
Workshop	report		Due	June	7	I	will	email	dropbox link
1. Daniels	report	is	on	website
2. Don’t	expect	to	write	it	based	on	listening	to	one	project	(we	had	6	

only	2	was	sufficient	quality)
3. I	suggest	writing	it	on	one	presentation.
4. Include	figures	(from	a	related	paper	or	their	presentation)
5. Include	references
From	email	to	attendees:	There	will	be	a	very	diverse	group	of	people	
attending	the	workshop,	including	over	60	learning-hungry	students.

Update:	We	are	all	set	to	have	your	students	attend.	We	will	not	register	
them,	so	they	can	come	and	go	as	needed. food	is	for	the	registered	
participants	and	please	allow	them	to	eat	first.	Currently	we	have	70	
registered	participants	and	plan	to	order	food	for	~100.

4:15-4:30:	Bruce	Cornuelle,	Scripps	Institution	of	Oceanography
“A	less	grand	challenge:	How	can	we	merge	machine	learning	with	data	assimilation?	”

Peter: I	propose	that	if	data	assimilation	is	posed	“correctly”	it	is	already	machine	
leaning.	Anyway	looking	forward	to	your	talk.

Bruce:	I	agree,	but	most	machine	learning	I	know	about	doesn't	build	in	prior	known	
dynamics	or	let	you	understand	what	the	machine	has	learned. If	you	have	examples	
to	the	contrary,	please	give	me	references. I	know	about	the	attempts	to	"invert"	the	
networks,	though.
I	also	want	to	know	the	pdfs	that	the	machine	learning	technique	is	optimal	for,	both	
in	the	data	and	the	unknowns,	in	the	way	that	L2	is	optimal	for	gaussians and	L1	is	
optimal	for	exponentials.

May	24,	Class	HW	Bishop	Ch 8/13
MAY	30	CODY	(kmeans,	Ksvd,	Kalman)
May	31,	No	Class.	Workshop, Big	Data	and	The	Earth	Sciences:	Grand	Challenges	Workshop
June	5,	Discuss	workshop,	Discuss	final	project.	Spiess Hall	open	for	project	discussion	11am-7pm.
June	7,	Workshop	report.	No	class	
June	12	Spiess Hall	open	for	project	discussion	9-11:30am	and	2-7pm
June	16	Final	report	delivered.	Beer	time

For	final	project	discussion	every afternoon	Mark	and	I		will	be	available.	Please	discuss	with	Mark	or	
me

	
In	class	on	July	5	a	status	report	from	each	group	is	mandatory.	Maximum	2min/person,	(i.e.	a	
5-member	group	have	10min),	shorter	is	fine.	Have	presentation	on	memory	stick	or	email	
Mark.	Class	might	run	longer,	so	we	could	start	earlier.	
	
For	the	Final	project	(Due	16	June	5Pm).	Delivery	Dropbox	request	<2GB	(details	to	follow).:	

A) Deliver	a	code:	
1) Assume	we	have	reasonable	compilers	installed	(we	use	Mac	OsX)		
2) Give	instructions	if	any	additional	software	should	be	installed.	
3) You	can	ask	us	to	download	a	dataset.	Or	include	it	in	this	submission		
4) Don’t	include	all	developed	codes.	Just	key	elements.	
5) We	should	not	have	to	reprogram	your	code.	
	

B) Report	
1) The	report	should	include	all	the	following	sections:	Summary	->	Introduction->Physical	and	

Mathematical	framework->Results.	
2) Summary	is	a	combination	of	an	abstract	and	conclusion.		
3) Plagiarism	is	not	acceptable!	When	citing	use	“	“	for	quotes	and	citations	for	relevant	

papers.	
4) Don’t	write	anything	you	don’t	understand.	
5) Everyone	in	the	group	should	understand	everything	that	is	written.	If	we	do	not	

understand	a	section	during	grading	we	should	be	able	to	ask	any	member	of	the	group	to	
clarify.	You	can	delegate	the	writing,	but	not	the	understanding.	

6) Use	citations.	Any	concepts	which	are	not	fully	explained	should	have	a	citation	with	an	
explanation.	

7) Please	be	concise.	Equations	are	good.	Figures	essential.	Write	as	though	your	report	is	to	
be	published	in	a	scientific	journal.	

