
Workshop	report
1. Daniels	report	is	on	website
2. Don’t	expect	to	write	it	based	on	listening	to	one	project	(we	had	6	

only	2	was	sufficient	quality)
3. I	suggest	writing	it	on	one	presentation.
4. Include	figures	(from	a	related	paper	or	their	presentation)
5. Include	references

Update:	We	are	all	set	to	have	your	students	attend.	We	will	not	register	
them,	so	they	can	come	and	go	as	needed. food	is	for	the	registered	
participants	and	please	allow	them	to	eat	first.	Currently	we	have	70	
registered	participants	and	plant	to	order	food	for	~100.



May	22,	Dictionary	learning,	Mike	Bianco	(half	class),	Bishop	Ch 13
May	24,	Class	HW	Bishop	Ch 8/13
MAY	30	CODY
May	31,	No	Class.	Workshop, Big	Data	and	The	Earth	Sciences:	Grand	Challenges	Workshop
June	5,	Discuss	workshop,	Discuss	final	project.	Spiess Hall	open	for	project	discussion	11am-7pm.
June	7,	Workshop	report.	No	class	
June	12	Spiess Hall	open	for	project	discussion	9-11:30am	and	2-7pm
June	16	Final	report	delivered.	Beer	time

For	final	project	discussion	every afternoon	Mark	and	I		will	be	available



	
In	class	on	July	5	a	status	report	from	each	group	is	mandatory.	Maximum	2min/person,	(i.e.	a	
5-member	group	have	10min),	shorter	is	fine.	Have	presentation	on	memory	stick	or	email	
Mark.	Class	might	run	longer,	so	we	could	start	earlier.	
	
For	the	Final	project	(Due	16	June	5Pm).	Delivery	Dropbox	request	<2GB	(details	to	follow).:	

A) Deliver	a	code:	
1) Assume	we	have	reasonable	compilers	installed	(we	use	Mac	OsX)		
2) Give	instructions	if	any	additional	software	should	be	installed.	
3) You	can	ask	us	to	download	a	dataset.	Or	include	it	in	this	submission		
4) Don’t	include	all	developed	codes.	Just	key	elements.	
5) We	should	not	have	to	reprogram	your	code.	
	

B) Report	
1) The	report	should	include	all	the	following	sections:	Summary	->	Introduction->Physical	and	

Mathematical	framework->Results.	
2) Summary	is	a	combination	of	an	abstract	and	conclusion.		
3) Plagiarism	is	not	acceptable!	When	citing	use	“	“	for	quotes	and	citations	for	relevant	

papers.	
4) Don’t	write	anything	you	don’t	understand.	
5) Everyone	in	the	group	should	understand	everything	that	is	written.	If	we	do	not	

understand	a	section	during	grading	we	should	be	able	to	ask	any	member	of	the	group	to	
clarify.	You	can	delegate	the	writing,	but	not	the	understanding.	

6) Use	citations.	Any	concepts	which	are	not	fully	explained	should	have	a	citation	with	an	
explanation.	

7) Please	be	concise.	Equations	are	good.	Figures	essential.	Write	as	though	your	report	is	to	
be	published	in	a	scientific	journal.	

8) I	have	attached	a	sample	report	from	Mark,	though	shorter	is	preferred.	
	

Final	Report



Discrete	Variables	(1)
General	joint	distribution:	K2-1 parameters

Independent	joint	distribution:	2(K-1) parameters

General	joint	distribution	over	M variables:		KM -1parameters
M-node	Markov	chain:	K-1 + (M-1) K(K-1) parameters



Joint	Distribution
Where																					is	the	potential	over	clique	C and	

is	the	normalization	coefficient;	note:	M K-state	variables	® KM terms	in	Z.

Energies	and	the	Boltzmann	distribution



Illustration:	Image	De-Noising

Noisy	Image Restored	Image	(ICM) Restored	Image	(Graph	cuts)



Inference	in	Graphical	Models



Inference	on	a	Chain



Inference	on	a	Chain



Inference	on	a	Chain

To	compute	local	marginals:
• Compute	and	store	all	forward	messages,													.
• Compute	and	store	all	backward	messages,													.	
• Compute	Z at	any	node	xm

• Compute

for	all	variables	required.



The	Sum-Product	Algorithm	(1)
Objective:

i. to	obtain	an	efficient,	exact	inference	algorithm	for	finding	marginals;
ii. in	situations	where	several	marginals	are	required,	to	allow	computations	to	

be	shared	efficiently.

Key	idea:	Distributive	Law

Efficient inference 

7 versus 3 operations



The Sum-Product Algorithm 

𝑥 𝑢 𝑤 
𝑦 

𝑧 𝑓1(𝑢, 𝑤) 𝑓2(𝑤, 𝑥) 

𝑓4(𝑥, 𝑧) 

𝑓3(𝑥, 𝑦) 



KF/PFs offer solutions to dynamical systems, nonlinear in general, using 
prediction and update as data becomes available. Tracking in time or space 
offers an ideal framework for studying KF/PF.

