
Deep Learning for Star-Galaxy Classification

Ganesh Ranganath Chandrasekar Iyer Krishna Chaithanya Vastare
University of California, San Diego
{grchandr, kvastare}@eng.ucsd.edu

Abstract

Conventional star-galaxy classifiers are based on the
reduced summaries provided by the star-galaxy catalogs.
However, these classifiers need careful feature selection and
involvement of domain experts at various stages of classifica-
tion. Thus, the current mechanism is not extremely scalable.
It is important to develop a scalable probabilistic classifier
based on source information with minimal involvement of
humans to overcome these shortcomings. In this project we
tried to implement CNN based binary star-galaxy classifier
proposed by [1].

1. Introduction

Over the past few years, advancements in technology
has provided us extensive knowledge about the universe.
New solar systems, planets, stars, etc are being discovered
on a daily basis. Problem of classification in astronomy
goes back as far as 18th century Messier. Morphological
separation [2] [3] has been frequently used for star-galaxy
classification. However, with the rate we are discovering
new stars and galaxy systems makes it a very tedious task to
use morphological separation. Also the current research in
Dark Energy is coming up with a large Photometric survey
called Dark Energy Survey (DES1). This survey is currently
at a few petabytes of data. Manually processing this data
is practically impossible even for experts in Astrophysics.
Thus we need to explore different automated classification
methods for star-galaxy classification.

2. Literature Survey

Machine learning (ML) methods solve classification prob-
lems in a more probabilistic manner. Thus we can solve
the classification problem to the greatest accuracy. ML
techniques have been a popular tool in various fields of
Astrophysics. Especially, Neural Networks (NNs) [1],[4],
Support Vector Machines (SVM) [5], Random Forest (RF)
([2],[6],[7]), k-Nearest Neighbour (kNN) and NB just to
name a few.

Recently, Edwardo Machado of CEFET/RJ., France, pub-
lished a paper which encompassed and compared all the
above mentioned algorithms for Star - Galaxy classification.
Figure 1 shows the purity vs the magnitude for all the al-
gorithms. It is evident that NN performs the best. Table 1
compares the algorithms based on the accuracy, Area under
the ROC curve (AUC), Completeness galaxies and Purity
galaxies [8]. Again from his results it is evident that NNs
are the most promising.

In this project we will focus on implementing Convolu-
tional Neural Networks for Star-Galaxy Classification.

Figure 1: Magnitude vs Purity of various Star- Galaxy clas-
sification methods [8]

3. Data

We used the photometric and spectroscopic information
from the Sloan Digital Sky Survey (SDSS) [9] DR 12 data
set for training and testing the validity of the convolutional
neural network model. The Sloan Digital Sky Survey [9]
collects the data from 5 photometric bands namely u,g,r,i and
z. The catalog covers over 300 million stars and galaxies.

1



Table 1: Results of Various Star-galaxy Classification methods [8]

Method Accuracy AUC Completeness Galaxies Purity galaxies
NN 99.19 0.984 99.84 99.34
RF 99.11 0.978 99.87 99.23

SVMrbf 99.02 0.913 99.34 99.18
SVMpoly 98.51 0.961 99.95 98.56
SVMtanh 98.51 0.961 99.95 98.56

kNN 98.89 0.945 99.87 99.02
NB 83.97 0.869 84.13 99.54

3.1. Processing Data

The data processing performed by us can be classified
into the following stages:

• Catalog Fetch: We used the DR 12 context of SDSS’s
CASJobs server to select about 25000 entries which are
either star or galaxies. For the sake of securing a clean
data set following aspects were considered:

1 The third class of celestial object in the survey is la-
belled ‘QSO’ and stands for Quasars. The Quasars are
celestial bodies which can’t be classified into binary
labels of interest.

2 Data points with photo metric observation errors were
rejected.

3 The extinction parameters were included to apply cor-
rections.

4 Data points with any warning were rejected.

• Montage Each entry in the catalog has 5 images associ-
ated with u, g,r,i and z. However, there are pixel overlaps
across these images cause by the survey methodology.
In this stage we used Montage [10] to align all the im-
ages with image of r band. The Montage’s ‘reproject’
algorithm [10] project all the images on a spherical sur-
face and realigns the images with respect to the reference
image.

