:O71727'°'7 (1)

where
* X, € R"is the state vector at time

e M, € R"™"is the state transition matrix (mapping from time
to fx.1) or model

e {w, e R";k=0,1,2,...} is a white, Gaussian sequence, with
w, ~ N(0,Q), often referred to as model error

e Q, € R™"is a symmetric positive definite covariance matrix
(known as the model error covariance matrix).
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Some of the following slides are from: Sarah Dance, University of Reading



The Observations

We also have discrete, linear observations that satisfy

Vi = HixX + Vi, k=1,2,3,..., (2)
where
* Yy, € RP is the vector of actual measurements or observations
at time

 H, € R"™P is the observation operator. Note that this is not in
general a square matrix.

e {vip e RP;k=1,2,...} is a white, Gaussian sequence, with
v, ~ N(0, Ry), often referred to as observation error.

* R, € RP*P is a symmetric positive definite covariance matrix
(known as the observation error covariance matrix).

We assume that the initial state, Xo and the noise vectors at each
s’fge{eé {wy}, {vi}, are assumed mutually independent.



The Prediction and Filtering Problems

We suppose that there is some uncertainty in the initial state, i.e.,
Xo ~ N(07 PO) (3)

with Pg € R a symmetric positive definite covariance matrix.

The problem is now to compute an improved estimate of the
stochastic variable x,, provided y1, ...y, have been measured:

Xklj = Xklys.....y; (4)

e When j = k this is called the filtered estimate.

e When j = k — 1 this is the one-step predicted, or (here) the
predicted estimate.
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e The Kalman filter (Kalman, 1960) provides estimates for the
linear discrete prediction and filtering problem.

* We will take a minimum variance approach to deriving the filter.

e We assume that all the relevant probability densities are
Gaussian so that we can simply consider the mean and
covariance.

* Rigorous justifcation and other approaches to deriving the filter
are discussed by Jazwinski (1970), Chapter 7.
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Prediction step

We first derive the equation for one-step prediction of the mean
using the state propagation model (1).

Xiptk = EXkgqlY1,--- Vil
K [Mka -+ Wk] ,
= MiXy (5)
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The one step prediction of the covariance is defined by,

Priik =E [(Xk+1 — Xk 116) Xk — X k) Y15 - -YK} . (6)

Exercise: Using the state propagation model, (1), and one-step
prediction of the mean, (5), show that

Pii1jk = MPyM; + Q. (7)
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Product of Gaussians=Gaussian:

7.0 100 12 130 70 10.96 130
One data point problem

For the general linear inverse problem we would have

Prior: M) s o {—%(m _ mo) i =L mo)}

Likelihood: p(d|m) o exp {—%(d _ Gm)TC'Jl(d - Gm)}

Posterior PDF
x exp {—%[(d —~cm)To H(d - Gm) + (m —mo)TCpt(m — mo)]}

; exp{—%[m ] " [m- m]}
S"'=G'C;G+C,
i=(G'C;'G+C,') (G'C;'d+C;'m,)

- m, +(G’C;'G+C;') G'C;'(d-Gm,)



]
Filtering Step

At the time of an observation, we assume that the update to the
mean may be written as a linear combination of the observation
and the previous estimate:

Xk = Xjk—1 + Ki(Yix — HiXg k1), (8)

where K, € R™P is known as the Kalman gain and will be derived
shortly.
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But first we consider the covariance associated with this estimate:
Pk =E [(Xk — X)Xk — Xik) "IV, - -Vk} : (9)
Using the observation update for the mean (8) we have,

Xk — Xk = Xk — Xph—1 — K(Yk — HiXpjk—1)
= Xk — Xi—1 — Ke(HeXg 4+ vk — HiXpi_1),
replacing the observations with their model equivalent,
= (1= KgHg) (X — Xgpe1) — Ky (10)

Thus, since the error in the prior estimate, Xx — X1 is
uncorrelated with the measurement noise we find

Pk = (1—KkHk)E [(Xk — Xpjk—1)(Xk — ik|k—1)T] (1— KgHy)'
+K(E [vkvﬂ KZ(-. (11)
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Simplification of the a posteriori error covariance
formula

Using this value of the Kalman gain we are in a position to simplify
the Joseph form as

Pk|k = (l — Kka)Pk|k—1 (I — Kka)T + KkRkKZ(- — (I — Kka)Pk|k—1 .
(15)
Exercise: Show this.