8) I	have	attached	a	sample	report	from	Mark,	though	shorter	is	preferred.	
	

Final	Report
June	5

Discrete	Variables	(1)
General	joint	distribution:	K2-1 parameters

Independent	joint	distribution:	2(K-1) parameters

General	joint	distribution	over	M variables:		KM -1parameters
M-node	Markov	chain:	K-1 + (M-1) K(K-1) parameters

-101
(a
)

-1
0

1

-101
(b
)

2D exampleK-SVD algorithm:
1. Solve for coefficients X=[x_1…x_i] for

fixed Q using OMP
2. Solve (1) for dictionary Q=[q_1…q_i],

updating both Q and X from the SVD of
representation error

update q_k, x_k by SVD

…. repeat until convergence

K-SVD algorithm
K-SVD [Aharon 2006]: Learn optimal dictionary for sparse representation
of data

Ee
k = USVT

qk = U(:, 1),xk
T = V(:, 1)S(1, 1)

kY �QXkF =

����

✓
Y �

X

j 6=k

qjx
j
T

◆
� qkx

k
T

����
F{

= kEk � qkx
k
T k

12

Dictionary	learning	for	SSP	

AHARON et al.: -SVD: ALGORITHM FOR DESIGNING OVERCOMPLETE DICTIONARIES 4313

quantization (VQ) coding method, called gain-shape VQ, where
this coefficient is allowed to vary [39]. In contrast, in sparse
representations as discussed in this paper, each example is rep-
resented as a linear combination of several vectors .
Thus, sparse representations can be referred to as a generaliza-
tion of the clustering problem.

Since the -means algorithm (also known as the generalized
Lloyd algorithm—GLA [39]) is the most commonly used pro-
cedure for training in the vector quantization setting, it is nat-
ural to consider generalizations of this algorithm when turning
to the problem of dictionary training. The clustering problem
and its -means solution will be discussed in more detail in
Section IV-A, since our work approaches the dictionary training
problem by generalizing the -means. Here we shall briefly
mention that the -means process applies two steps per each it-
eration: i) given , assign the training examples to their
nearest neighbor; and ii) given that assignment, update
to better fit the examples.

The approaches to dictionary design that have been tried so
far are very much in line with the two-step process described
above. The first step finds the coefficients given the dictio-
nary—a step we shall refer to as “sparse coding.” Then, the
dictionary is updated assuming known and fixed coefficients.
The differences between the various algorithms that have been
proposed are in the method used for the calculation of coeffi-
cients and in the procedure used for modifying the dictionary.

B. Maximum Likelihood Methods

The methods reported in [22]–[25] use probabilistic rea-
soning in the construction of . The proposed model suggests
that for every example the relation

(3)

holds true with a sparse representation and Gaussian white
residual vector with variance . Given the examples

, these works consider the likelihood function
and seek the dictionary that maximizes it. Two assumptions are
required in order to proceed: the first is that the measurements
are drawn independently, readily providing

(4)

The second assumption is critical and refers to the “hidden vari-
able” . The ingredients of the likelihood function are computed
using the relation

(5)
Returning to the initial assumption in (3), we have

(6)

The prior distribution of the representation vector is assumed
to be such that the entries of are zero-mean i.i.d., with Cauchy

[24] or Laplace distributions [22], [23]. Assuming for example
a Laplace distribution, we get

(7)

This integration over is difficult to evaluate, and indeed, Ol-
shausen and Field [23] handled this by replacing it with the ex-
tremal value of . The overall problem turns into

(8)

This problem does not penalize the entries of as it does for
those of . Thus, the solution will tend to increase the dictio-
nary entries’ values, in order to allow the coefficients to become
closer to zero. This difficulty has been handled by constraining
the -norm of each basis element, so that the output variance
of the coefficients is kept at an appropriate level [24].

An iterative method was suggested for solving (8). It includes
two main steps in each iteration: i) calculate the coefficients
using a simple gradient descent procedure and then ii) update
the dictionary using [24]

(9)

This idea of iterative refinement, mentioned before as a general-
ization of the -means algorithm, was later used again by other
researchers, with some variations [36], [37], [40]–[42].