• SExtractor The photometric images will not have the
object of interest in the center. We used the SExtractor
package [11] for extracting the pixels with information
and center the object.

• Conversion to Luptitudes: The data points of magni-
tudes are in inverse hyperbolic sine magnitudes called
luptitudes. Hence, we converted all the flux values to
luptitudes.

• Extinction Correction Due to galactic dust photometric
devices might induce errors into the images. Hence, we
used the extinction parameters from the catalog to remove
or neutralize these errors.

Figure 2: Input Data to CNN

4. Physical and Mathematical Framework -
Deep Learning

Artificial neural networks have been studied for many
years with a goal to achieve human-like performance for
speech and image recognition [12]. For this application, we
have utilized the concept of convolutional neural networks to
perform star-galaxy classification. This section describes the
mathematical model and the architecture of the Deep Neural
Network used to perform the classification task.

4.1. Neural network Mathematical Model

Let x = (x1, x2, . . . , xn) be the input vector to a given
neuron,
w = (w1, w2, . . . , wn) be the weight vector, and b be the

bias.
Then, the output of the neuron is

y = σ (w · x+ b) , (1)

where σ is the activation function (or non-linearity). From
literature [13][14] has been well established that Rectified
linear units achieve faster convergence (faster learning) and
lower error rate than any other activation function. However,
one of the major drawbacks of ReLU units is that they some-



times might result in dead neurons [15]. One way to solve
this problem is to use a leaky ReLU, where the activation
function is given by:

σ(x) =

{
x if x ≥ 0

0.01x if x < 0.
(2)

The leaky condition (when x is less than zero), prevents
neurons from producing zeros in every layer. Thus prevent-
ing the occurrence of dead neurons in the neural network
layers.

The network model outputs y = (y1, y2, . . . , yN ), which
tries to approximate the desired output ŷ = (ŷ1, ŷ2, . . . , ŷN ).
Using this we formulate this as a minimization of loss func-
tion L problem for training data. We have used cross-entropy
as the loss function for this classification problem as sug-
gested by [1]. The loss function is given by:

L(y, ŷ) = − 1

N

N∑
j=1

ŷj log2 yj +(1− ŷj) log2(1− ŷj). (3)

Now the weights, w, and biases, b, which minimize this
loss function is to be determined. For this we employ Gradi-
ent Descent approach to determine the optimal weights and
bias that minimize L.

wn+1 = wn − η
∂L

∂wn

bn+1 = bn − η
∂L

∂bn
, (4)

where, η is the learning rate.

4.2. Convolutional Neural Networks - CNNs

Convolutional neural networks are a type of deep neural
networks that are feedforward in nature. These have gained
a significant use in computer vision applications.

We have employed CNNs to model the data as we do not
have a lot of prior knowledge about the data and we needed
a model that could make strong correct assumptions about
the nature of the images. CNNs are comparatively fewer
connections and are relatively easier to train.

In a typical CNN there are two layers: Convolution layer
and pooling layers.

The main difference between a regular NN and a CNN, is
that it has a convolution operation between the weights and
the inputs as shown:

yk = σ

(∑
m

wk
m ∗ xm + bk

)
, (5)

where we sum over the set of input feature maps, * is the

convolution operator, and w represent the filters.
The main function of the pooling layers is to reduce the

dimension of the feature map and make the model invariant
to small shifts and distortions [4].

4.3. Neural Network Architecture

The architecture of the CNN has a prominent role in its
performance. It is proved by Edward Kim [4] that the use
of the following architecture is the best for the star-galaxy
classification. [1] compared CNNs with different Random
Forrest algorithms (TPCs) and the authors results show that
the following model works best for SDSS dataset.

