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1. Summary

1.1. Abstract

Machine learning methods are applied to ocean acous-
tic source localization in order to accurately learn source
range in the complicated ocean environment. In this paper,
three machine learning data-driven methods, support vector
machines (SVM), feed-forward neural networks (FNN) and
random forests (RF), are used for source localization. The
FNN and the RF are focused in this paper. Principle Com-
ponent Analysis (PCA) which reduces the dimension of fea-
tures is applied to preprocess the shipping noise data col-
lected from the signal of R/V New Horizon. Considered as
a classification problem, the source range estimation prob-
lem has been solved. The results of three methods are com-
pared as well. Besides comparing the performances among
these three statistical methods, the robustness of our mod-
els against different levels of additional Gaussian noises has
been also tested.

1.2. Conclusion

By comparing the three methods in the results section,
FNN outperforms the comparison with its smallest average
test errors. In addition, all the three statistical models have
better performances on classifying data from the classes
containing more than one training samples, which indicates
the necessity of big data for machine learning. The rea-
son is that more training samples from one class could rep-
resent the properties of that class better and this helps the
models learn the underlying relationship between the input
variables and the labels better as well, on the other hand,
when the number of the training data is too small, the model
would be affected by some outliers and it will tend to fit the
noises instead of real underlying relationship. By testing the
models with various levels of white Gaussian noise on our
datasets, the FNN and RF algorithms performed well even
when the SNR is up to -30dB. Therefore, these proposed
models are robust to the noise so that they can be applied
under some complicated and changing conditions.

2. Introduction

Source localization is significant to underwater surveil-
lance, detecting and tracking. Since the underwater en-
vironment is unstable, finding a method that can be
adapted to various water conditions is necessary. As
traditional approaches, matched-field processing (MFP)
methods have been successfully used for ocean acous-
tic localization[7][8][2]. The estimation methods requires
maximum exploitation of signal and noise physical struc-
ture that can be paired to optimum methods for signal
processing[2]. At the same time, these methods take ex-
treme long time to match the source and environment pa-
rameters. In addition, MFP requires too many ideal assump-
tions to attain accurate localizations[1], therefore, it is diffi-
cult for MFP methods to localize source without good ocean
environments[8].

In order to explore more complicated ocean environ-
ments, machine learning methods, such as support vector
machines, feed-forward neural network and random forest,
are put forward in this paper. Since SVM has been studies
successfully, we focus on the FNN and RF model meth-
ods. The framework of these methods is shown in section
3. Before training and testing, Principle Component Analy-
sis was applied for pre-processing the datasets. The theory
of PCA has been demonstrated in section 3 as well.

We first built up an FNN structure with appropriate hid-
den layers and neurons in proposed FNN method. Then, we
trained machine learning model for each dataset and the test
data as input was used to verify the accuracy of our training.
At the same time, cross-entropy was calculated to measure
the error rate of the data. Five different Gaussian noises
from -40dB to 10dB were added on each original dataset
to test the stability of our FNN algorithm. The results are
shown in section 4. For random forest model, PCA was
applied to reduce the dimension of features. Gini impurity
was chosen as the metric to split a root. The results were
shown in section 4.

The shipping noise data was collected from the signal of
R/V New Horizon. Figure 1 shows the experiment geome-
try, with the vertical linear array (VLA) indicated as a red
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triangle. The five ship tracks, shown in five different color
lines, were used for our estimation. The sampling rate of
the hydrophone was 25 kHz.

Every dataset includes both training and test data with
different time ranges (shown in Table 1). The source-
receiver range is around 1.9 km and the label was created
every 20m. The total training and test sample numbers of
each dataset was shown in Table 2. The input data fre-
quency range is from 311 Hz to 711 Hz. The performances
of FNN, RF and SVM are shown in the results section. Re-
sult errors are calculated by mean absolute percentage error
(MAPE)EMAPE (the equation is discussed in section 3).