A different approach to handle the integration in (7) was sug-
gested by Lewicki and Sejnowski [25]. They approximated the
posterior as a Gaussian, enabling an analytic solution of the inte-
gration. This allows an objective comparison of different image
models (basis or priors). It also removes the need for the ad-
ditional rescaling that enforces the norm constraint. However,
this model may be too limited in describing the true behaviors
expected. This technique and closely related ones have been re-
ferred to as approximated ML techniques [37].

There is an interesting relation between the above method and
the independent component analysis (ICA) algorithm [43]. The
latter handles the case of a complete dictionary (the number of
elements equals the dimensionality) without assuming additive
noise. The above method is then similar to ICA in that the algo-
rithm can be interpreted as trying to maximize the mutual infor-
mation between the inputs (samples) and the outputs (the coef-
ficients) [24], [22], [25].

C. The MOD Method

An appealing dictionary training algorithm, named method
of optimal directions (MOD), is presented by Engan et al. [36],

10
30
50
70de

pt
h

(m
)

amplitude

-1 0 1
amplitude

10

40

70de
pt

h
(m

)

-1 0 1
amplitude

30 EOF (mean subtracted) 30 K-SVD (mean subtracted)

Bianco and Gerstoft …

Learned	dictionaries	and	sparsity
Learned dictionary:
Non-orthogonal, fill feature space

EOFs:
Orthogonal, fill

2D Example

K= 30D shape
functions

Learned dictionary: Spanning SSP feature space likelihood that few
shapes functions explain a given SSP

The Model

Consider the discrete, linear system,

xk+1 = Mkxk + wk , k = 0, 1, 2, . . . , (1)

where
• xk 2 Rn is the state vector at time tk
• Mk 2 Rn⇥n is the state transition matrix (mapping from time tk

to tk+1) or model
• {wk 2 Rn; k = 0, 1, 2, . . .} is a white, Gaussian sequence, with

wk ⇠ N(0,Qk), often referred to as model error
• Qk 2 Rn⇥n is a symmetric positive definite covariance matrix

(known as the model error covariance matrix).

4 of 32

Some of the following slides are from: Sarah Dance, University of Reading

The Observations
We also have discrete, linear observations that satisfy

yk = Hkxk + vk , k = 1, 2, 3, . . . , (2)

where
• yk 2 Rp is the vector of actual measurements or observations

at time tk
• Hk 2 Rn⇥p is the observation operator. Note that this is not in

general a square matrix.
• {vk 2 Rp; k = 1, 2, . . .} is a white, Gaussian sequence, with

vk ⇠ N(0,Rk), often referred to as observation error.
• Rk 2 Rp⇥p is a symmetric positive definite covariance matrix

(known as the observation error covariance matrix).
We assume that the initial state, x0 and the noise vectors at each
step, {wk}, {vk}, are assumed mutually independent.

5 of 32

The Prediction and Filtering Problems

We suppose that there is some uncertainty in the initial state, i.e.,

x0 ⇠ N(0,P0) (3)

with P0 2 Rn⇥n a symmetric positive definite covariance matrix.

The problem is now to compute an improved estimate of the
stochastic variable xk , provided y1, . . . yj have been measured:

bxk |j = bxk |y1,...,yj . (4)

• When j = k this is called the filtered estimate.
• When j = k � 1 this is the one-step predicted, or (here) the

predicted estimate.
6 of 32

• The Kalman filter (Kalman, 1960) provides estimates for the
linear discrete prediction and filtering problem.

• We will take a minimum variance approach to deriving the filter.
• We assume that all the relevant probability densities are

Gaussian so that we can simply consider the mean and
covariance.

• Rigorous justifcation and other approaches to deriving the filter
are discussed by Jazwinski (1970), Chapter 7.

8 of 32

Prediction step

We first derive the equation for one-step prediction of the mean
using the state propagation model (1).

bxk+1|k = E [xk+1|y1, . . . yk] ,

= E [Mkxk + wk] ,

= Mkbxk |k (5)

9 of 32

The one step prediction of the covariance is defined by,

Pk+1|k = E
h
(xk+1 � bxk+1|k)(xk+1 � bxk+1|k)

T |y1, . . . yk

i
. (6)

Exercise: Using the state propagation model, (1), and one-step
prediction of the mean, (5), show that

Pk+1|k = MkPk |kMT
k + Qk . (7)

10 of 32

Product(of(Gaussians=Gaussian:(

260

Example: Measuring the mass of an object

p(d|m) � exp
½
c1
2
(dcGm)TCc1d (dcGm)