The network architecture is composed of eleven trainable
layers. The first convolutional layer filters the 5 x 44 x 44
input image (i.e., 44 x 44 images in five bands u, g, r, i, z)
with 32 square filters of size 5 x 5 x 5. For each CNN layer,
we have employed Leaky ReLU as the activation function
for the NN. The second layer filters the data with 32 filters,
each of size 32 x 3 x 3 size. In the second layer, zero
padding has been done on the border of the input. This
was proposed by [1] to preserve the spatial resolution after
convolution operation. Next we have a max-pooling layer
which uses a filter of size 2x2 to reduce the dimension of
the feature space. Then we have a stack of six additional
convolutional layers, all with filters of size 3 x 3 and max-
pooling layers with filters of size 2 x 2. Finally, we have
three fully connected layers, where the first two have 2048
channels each (recommended by [1]) and the third performs
binary classification using softmax function given by:

P (G | x) = ex·wG∑
i e

x·wi
, (6)

5. Minimizing the Effect of Overfitting

The overall Deep learning network we are using has more
trainable parameters than the training dataset size. So the
CNN is likely to overfit. In this section, we will discuss a
few simple ways to minimize overfitting.

5.1. Data Augmentation

One common method to combat overfitting is to artifi-
cially increase the number of training data by using label-
preserving transformations [1]. Each image is transformed
as follows:

1. Rotation: Rotating an image does not change whether
the object is a star or a galaxy. We exploit this rota-
tional symmetry and randomly rotate each image by a
multiple of 90◦.

2. Reflection: We flip each image horizontally with a
probability of 0.5 to exploit mirror symmetry.



Table 2: Summary of ConvNet architecture and hyperparameters. Note that pooling layers have no learnable parameters [1].

type filters filter size padding non-linearity initial weights initial biases
convolutional 32 5× 5 - leaky ReLU orthogonal 0.1
convolutional 32 3× 3 1 leaky ReLU orthogonal 0.1

pooling - 2× 2 - - - -
convolutional 64 3× 3 1 leaky ReLU orthogonal 0.1
convolutional 64 3× 3 1 leaky ReLU orthogonal 0.1
convolutional 64 3× 3 1 leaky ReLU orthogonal 0.1

pooling - 2× 2 - - - -
convolutional 128 3× 3 1 leaky ReLU orthogonal 0.1
convolutional 128 3× 3 1 leaky ReLU orthogonal 0.1
convolutional 128 3× 3 1 leaky ReLU orthogonal 0.1

pooling - 2× 2 - - - -
fully-connected 2048 - - leaky ReLU orthogonal 0.01
fully-connected 2048 - - leaky ReLU orthogonal 0.01
fully-connected 2 - - softmax orthogonal 0.01

3. Translation: We also have translational symmetry in
the images. Given an image of size 48× 48 pixels, we
extract a random contiguous crop of size 44× 44. Each
cropping is equivalent to randomly shifting a 44× 44
image by up to 4 pixels vertically and/or horizontally.

4. Gaussian noise: We introduce random Gaussian noise
to each pixel values by using a similar method to [13].

5.2. Dropout

In order to force the neuron to learn more robust features
we used a method called Dropout[cite]. This process basi-
cally sets the output of each hidden neuron from the n− 1st

layer to 0 with a probability of 0.5. However, this might
affect the nthlayer. Hence, the weights of the remaining
neurons were multiplied by 0.5 to account for this scale shift.

6. Implementation Details

6.1. Data Processing

We used SQL query on CASJobs’s DR 12 instance for
getting the catalog. To process the data as described above
we used Montage Wrapper (Astropy’s v0.9.8)and SExtrac-
tor(v2.19.5) in Python 2.7.13 (Anaconda 4.4).

6.2. Neural Network

The neural network was simulated used Nvidia’s GeForce
GTX 1050 Ti with 80% CNMeM and cuDNN 5.1. The
scripting was done in Python 2.7.13 (Anaconda 4.4.0 64 Bit)
using Theano (v 0.9) + Lasagne (v 0.2).

7. Results
7.1. Error Metric

The system implemented is binary classifier and we used
Area Under Receiver Operating Characteristic Curve (ROC).
The ROC curve is constructed by plotting the True Positive
Rate of classifier against its False Positive Rate. It is in
the range 0-1 and higher the metric better the prediction
accuracy. Fundamentally, this metric helps us understand
the classifier’s ability when the threshold is changed. Hence,
selected it.

7.2. Output

Initially, we evaluated the model using 100 entries from
the catalog and the found the average value of the error
metric over 5 iterations to be equal to 0.94. Latter, we
ran the simulation for 1500 entries and found the average
value of error metric over 5 iterations to be 0.97. For these
simulation, we used 80% of the data for training and 20%
for testing.