Figure 1: (Color online) Five ship tracks datasets

3. Framework
3.1. Principal Component Analysis

Principal Component Analysis is firstly brought out by
Karl Pearson in 1901 [9]. It is a popular statistical tool for
data processing and analysis, especially when the sample
contains large number of measurements. Due to its advan-
tage in reducing data size by projecting them into lower di-
mensions space, it’s very prevalent in data mining as well
as machine learning.

The idea of PCA is using eigenvalue decomposition or
singular value decomposition to find out the most signifi-
cant features and only reserving the projections of the data
onto these feature vectors. Because the power of most sig-
nals is concentrated on several directions, the number of the
selected feature vectors should be much less than the num-
ber of measurements. Therefore, the size of the data will be
reduced.

Assume we have a k×N data matrix X , where N is the
number of samples, and k is the number of measurements.
Each column of X , xi, is a data sample. Usually both N
and k are rather large.

Firstly, we need to compute sample mean before we
make the data centered, or zero-mean.

µ̂ =
1

N

∑
i

xi (1)

Then, we are going to compute sample covariance,

Σ̂ =
1

N

∑
i

(xi − µ̂)(xi − µ̂)T (2)

After that, we use eigenvalue decomposition to compute
eigenvalues and eigenvectors of (̂Σ),

Σ̂ = ΦΛΦT (3)

Λ = diag(λ1, λ2, ..., λk) (4)

ΦΦT = I (5)

where eigenvalues are sort by descent order.
The first d largest eigenvalues and their corresponding

eigenvectors are selected. And the eigenvectors φi are
called Principal Components.

Φ̂ = (φ1, φ2, ..., φd) (6)

For each k-dimension training or testing sample t =
(t1, t2, ..., tk), the projected result is computed as below,

t̂ = t− µ̂ (7)

y = Φ̂T t̂ (8)

The projection matrix Φ̂ is k × d and t is k-dimension,
so we get the new vector t̂ d-dimension.

By controlling the parameter d, we can control the size
of data and then reduce computation time. In our random
forest method, we choose some ds manually and compare
the performances to get a best d. In our FNN method, the
parameter d is decided by this criterion.

rd =

∑d
i=1 λ

2
i∑N

i=1 λ
2
i

> 0.9 (9)

3.2. Feed-forward Neural Network

Feed-forward Neural Network (FNN) is an artificial neu-
ral network where connections between the neurons form
no cycle. It has been proved to be a successful statistical
tool for modeling as well as prediction.

FNN is also known as multiple layer perceptrons, there-
fore it has at least one hidden layer. G. Cybenko [5] shows
that given any continuous function f(x) and ε > 0, there
exists a neural network g(x) such that

|f(x)− g(x)| < ε,∀x (10)
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Dataset number Training (time) Test (time) Range (m)
01 19:06:05-19:21:05 09:32:10-09:48:10 0:20:2960
02 11:08:05-11:22:05 03:47:10-04:02:10 1750:20:3000
03 09:37:05-09:48:30 05:45:20-05:56:05 850:20:3080
04 13:02:05-13:19:05 04:11:10-04:29:10 1000:20:2850
05 05:24:40-05:35:40 10:02:40-10:14:10 900:20:2800

Table 1: Start and end tracking time of five data sets; the range labels are provided

Dataset number Training samples Test samples
01 890 189
02 830 177
03 650 127
04 1010 213
05 615 135

Table 2: Training and test sample numbers of five datasets

This indicates that neural network could approximate
any continuous functions.

Figure 2 is an demonstration of FNN with two hidden
layers. Assume the input variables x = [x1, x2, ..., xn]T ,
the jth input of hidden layer1 is a linear combination of x,
which is given by

aj =

n∑
i=1

w
(1)
ji xi + w

(1)
j0 , j = 1, 2, ...,M (11)

where M is the number of neurons in hidden layer1, w(1)
ji s

and w(1)
j0 are called weights and bias, respectively.