Note that the covariance update equation is independent of the
actual measurements: so PXX could be computed in advance.
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Summary of the Kalman filter
Prediction step

Mean update: 3(\k+1|k = Mkik“{

Covariance update: Pii 1k = MePycM] + Q.
Observation update step

Mean update: /)Zk|k = /)Zk|k—1 + Kk(yk — Hkik|k_1)
Kalman gain: Kk = Pyjk_1H] (HkPypk_1HT + Ry) ™
Covariance update: Prk = (I — KeHg)Pri—1.

Field
value

Bpee”
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Kalman smoother

(a) (b) (c)

Figure 18.1 Kalman filtering and smoothing. (a) Observations (green cirles) are
generated by an object moving to the right (true location denoted by black squares).
(b) Filtered estimated is shown by dotted red line. Red cross is the posterior mean,
blue circles are 95% confidence ellipses derived from the posterior covariance. For
clarity, we only plot the ellipses every other time step. (c) Same as (b), but using
offline Kalman smoothing. Figure generated by kalmanTrackingDemo.
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lllustration of the SLAM problem. (a) A robot starts -
at the top left and moves clockwise in a circle back
to where it started. WWe see how the posterior =
uncertainty about the robot’s location increases ‘
and then decreases as it returns to a familar
location, closing the loop. If we performed
smoothing, this new information would propagate

Graphical model underlying SLAM. L' is the
fixed location of landmark i, x; is the robot
location, and vy, is the observation. In this
trace, the robot sees landmarks 1 and 2 at
time 1, then just landmark 2, then just
landmark 1, etc.

backwards in time to disambiguate the entire

trajectory.



Predict N steps ahead

SLAM (Simultaneous Location and Mapping)
Kalman smoother

RLS (Recursive least squares)

Advanced KF:

 Ensample KF (EnKF) non Gaussian
 Extended KF (EKF) non-linear

* Unscented KF (UKF) well chosen control points
e ... Particle Filter Nonlinear, non Gaussian



Trees

Undirected Tree Directed Tree Polytree



Trees

What would you do tonight? Decide amongst the following:

e Finish homework ¢ Go to a party ¢ Read a book e Hang out with
friends

Homework Deadline
tonight?

Yes
No

Do homework

Party invitation?

No Yes
Do | have friends Go to the party
' Yes
No
Hang out with

Read a book friends




Regression Trees (Fig 9.2 in Hastie)
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Details of the tree-building process
1. Divide the predictor space, the set of possible values for X1,X2,...,Xp, into J distinct
and non-overlapping regions, R1, R2, ..., RJ.

2. For every observation that falls into the region Rj, we make the same prediction,
which 1s simply the mean of the response values for the training observations in Rj.

The goal is to find boxes R1,...,RJ that minimize the RSS (residual sum square), given by

J
Z Z (yz — @Rj)2a

Jj=11€eR;
where ijis the mean response tor the training observations within the jth box.




Baggin
Bootstrap aggregation, or bagging, is a general-purpose procedure for
reducing the variance of a statistical learning method; it is particularly
useful and frequently used in the context of decision trees.

we generate B bootstrapped training data sets. We train our method on
the bth bootstrapped training set in order to get f*?(x), the
prediction at a point x. We then average all the predictions to obtain

1 B
fbag Z *b



Random Forrest

Random forests provide an improvement over bagged trees by way of a
small tweak that decorrelates the trees. This reduces the variance
when averaging the trees.

As in bagging, we build a number of decision trees on bootstrapped
training samples.

But when building these decision trees, each splitin a tree is based on a
random selection of m predictors. is chosen split candidates from the
full set of p predictors. The split is allowed to use only one of those m
predictors

But when building these decision trees, each time a splitin a tree is
considered, a random selection of m predictors is chosen as split
candidates from the full set of p predictors. The split is allowed to use
only one of those m predictors.



Carrying On...
The book by Murphy has more details on ML.

Many interesting courses online and at UCSD.
Lots of opportunities also outside CS.

For next course, more class interaction (phone questions), more cody
home work, physics better integrated.

Graphical models better integrated, Gaussian processes, sequential
state models.

RS s e
& PATTERN RECOGNITION g

Trevor Hastle
Robert Tibshirani
Jerome Friedman

«— Murphy: “This books adopts the view that the
best way to make machines that can learn

Maching Marning from data is to use the tools of probability

A Probabilstic Perspecive theory, which has been the mainstay of

. tatistics and engineering for centurl?(§



