
Workshop	report
1. Daniels	report	is	on	website
2. Don’t	expect	to	write	it	based	on	listening	to	one	project	(we	had	6	

only	2	was	sufficient	quality)
3. I	suggest	writing	it	on	one	presentation.
4. Include	figures	(from	a	related	paper	or	their	presentation)
5. Include	references

May	8,	CODYMachine	Learning	for	finding	oil,	focusing	on	1)	robust	seismic	denoising/interpolation	using	
structured	matrix	approximation	2)	seismic	image	clustering	and	classification,	using	t-SNE(t-
distributed	stochastic	neighbor	embedding)	and	CNN.	Weichang Li,	Goup Leader	Aramco,	Houston.

May	10,	Class	HW	First	distribution	of	final	projects.	Ocean	acoustic	source	tracking.	Final	projects.	Final	
project	is	the	main	goal	in	last	month. Bishop	Ch 9	Mixture	models

May	15,	CODY Seismology	and	Machine	Learning,	Daniel	Trugman (half	class),	ch 8	Graphical	models	
May	17,	Class	HW	ch 8
May	22,	Dictionary	learning,	Mike	Bianco	(half	class),	Bishop	Ch 13
May	24,	Class	HW	Bishop	Ch 13
MAY	30	CODY
May	31,	No	Class.	Workshop, Big	Data	and	The	Earth	Sciences:	Grand	Challenges	Workshop
June	5,	Discuss	workshop,	ch13.	Spiess Hall	open	for	project	discussion	11am-.
June	7,	Workshop	report.	No	class	
June	12	Spiess Hall	open	for	project	discussion	9-11:30am	and	2-7pm
June	16	Final	report	delivered.	Beer	time

For	final	project	discussion	every	afternoon	Mark	and	I		will	be	available

Chapter	13	Sequential	data

Problems
Ocean	source	tracking	X
Re-implement	Source	Localization	in	an	Ocean	Waveguide	using	Supervised	Machine	Learning	
X-ray	spectrum	absorption	interpretation	using	NN
Neural	decoding
Plankton
Transfer	learning	and	deep	feature	extraction	for	planktonic	image	data	sets
Speaker	tagger
Coral
Resturant
Amazon	rainforest	(Kaggle)
Myshake Seismic
High-precision	indoor	positioning	framework	for	most	wifi-enabled	devices

Please	ask	questions
Mark	and	I	available	all	afternoons.	Just	come	or	email	for	time	slots.
Spiess hall	330	is	open	Monday	5	and	12	June.	If	interested	I	can	book	it	at	other	times

Report	
Rather	concise	than	long.
Larger	group	can	do	more.
Start	with	some	very	simple	example.	To	show	your	idea	and	that	it	is	working.
End	with	showing	the	advanced	abilities
Several	figures.
Equations	are	nice.

Delivery	Zip	file	(Friday	16)
Main	code	(not	all).	It	should	be	able	to	run.
Report	(pdf	preferred).

Final	Report

PATTERN	RECOGNITION	
AND MACHINE	LEARNING
CHAPTER	8:	GRAPHICAL	MODELS

10.1. Introduction 309

4 5

2 3

1

(a)

4 5

2 3

1

(b)

Figure 10.1 (a) A simple DAG on 5 nodes, numbered in topological order. Node 1 is the root, nodes 4 and
5 are the leaves. (b) A simple undirected graph, with the following maximal cliques: {1, 2, 3}, {2, 3, 4},
{3, 5}.

10.1.4 Graph terminology

Before we continue, we must define a few basic terms, most of which are very intuitive.
A graph G = (V , E) consists of a set of nodes or vertices, V = {1, . . . , V }, and a set

of edges, E = {(s, t) : s, t ∈ V}. We can represent the graph by its adjacency matrix, in
which we write G(s, t) = 1 to denote (s, t) ∈ E , that is, if s → t is an edge in the graph.
If G(s, t) = 1 iff G(t, s) = 1, we say the graph is undirected, otherwise it is directed. We
usually assume G(s, s) = 0, which means there are no self loops.

Here are some other terms we will commonly use:

• Parent For a directed graph, the parents of a node is the set of all nodes that feed into it:
pa(s) ! {t : G(t, s) = 1}.

• Child For a directed graph, the children of a node is the set of all nodes that feed out of it:
ch(s) ! {t : G(s, t) = 1}.

• Family For a directed graph, the family of a node is the node and its parents, fam(s) =
{s} ∪ pa(s).