In each hidden layer, there’s an activation function which
maps the input aj nonlinearly.

zj = f(aj) (12)

If the activation function f(∗) is a linear function, then our
neural network will degenerate into a perceptron.

Similarly, for the hidden layer2, the inputs and outputs
are given by

bj =

n∑
i=1

w
(2)
ji zi + w

(2)
j0 , j = 1, 2, ...,K (13)

yj = f(bj) (14)

where K is the number of neurons in hidden layer2.
There are several choices for the nonlinear activation

functions, such as, the sigmoid function 3a, tanh function
3b, and ReLU nonlinearity 3c.

The sigmoid function is used in neural network from the
very beginning.

σ(x) =
1

1 + e−x
(15)

Figure 2: Neural Network with two hidden layers [6]

(a) Sigmoid (b) Tanh

(c) ReLU

Figure 3: Three commonly used activation functions

However, when the input is very large, sigmoid becomes
saturate and its gradient will vanish. This affects the process
of back propagation and the network will barely learn. In
addition, sigmoid is not zero-centered.

The tanh nonlinearity is actually a modified sigmoid, or
a centered sigmoid.

tanh(x) = 2σ(2x)− 1 (16)

Therefore, although it doesn’t have the problem with not
being zero-centered, its activations still saturate when input
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is large, which would affect the learning process.
Unlike the above two activation function, the Rectified

Linear Unit (ReLU) has a constant gradient and this helps
accelerate the convergence of gradient descent. It also has
a simple implementation than sigmoid and tanh which need
exponential operation. Therefore, we choose ReLU as our
activation function.

ReLU(x) = max(x, 0) (17)

The last layer in FNN is called output layer, and it does
not need activation function. In our multi-class classifica-
tion task, we use the softmax function instead. The softmax
function can transform the output results into probabilities.

Pi =
exp(yi)∑m
j=1 exp(yj)

, i = 1, 2, ...,m (18)

where m is the number of classes, and this implies that our
output layer contains m neurons. And the input sample will
be assigned to the class with largest probability.

In order to use back-propagation to make our neural net-
work converge to the real underlying relationship between
input variables and the labels, we adopt cross-entropy as our
loss function E,

E(w) = − 1

N

N∑
n=1

m∑
i=1

tni lnP
n
i (w) (19)

where tni is the real probability of nth sample in class i,
which implies that tni is binary and can only be 0 or 1, N is
the number of sample, m is the number of classes.

The best parameter w is given by

w∗ = arg min
w

[− 1

N

N∑
n=1

m∑
i=1

tni lnP
n
i (w)] (20)

However, w∗ cannot be computed directly as there’s no
closed-form formula. Lots of optimization methods are de-
veloped for computing w∗. In our paper, we adopt batch
gradient descent method, and our update equation is,

w(t+1) = w(t) − η
N∑

n=1

∇E(w) (21)

3.3. Random Forest

The second method used is Random Forest (RF) pro-
posed by Breiman et al. [3], a popular machine learning
method which consists of Classification and Regression
Trees (CART) proposed also by Breiman et al. [4]. Com-
pared to other machine learning methods like AdaBoost or
Bagging, CART is a conditional weighted method which
only uses important features to do the classification. Addi-
tionally, an advantage of random forest over CART is that
random forest never overfits and every single tree can split
to the end.

3.3.1 Classification and Regression Tree

CART is a non-parametric machine learning method which
contains classification trees for categorical data and regres-
sion trees for continuous data. In this paper, classification
tree has been used since the data is categorical.

It is straight-forward to implement the CART. As de-
scribed in [10], the input dataset D which consists of N
samples of d-dimension is first considered as the root of the
classification tree. Then, it loops through all features to find
the best feature to split the dataset into 2 subsets. There are
two metrics that are mostly used to determine which specific
feature to split the dataset: Gini Impurity and Information
Gain. Gini impurity measures the probability of the data,
which is randomly chosen, being misclassified if the label
is also randomly assigned.