How do we solve it and what does the solution look like?



Kalman Framework
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The Model

Consider the discrete, linear system,

xk+1 = Mkxk + wk , k = 0, 1, 2, . . . , (1)

where
• xk 2 Rn is the state vector at time tk
• Mk 2 Rn⇥n is the state transition matrix (mapping from time tk

to tk+1) or model
• {wk 2 Rn; k = 0, 1, 2, . . .} is a white, Gaussian sequence, with

wk ⇠ N(0,Qk ), often referred to as model error
• Qk 2 Rn⇥n is a symmetric positive definite covariance matrix

(known as the model error covariance matrix).

4 of 32

Some of the following slides are from: Sarah Dance, University of Reading



The Observations
We also have discrete, linear observations that satisfy

yk = Hkxk + vk , k = 1, 2, 3, . . . , (2)

where
• yk 2 Rp is the vector of actual measurements or observations

at time tk
• Hk 2 Rn⇥p is the observation operator. Note that this is not in

general a square matrix.
• {vk 2 Rp; k = 1, 2, . . .} is a white, Gaussian sequence, with

vk ⇠ N(0,Rk ), often referred to as observation error.
• Rk 2 Rp⇥p is a symmetric positive definite covariance matrix

(known as the observation error covariance matrix).
We assume that the initial state, x0 and the noise vectors at each
step, {wk}, {vk}, are assumed mutually independent.
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The Prediction and Filtering Problems

We suppose that there is some uncertainty in the initial state, i.e.,

x0 ⇠ N(0,P0) (3)

with P0 2 Rn⇥n a symmetric positive definite covariance matrix.

The problem is now to compute an improved estimate of the
stochastic variable xk , provided y1, . . . yj have been measured:

bxk |j = bxk |y1,...,yj . (4)

• When j = k this is called the filtered estimate.
• When j = k � 1 this is the one-step predicted, or (here) the

predicted estimate.
6 of 32



• The Kalman filter (Kalman, 1960) provides estimates for the
linear discrete prediction and filtering problem.

• We will take a minimum variance approach to deriving the filter.
• We assume that all the relevant probability densities are

Gaussian so that we can simply consider the mean and
covariance.

• Rigorous justifcation and other approaches to deriving the filter
are discussed by Jazwinski (1970), Chapter 7.

8 of 32



Prediction step

We first derive the equation for one-step prediction of the mean
using the state propagation model (1).

bxk+1|k = E [xk+1|y1, . . . yk ] ,

= E [Mkxk + wk ] ,

= Mkbxk |k (5)
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The one step prediction of the covariance is defined by,

Pk+1|k = E
h
(xk+1 � bxk+1|k )(xk+1 � bxk+1|k )

T |y1, . . . yk

i
. (6)

Exercise: Using the state propagation model, (1), and one-step
prediction of the mean, (5), show that

Pk+1|k = MkPk |kMT
k + Qk . (7)
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Example: Measuring the mass of an object 
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Filtering Step

At the time of an observation, we assume that the update to the
mean may be written as a linear combination of the observation
and the previous estimate:

bxk |k = bxk |k�1 + Kk (yk � Hkbxk |k�1), (8)

where Kk 2 Rn⇥p is known as the Kalman gain and will be derived
shortly.
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But first we consider the covariance associated with this estimate:

Pk |k = E
h
(xk � bxk |k )(xk � bxk |k )

T |y1, . . . yk

i
. (9)

Using the observation update for the mean (8) we have,

xk � bxk |k = xk � bxk |k�1 � Kk (yk � Hkbxk |k�1)

= xk � bxk |k�1 � Kk (Hkxk + vk � Hkbxk |k�1),

replacing the observations with their model equivalent,
= (I � KkHk )(xk � bxk |k�1)� Kkvk . (10)

Thus, since the error in the prior estimate, xk � bxk |k�1 is
uncorrelated with the measurement noise we find

Pk |k = (I � KkHk )E
h
(xk � bxk |k�1)(xk � bxk |k�1)

T
i
(I � KkHk )

T

+KkE
h
vkvT

k

i
KT

k . (11)
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Simplification of the a posteriori error covariance
formula

Using this value of the Kalman gain we are in a position to simplify
the Joseph form as

Pk |k = (I�KkHk )Pk |k�1(I�KkHk )
T +KkRkKT

k = (I�KkHk )Pk |k�1.
(15)

Exercise: Show this.

Note that the covariance update equation is independent of the
actual measurements: so Pk |k could be computed in advance.
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Summary of the Kalman filter
Prediction step
Mean update: bxk+1|k = Mkbxk |k
Covariance update: Pk+1|k = MkPk |kMT

k + Qk .

Observation update step
Mean update: bxk |k = bxk |k�1 + Kk (yk � Hkbxk |k�1)
Kalman gain: Kk = Pk |k�1HT

k (HkPk |k�1HT + Rk )
�1

Covariance update: Pk |k = (I � KkHk )Pk |k�1.
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