• Root For a directed graph, a root is a node with no parents.
• Leaf For a directed graph, a leaf is a node with no children.
• Ancestors For a directed graph, the ancestors are the parents, grand-parents, etc of a node.

That is, the ancestors of t is the set of nodes that connect to t via a trail: anc(t) ! {s : s ❀
t}.

• Descendants For a directed graph, the descendants are the children, grand-children, etc of
a node. That is, the descendants of s is the set of nodes that can be reached via trails from
s: desc(s) ! {t : s ❀ t}.

• Neighbors For any graph, we define the neighbors of a node as the set of all immediately
connected nodes, nbr(s) ! {t : G(s, t) = 1 ∨ G(t, s) = 1}. For an undirected graph, we

310 Chapter 10. Directed graphical models (Bayes nets)

write s ∼ t to indicate that s and t are neighbors (so (s, t) ∈ E is an edge in the graph).
• Degree The degree of a node is the number of neighbors. For directed graphs, we speak of

the in-degree and out-degree, which count the number of parents and children.
• Cycle or loop For any graph, we define a cycle or loop to be a series of nodes such that

we can get back to where we started by following edges, s1 − s2 · · ·− sn − s1, n ≥ 2. If the
graph is directed, we may speak of a directed cycle. For example, in Figure 10.1(a), there are
no directed cycles, but 1→ 2→ 4→ 3→ 1 is an undirected cycle.

• DAG A directed acyclic graph or DAG is a directed graph with no directed cycles. See
Figure 10.1(a) for an example.

• Topological ordering For a DAG, a topological ordering or total ordering is a numbering
of the nodes such that parents have lower numbers than their children. For example, in
Figure 10.1(a), we can use (1, 2, 3, 4, 5), or (1, 3, 2, 5, 4), etc.

• Path or trail A path or trail s ❀ t is a series of directed edges leading from s to t.
• Tree An undirected tree is an undirectecd graph with no cycles. A directed tree is a DAG in

which there are no directed cycles. If we allow a node to have multiple parents, we call it a
polytree, otherwise we call it a moral directed tree.

• Forest A forest is a set of trees.
• Subgraph A (node-induced) subgraph GA is the graph created by using the nodes in A and

their corresponding edges, GA = (VA, EA).
• Clique For an undirected graph, a clique is a set of nodes that are all neighbors of each

other. A maximal clique is a clique which cannot be made any larger without losing the
clique property. For example, in Figure 10.1(b), {1, 2} is a clique but it is not maximal, since
we can add 3 and still maintain the clique property. In fact, the maximal cliques are as
follows: {1, 2, 3}, {2, 3, 4}, {3, 5}.

10.1.5 Directed graphical models

A directed graphical model or DGM is a GM whose graph is a DAG. These are more commonly
known as Bayesian networks. However, there is nothing inherently “Bayesian” about Bayesian
networks: they are just a way of defining probability distributions. These models are also called
belief networks. The term “belief” here refers to subjective probability. Once again, there is
nothing inherently subjective about the kinds of probability distributions represented by DGMs.
Finally, these models are sometimes called causal networks, because the directed arrows are
sometimes interpreted as representing causal relations. However, there is nothing inherently
causal about DGMs. (See Section 26.6.1 for a discussion of causal DGMs.) For these reasons, we
use the more neutral (but less glamorous) term DGM.

The key property of DAGs is that the nodes can be ordered such that parents come before
children. This is called a topological ordering, and it can be constructed from any DAG. Given
such an order, we define the ordered Markov property to be the assumption that a node only
depends on its immediate parents, not on all predecessors in the ordering, i.e.,

xs ⊥ xpred(s)\pa(s)|xpa(s) (10.4)

where pa(s) are the parents of node s, and pred(s) are the predecessors of node s in the
ordering. This is a natural generalization of the first-order Markov property to from chains to
general DAGs.

Three types of graphical model

Directed graphs
– useful for designing models

Undirected graphs
– good for some domains, e.g. computer vision

Factor graphs
– useful for inference and learning

Bayesian	Networks	(Bayes	Nets)	or	Directed	graphical	model	(DGM)
Decomposition

Directed	Graphs	or	Bayesian	Networks

General	Factorization

Bayesian	Curve	Fitting	(1)

Polynomial

Plate

Bayesian	Curve	Fitting	(3)
Input	variables	and	explicit	hyperparameters

Condition	on	data

Bayesian	Curve	Fitting —Prediction

Predictive	distribution:	

where

Generative	Models
Causal	process	for	generating	images

Discrete	Variables	(1)
General	joint	distribution:	K2-1 parameters

Independent	joint	distribution:	2(K-1) parameters

General	joint	distribution	over	M variables:		KM -1parameters
M-node	Markov	chain:	K-1 + (M-1) K(K-1) parameters

Discrete	Variables:	Bayesian	Parameters	(1)

Discrete	Variables:	Bayesian	Parameters	(2)

Shared	prior

Parameterized	Conditional	Distributions

If	 are	discrete,		
K-state	variables,	

in	general	
has	O(KM) parameters.