¾

� exp
½
c1
2
[(dcGm)TCc1d (dcGm) + (mcmo)

TCc1m (mcmo)]

¾

The more accurate new data has changed the estimate of m and
decreased its uncertainty

For the general linear inverse problem we would have

p(m) � exp
½
c
1

2
(mcmo)

TCc1m (mcmo)

¾
Prior:

Likelihood:

Posterior PDF

One data point problem

∝ exp −
1
2
m− m̂[]T S−1 m− m̂[]

#
$
%

&
'
(

S−1 =GTCd
−1G+Cm

−1

m̂ = GTCd
−1G+Cm

−1()
−1
GTCd

−1d+Cm
−1m0()

= m0 + G
TCd

−1G+Cm
−1()

−1
GTCd

−1 d−Gm0()

Filtering Step

At the time of an observation, we assume that the update to the
mean may be written as a linear combination of the observation
and the previous estimate:

bxk |k = bxk |k�1 + Kk (yk � Hkbxk |k�1), (8)

where Kk 2 Rn⇥p is known as the Kalman gain and will be derived
shortly.

11 of 32

But first we consider the covariance associated with this estimate:

Pk |k = E
h
(xk � bxk |k)(xk � bxk |k)

T |y1, . . . yk

i
. (9)

Using the observation update for the mean (8) we have,

xk � bxk |k = xk � bxk |k�1 � Kk (yk � Hkbxk |k�1)

= xk � bxk |k�1 � Kk (Hkxk + vk � Hkbxk |k�1),

replacing the observations with their model equivalent,
= (I � KkHk)(xk � bxk |k�1)� Kkvk . (10)

Thus, since the error in the prior estimate, xk � bxk |k�1 is
uncorrelated with the measurement noise we find

Pk |k = (I � KkHk)E
h
(xk � bxk |k�1)(xk � bxk |k�1)

T
i
(I � KkHk)

T

+KkE
h
vkvT

k

i
KT

k . (11)

12 of 32

Simplification of the a posteriori error covariance
formula

Using this value of the Kalman gain we are in a position to simplify
the Joseph form as

Pk |k = (I�KkHk)Pk |k�1(I�KkHk)
T +KkRkKT

k = (I�KkHk)Pk |k�1.
(15)

Exercise: Show this.

Note that the covariance update equation is independent of the
actual measurements: so Pk |k could be computed in advance.

15 of 32

Summary of the Kalman filter
Prediction step
Mean update: bxk+1|k = Mkbxk |k
Covariance update: Pk+1|k = MkPk |kMT

k + Qk .

Observation update step
Mean update: bxk |k = bxk |k�1 + Kk (yk � Hkbxk |k�1)
Kalman gain: Kk = Pk |k�1HT

k (HkPk |k�1HT + Rk)
�1

Covariance update: Pk |k = (I � KkHk)Pk |k�1.

16 of 32

632 Chapter 18. State space models

10 12 14 16 18 20 22

4

6

8

10

12

14

observed

truth

(a)

8 10 12 14 16 18 20 22 24

4

6

8

10

12

14

16

observed

filtered

(b)

10 15 20 25

4

6

8

10

12

14

observed

smoothed

(c)

Figure 18.1 Illustration of Kalman filtering and smoothing. (a) Observations (green cirles) are generated
by an object moving to the right (true location denoted by black squares). (b) Filtered estimated is shown
by dotted red line. Red cross is the posterior mean, blue circles are 95% confidence ellipses derived from
the posterior covariance. For clarity, we only plot the ellipses every other time step. (c) Same as (b), but
using offline Kalman smoothing. Figure generated by kalmanTrackingDemo.

The LG-SSM is important because it supports exact inference, as we will see. In particular,
if the initial belief state is Gaussian, p(z1) = N (µ1|0,Σ1|0), then all subsequent belief states
will also be Gaussian; we will denote them by p(zt|y1:t) = N (µt|t,Σt|t). (The notation µt|τ
denotes E [zt|y1:τ], and similarly for Σt|t; thus µt|0 denotes the prior for z1 before we have
seen any data. For brevity we will denote the posterior belief states using µt|t = µt and
Σt|t = Σt.) We can compute these quantities efficiently using the celebrated Kalman filter,
as we show in Section 18.3.1. But before discussing algorithms, we discuss some important
applications.