8. Conclusion and Future work
8.1. Conclusion

In this project, we implemented the CNN based binary
classifier suggested by [1] to classify the data from
photometric catalogs as star or galaxy. Our main goal was
to understand the working of CNN and its properties. As
discussed in the literature survey, we are convinced that
CNN based binary classification requires lesser involvement
of experts in the subject and human error is reduced
significantly. However, when we ran the data for about 1500
entries we got area under ROC as 0.97. This in agreement
with author’s reported area under ROC (0.99) for this model.



In the due course of project we also learnt a little bit
about writing SQL query, using the Theano and Lasagne
wrappers. Since, we new to python, it helped us appreciate
the language and learn to use it.

Further, we also would like to mention that each entry in
the catalog corresponds to 62 MB of data in FITS format
and we had access only to GPU 768 cuda cores and system
with 50 GB of free space. Hence, due to limitations of
hardware, we were not able to train more data. In future,
we are planning to scale the operation and compare the
performance of the model with other ML techniques in the
literature studied. We would also like to study the effect of
increase in neural network size on over fitting and our error
metric (i.e.) Area Under ROC.

References

[1] Edward J Kim and Robert J Brunner. Star-galaxy clas-
sification using deep convolutional neural networks.
Monthly Notices of the Royal Astronomical Society,
page stw2672, 2016. 1, 3, 4

[2] EC Vasconcellos, RR De Carvalho, RR Gal, FL LaBar-
bera, HV Capelato, H Frago Campos Velho, M Tre-
visan, and RSR Ruiz. Decision tree classifiers for
star/galaxy separation. The Astronomical Journal,
141(6):189, 2011. 1

[3] Marc Henrion, Daniel J Mortlock, David J Hand, and
Axel Gandy. A bayesian approach to star–galaxy clas-
sification. Monthly Notices of the Royal Astronomical
Society, 412(4):2286–2302, 2011. 1

[4] Edward J Kim, Robert J Brunner, and Matias Car-
rasco Kind. A hybrid ensemble learning approach
to star–galaxy classification. Monthly Notices of the
Royal Astronomical Society, 453(1):507–521, 2015. 1,
3

[5] Ross Fadely, David W Hogg, and Beth Willman. Star-
galaxy classification in multi-band optical imaging.
The Astrophysical Journal, 760(1):15, 2012. 1

[6] Nicholas Weir, Usama M Fayyad, and S Djorgovski.
Automated star/galaxy classification for digitized poss-
ii. The Astronomical Journal, 109:2401, 1995. 1

[7] AA Suchkov, RJ Hanisch, and Bruce Margon. A cen-
sus of object types and redshift estimates in the sdss
photometric catalog from a trained decision tree clas-
sifier. The Astronomical Journal, 130(6):2439, 2005.
1

[8] Eduardo Machado, Marcello Serqueira, Eduardo Oga-
sawara, Ricardo Ogando, Marcio AG Maia, Luiz Nico-
laci da Costa, Riccardo Campisano, Gustavo Paiva
Guedes, and Eduardo Bezerra. Exploring machine
learning methods for the star/galaxy separation prob-
lem. In Neural Networks (IJCNN), 2016 International
Joint Conference on, pages 123–130. IEEE, 2016. 1, 2

[9] Sloan digital sku survey. http://www.sdss.
org/. 1

[10] Montage. http://montage.ipac.caltech.
edu/. 2

[11] Sextractor. https://www.astromatic.net/
software/sextractor. 2

[12] Richard Lippmann. An introduction to computing with
neural nets. IEEE Assp magazine, 4(2):4–22, 1987. 2

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012. 2, 4

[14] Dan C Cireşan, Ueli Meier, Jonathan Masci, Luca M
Gambardella, and Jürgen Schmidhuber. High-
performance neural networks for visual object clas-
sification. arXiv preprint arXiv:1102.0183, 2011. 2

[15] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng.
Rectifier nonlinearities improve neural network acous-
tic models. In Proc. ICML, volume 30, 2013. 3

http://www.sdss.org/
http://www.sdss.org/
http://montage.ipac.caltech.edu/
http://montage.ipac.caltech.edu/
https://www.astromatic.net/software/sextractor
https://www.astromatic.net/software/sextractor