Gini(f) =

J∑
i=1

fi(1− fi), i = 1, 2, ..., J (22)

where J is the number of classes and fi is the portion of
data which belongs to class i. Information gain is calculated
based on the concept of entropy which gives similar results
as Gini impurity.

Entropy = −
J∑

i=1

pi log2 pi, i = 1, 2, ..., J (23)

where pi is the probability of class i and the sum of pi
should be added up to 1. The information gain is calcu-
lated as the difference between the entropy of the node and
its children.

IG = Entropy(T )− Entropy(T |a) (24)

The dataset keeps splitting based on either of these two met-
rics until all the nodes cannot be splitted anymore or a spe-
cific threshold is reached.

However a CART is often overfitted if every node is split
exhaustedly. Therefore many other early-stopping methods
like pruning are introduced when training a CART.

3.3.2 Random Forest

In this paper, random forest is used to prevent overfitting
instead of using early-stopping method in training a CART.
The same input dataset D and a random forest F , which
is made of T CARTs, are used here. As discussed in [3],
each tree is trained by using n samples (n ≤ N ) which are
randomly drawn from the original dataset D with replace-
ments. Additionally, every tree is grown to the largest extent
which means that no pruning is needed during the training.
Once a new test data is inputed into the completely trained
random forest, each tree will assign a label to the input data
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and the class which gets the maximum votes will be the final
classification label. An example of random forest is shown
in 4.

Figure 4: Illustration of random forest

3.3.3 Implementation

We implemented random forest classifier in Python by us-
ing scikit-learn package with that the number of trees has
been set to be 500. To compare the results quantitatively,
the mean absolute percentage error (MAPE) over N sam-
ples is used.

EMAPE =
100

N

N∑
i=1

|Rpi
−Rgi

Rpi

| (25)

Because of the large number of features dimension (7200)
with relative small number of the training samples (around
800), feature reduction is necessary. PCA is used to reduce
the dimensions of the feature space. We compared the re-
sults using different numbers of feature dimension which
are used to train the random forest for each dataset (shown
in Table 3). Dataset01 is used in this test and the random
forest is trained using Gini impurity and number of samples
used to train a single CART is the square root of the num-
ber of total features. From the result of this test, we found
out that reducing the feature space dimension to 100 could
produce better results.

# of Dimension 100 200 300 400 500
EMAPE 4.24 5.32 4.40 5.22 11.22

Table 3: Error with different number of feature space di-
mension by Gini impurity and sqrt number of features.
Dataset01 is used in this test.

The second test we carried out is to test the impact
of using different metrics (Gini impurity and information

gain(IG)) and number of samples(square root of the total
features and log2 of total features) to train one CART. The
input data for this test is all the 5 datasets with feature space
dimension reduced to 100 (Table 4). From the results we
can tell that the combination of Gini impurity and square
root of total feature numbers leads to better results.

Dataset log2+Gini log2+IG sqrt+Gini sqrt+IG
01 5.56 6.60 5.93 6.79
02 6.22 9.14 2.73 4.70
03 22.32 23.97 7.39 18.85
04 3.16 7.47 1.40 3.17
05 30.89 30.60 25.93 28.32

Avg. 13.63 15.56 8.68 12.37

Table 4: Error using Gini impurity vs. information gain,
and sqrt vs. log2 number of features

Based on the results of these 2 test, we decided to use
Gini impurity as the metric to split a node, square root to
calculate the number of samples used to train a CART, and
100 as the dimension of the reduced feature space for tests
in the next section.