18.2 Applications of SSMs

SSMs have many applications, some of which we discuss in the sections below. We mostly
focus on LG-SSMs, for simplicity, although non-linear and/or non-Gaussian SSMs are even more
widely used.

18.2.1 SSMs for object tracking

One of the earliest applications of Kalman filtering was for tracking objects, such as airplanes
and missiles, from noisy measurements, such as radar. Here we give a simplified example to
illustrate the key ideas. Consider an object moving in a 2D plane. Let z1t and z2t be the
horizontal and vertical locations of the object, and ż1t and ż2t be the corresponding velocity.
We can represent this as a state vector zt ∈ R4 as follows:

zTt =
(
z1t z2t ż1t ż2t

)
. (18.7)

Figure 18.1 Kalman filtering and smoothing. (a) Observations (green cirles) are
generated by an object moving to the right (true location denoted by black squares).
(b) Filtered estimated is shown by dotted red line. Red cross is the posterior mean,
blue circles are 95% confidence ellipses derived from the posterior covariance. For
clarity, we only plot the ellipses every other time step. (c) Same as (b), but using
offline Kalman smoothing. Figure generated by kalmanTrackingDemo.

Kalman	smoother

634 Chapter 18. State space models

L2

Y1 Y2 YT

Y1 Y3

X1 X2 X3
. . .

XT

L1

Figure 18.2 Illustration of graphical model underlying SLAM. Li is the fixed location of landmark i, xt

is the location of the robot, and yt is the observation. In this trace, the robot sees landmarks 1 and 2 at
time step 1, then just landmark 2, then just landmark 1, etc. Based on Figure 15.A.3 of (Koller and Friedman
2009).

Robot pose

(a) (b)

Figure 18.3 Illustration of the SLAM problem. (a) A robot starts at the top left and moves clockwise in a
circle back to where it started. We see how the posterior uncertainty about the robot’s location increases
and then decreases as it returns to a familar location, closing the loop. If we performed smoothing, this
new information would propagate backwards in time to disambiguate the entire trajectory. (b) We show the
precision matrix, representing sparse correlations between the landmarks, and between the landmarks and
the robot’s position (pose). This sparse precision matrix can be visualized as a Gaussian graphical model,
as shown. Source: Figure 15.A.3 of (Koller and Friedman 2009) . Used with kind permission of Daphne
Koller.

634 Chapter 18. State space models

L2

Y1 Y2 YT

Y1 Y3

X1 X2 X3
. . .

XT

L1

Figure 18.2 Illustration of graphical model underlying SLAM. Li is the fixed location of landmark i, xt

is the location of the robot, and yt is the observation. In this trace, the robot sees landmarks 1 and 2 at
time step 1, then just landmark 2, then just landmark 1, etc. Based on Figure 15.A.3 of (Koller and Friedman
2009).

Robot pose

(a) (b)

Figure 18.3 Illustration of the SLAM problem. (a) A robot starts at the top left and moves clockwise in a
circle back to where it started. We see how the posterior uncertainty about the robot’s location increases
and then decreases as it returns to a familar location, closing the loop. If we performed smoothing, this
new information would propagate backwards in time to disambiguate the entire trajectory. (b) We show the
precision matrix, representing sparse correlations between the landmarks, and between the landmarks and
the robot’s position (pose). This sparse precision matrix can be visualized as a Gaussian graphical model,
as shown. Source: Figure 15.A.3 of (Koller and Friedman 2009) . Used with kind permission of Daphne
Koller.

Graphical model underlying SLAM. Li is the
fixed location of landmark i, xt is the robot
location, and yt is the observation. In this
trace, the robot sees landmarks 1 and 2 at
time 1, then just landmark 2, then just
landmark 1, etc.

Illustration of the SLAM problem. (a) A robot starts
at the top left and moves clockwise in a circle back
to where it started. We see how the posterior
uncertainty about the robot’s location increases
and then decreases as it returns to a familar
location, closing the loop. If we performed
smoothing, this new information would propagate
backwards in time to disambiguate the entire
trajectory.