The	parameterized	form

requires	only	M + 1 parameters

Conditional	Independence
a is	independent	of	b given	c

Equivalently

Notation

Conditional	Independence:	Example	1

Conditional	Independence:	Example	2

Note:	this	is	the	opposite	of	Example	1,	with	c unobserved.

Conditional	Independence:	Example	3

D-separation
• A,	B,	and	C	are	non-intersecting	subsets	of	nodes	in	a	directed	graph.
• path	from	A	to	B	is	blocked	if	it	contains	a	node	such	that	either

a) the	arrows	on	the	path	meet	either	head-to-tail or	tail-to-tail at	the	node,	and	
the	node	is	in	the	set	C,	or

b) the	arrows	meet	head-to-head at	the	node,	and	neither	the	node,	nor	any	of	
its	descendants,	are	in	the	set	C.

• If	all	paths	from	A	to	B	are	blocked,	A	is	said	to	be	d-separated	from	B	by	C.	Then	the	
joint	distribution	over	all	variables	satisfies																							.

D-separation:	Example

Markov	Random	Fields	or	Undirected	Graphs

Cliques	and	Maximal	Cliques

Clique

Maximal	Clique

Joint	Distribution
Where																					is	the	potential	over	clique	C and	

is	the	normalization	coefficient;	note:	M K-state	variables	® KM terms	in	Z.

Energies	and	the	Boltzmann	distribution

Illustration:	Image	De-Noising

Noisy	Image Restored	Image	(ICM) Restored	Image	(Graph	cuts)

Converting	Directed	to	Undirected	Graphs	(1)

Converting	Directed	to	Undirected	Graphs	(2)

Additional	links

Directed	vs.	Undirected	Graphs	(2)

Inference	in	Graphical	Models

Inference	on	a	Chain

Inference	on	a	Chain

Inference	on	a	Chain

Inference	on	a	Chain

To	compute	local	marginals:
• Compute	and	store	all	forward	messages,													.
• Compute	and	store	all	backward	messages,													.	
• Compute	Z at	any	node	xm

• Compute

for	all	variables	required.

Trees
Undirected	Tree Directed	Tree Polytree

Factorization

Directed graphs:

Undirected graphs:

Both have the form of products of factors:

Factor	Graphs

More verbose!

from	Directed	Graphs	to	Factor	Graphs	

Factor	Graphs	from	Undirected Graphs

INFERENCE

The	Sum-Product	Algorithm	(1)
Objective:

i. to	obtain	an	efficient,	exact	inference	algorithm	for	finding	marginals;
ii. in	situations	where	several	marginals	are	required,	to	allow	computations	to	

be	shared	efficiently.

Key	idea:	Distributive	Law

Efficient inference

7 versus 3 operations

The Sum-Product Algorithm

𝑥 𝑢 𝑤
𝑦

𝑧 𝑓1(𝑢, 𝑤) 𝑓2(𝑤, 𝑥)

𝑓4(𝑥, 𝑧)

𝑓3(𝑥, 𝑦)

What if the messages are intractable?

True distribution Monte Carlo Variational Message Passing

Expectation propagation

⁞

Learning is just inference!

The	Sum-Product	Algorithm	(2)

The	Sum-Product	Algorithm	(3)

The	Sum-Product	Algorithm	(4)

The	Sum-Product	Algorithm	(5)
Initialization

To	compute	local	marginals:
• Pick	an	arbitrary	node	as	root
• Compute	and	propagate	messages	from	the	leaf	nodes	to	the	root,	storing	

received	messages	at	every	node.
• Compute	and	propagate	messages	from	the	root	to	the	leaf	nodes,	storing	

received	messages	at	every	node.
• Compute	the	product	of	received	messages	at	each	node	for	which	the	

marginal	is	required,	and	normalize	if	necessary.

Sum-Product:	Example	(1)

Sum-Product:	Example	(2)	and	(3)