4. Experimental Results

4.1. Results of FNN

Although one hidden layer performs well in [8], a more
complicated machine learning algorithms need to be studied
for better performance. We built an FNN with 3 hidden
layers for testing. The number of neurons in the first hidden
layer is 2 times of the number of features after PCA. In the
second hidden layer, the number of neurons is the same as
the number of features. There are 200 neurons in the third
hidden layers. Since the FNN performs best with snapshots
5 in Niu[8], the number of snapshots was set to 5 during
processing data.

Figure 5 shows our experimental results of FNN predi-
cation within 5 datasets. If the range of the point has two
corresponding time index, the data samples performs bet-
ter estimation than that range of points has only one corre-
sponding time index. For example, from figure 5 dataset01,
the range from 0 to 1500 meters, the estimation is better
than the range from 1500 to 2960m. Because the more
training data the system has, the better performance of rep-
resenting underlying relationship between training and test
data. Therefore, in the range of 1500 to 2960m, if the data is
outlier, system will fit tendency of the noise instead of the
underlying relationship. The calculated EMAPE statistics
are shown in the Table 5. The average error is 6.26 which is
smallest within the three methods.
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Figure 5: FNN results: from left to right, top to bottom are
the results for Dataset01 - Dataset05

4.2. Results of RF

As discussed in the previous section of RF, the PCA
reduces the dimension feature space from 7200 to 100.
Gini impurity is used to split a node and the square root
is calculated for the number of samples to train a CART.
From Figure 6, RF works pretty good for dataset01 and
dataset04 while the performance got worse for dataset03
and dataset05. A conclusion can be drawn that the sym-
metry of the dataset (distance from the ship to the receiver)
could impact the performance to a large extent. The aver-
age EMAPE of five datasets is shown in the Table 5. The
average MAPE is 8.00.

4.3. Results of SVM

The SVM method was provided by Prof.Gerstoft. The
results are shown in Figure7. TheEMAPE , shown in table5,
is 10.49 which is biggest within three methods.

4.4. Robustness against noise

Besides comparing the performances among these three
statistical methods, we also test our models against different
levels of additional Gaussian noises. The FNN model and
random forest model are trained on the original data without
noise, and the test data is added with white Gaussian noise
in different levels (signal-noise-ratio(SNR) from -40dB to
10dB).

Figure 6: RF results: from left to right, top to bottom are
the results for Dataset01 - Dataset05

Figure 7: SVM results: from left to right, top to bottom are
the results for Dataset01 - Dataset05
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Dataset FNN RF SVM
01 9.52 4.86 10.22
02 6.11 3.95 5.70
03 4.32 14.52 10.22
04 1.74 1.34 1.74
05 9.59 29.87 24.56

Avg. 6.26 8.00 10.49

Table 5: Comparison of three methods

We test FNN with PCA on Dataset01. The SNR of
the noises added to the original data is −40dB, −30dB,
−20dB, −5dB, 5dB and 10dB. Results are shown in Ta-
ble 6.

SNR(dB) Orig -40 -30 -20 -5
Error 9.52 191.46 22.42 9.78 9.53

SNR(dB) Orig 5 10
Error 9.52 8.51 9.57

Table 6: Feed-forward neural network against noised test
data

Again, We test our random forest model on Dataset01
using Gini impurity and the square root of total number of
features as the number of features used to train a CART.
The input dimension of the feature space is reduced to 100.
The SNR of the noises added to the original data is−40dB,
−30dB, −20dB, −10dB, −5dB, 5dB and 10dB. Results
are shown in Table 7.

SNR(dB) Orig -40 -30 -20 -10 -5
Error 5.93 40.97 6.18 7.84 10.03 7.94

SNR(dB) Orig 5 10
Error 5.93 5.03 10.26

Table 7: Random forest model against noised test data

The results in Table 6 and Table 7 indicate that our sta-
tistical models could resist addictive white Gaussian noise
with SNR up to -30dB. Therefore, the statistical methods,
like, FNN, random forest, are robust to noise and are able
to handle some unexpected situations. This means that the
models need not to be trained again and again for different
conditions.
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