Predict	N	steps	ahead
SLAM	(Simultaneous	Location	and	Mapping)
Kalman	smoother
RLS	(Recursive	least	squares)

Advanced	KF:	
• Ensample	KF	(EnKF)			non	Gaussian
• Extended	KF	(EKF)		non-linear
• Unscented	KF	(UKF)	well	chosen	control	points
• … Particle	Filter	Nonlinear,	non	Gaussian

Trees
Undirected	Tree Directed	Tree Polytree

Trees
What	would	you	do	tonight?	Decide	amongst	the	following:	
•	Finish	homework	•	Go	to	a	party	•	Read	a	book	•	Hang	out	with	

friends	

Homework'Deadline'
tonight?'

Do'homework'

Yes'

Party'invitaNon?'

No'

No'

Do'I'have'friends'

Yes'

Go'to'the'party'

Read'a'book'

No'
Hang'out'with'

friends'

Yes'

Regression	Trees	(Fig	9.2	in	Hastie)

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

Details of the tree-building process
1. Divide the predictor space, the set of possible values for X1,X2,...,Xp, into J distinct

and non-overlapping regions, R1, R2, . . . , RJ .
2. For every observation that falls into the region Rj, we make the same prediction,

which is simply the mean of the response values for the training observations in Rj.

The	goal	is	to	find	boxes	R1,...,RJ	that	minimize	the	RSS	(residual	sum	square),	given	by	

where	𝑦"#$is	the	mean	response	for	the	training	observations	within	the	jth box.	

More details of the tree-building process

• In theory, the regions could have any shape. However, we
choose to divide the predictor space into high-dimensional
rectangles, or boxes, for simplicity and for ease of
interpretation of the resulting predictive model.

• The goal is to find boxes R1, . . . , R
J

that minimize the
RSS, given by

JX

j=1

X

i2Rj

(y
i

� ŷRj
)2,

where ŷRj
is the mean response for the training

observations within the jth box.

11 / 51

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

Bagging
Bootstrap	aggregation,	or	bagging,	is	a	general-purpose	procedure	for	

reducing	the	variance	of	a	statistical	learning	method;	it	is	particularly	
useful	and	frequently	used	in	the	context	of	decision	trees.	

we	generate	B	bootstrapped	training	data	sets.	We	train	our	method	on	
the	bth bootstrapped	training	set	in	order	to	get	𝑓∗' 𝑥 ,	the	
prediction	at	a	point	x.	We	then	average	all	the	predictions	to	obtain	

Bagging— continued

• Instead, we can bootstrap, by taking repeated samples
from the (single) training data set.

• In this approach we generate B di↵erent bootstrapped
training data sets. We then train our method on the bth
bootstrapped training set in order to get f̂⇤b(x), the
prediction at a point x. We then average all the predictions
to obtain

f̂bag(x) =
1

B

BX

b=1

f̂

⇤b(x).

This is called bagging.

32 / 51

Random	Forrest
Random	forests	provide	an	improvement	over	bagged	trees	by	way	of	a	

small	tweak	that	decorrelates the	trees.	This	reduces	the	variance	
when	averaging	the	trees.	

As	in	bagging,	we	build	a	number	of	decision	trees	on	bootstrapped	
training	samples.	

But	when	building	these	decision	trees,	each	split	in	a	tree	is	based	on	a	
random	selection	of	m	predictors.		is	chosen	split	candidates	from	the	
full	set	of	p	predictors.	The	split	is	allowed	to	use	only	one	of	those	m	
predictors	

But	when	building	these	decision	trees,	each	time	a	split	in	a	tree	is	
considered,	a	random	selection	of	m	predictors	is	chosen	as	split	
candidates	from	the	full	set	of	p	predictors.	The	split	is	allowed	to	use	
only	one	of	those	m	predictors.	

Carrying	On…
The	book	by	Murphy	has	more	details	on	ML.
Many	interesting	courses	online	and	at	UCSD.
Lots	of	opportunities	also	outside	CS.

For	next	course,	more	class	interaction	(phone	questions),	more	cody
home	work,	physics better	integrated.

Graphical	models	better	integrated,	Gaussian	processes,	sequential	
state	models.

Nima	Riahi		//		
nriahi@ucsd.edu Tuesday,	Feb.	9th,	2016 30

Murphy: “This books adopts the view that the
best way to make machines that can learn
from data is to use the tools of probability
theory, which has been the mainstay of
statistics and engineering for centuries. “

