
Face Recognition using Machine Learning

Arun Alvappillai
UCSD

aalvappi@ucsd.edu

Peter Neal Barrina
UCSD

pbarrina@ucsd.edu

Abstract

In this paper, we proposed a facial recognition system us-
ing machine learning, specifically support vector machines
(SVM). The first step required is face detection which we ac-
complish using a widely used method called the Viola-Jones
algorithm. The Viola-Jones algorithm is highly desirable
due to its high detection rate and fast processing time. Once
the face is detected, feature extraction on the face is per-
formed using histogram of oriented gradients (HOG) which
essentially stores the edges of the face as well as the direc-
tionality of those edges. HOG is an effective form of fea-
ture extraction due its high performance in normalizing lo-
cal contrast. Lastly, training and classification of the facial
databases is done using the a multi-class SVM where each
unique face in the facial database is a class. We attempt to
use this facial recognition system on two sets of databases,
the AT&T face database and the YALE B face database and
will analyze the results.

1. Introduction
Face recognition has become a popular topic of research

recently due to increases in demand for security as well as
the rapid development of mobile devices. There are many
applications which face recognition can be applied to such
as access control, identity verification, security systems,
surveillance systems, and social media networks.

Access control includes offices, computers, phones,
ATMs, etc. Most of these forms currently do not use face
recognition as the standard form of granting entry, but with
advancing technologies in computers along with more re-
fined algorithms, facial recognition is gaining some traction
in replacing passwords and fingerprint scanners. Ever since
the events of 9/11 there has been a more concerned empha-
sis on developing security systems to ensure the safety of
innocent citizens. Namely in places such as airports and
border crossings where identification verification is neces-
sary, face recognition systems potentially have the ability to
mitigate the risk and ultimately prevent future attacks from
occurring. As for surveillance systems, the same point can

be made if there are criminals on the loose. Surveillance
cameras with face recognition abilities can aide in efforts of
finding these individuals. Alternatively, these same surveil-
lance systems can also help identify the whereabouts of
missing persons, although this is dependent on robust facial
recognition algorithms as well as a fully developed database
of faces. And lastly, facial recognition has surfaced in social
media applications on platforms such as Facebook which
suggest users to tag friends who have been identified in pic-
tures. It is clear that there are many applications the uses for
facial recognition systems. In general the steps to achieve
this are the following: face detection, feature extraction, and
lastly training a model.

2. Description of Project
2.1. Face Detection

Facial detection via the Viola-Jones algorithm is a com-
mon method used due to its high detection rate and fast pro-
cessing speed. The algorithm can be summed up in four
steps: feature selection, feature evaluation, feature learning
to create a classifier, and cascading classifiers.

Simple features are used, inspired by Haar basis func-
tions, which are essentially rectangular features in various
configurations. A two-rectangle feature represents the dif-
ference between the sum of the pixels in two adjacent re-
gions of identical shape and size. This idea can be extended
to the three-rectangle and four-rectangle features. In or-
der to quickly compute these rectangle features, an alternate
representation of the input image is required, called an in-
tegral image. The integral image can be represented by the
following equation:

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′) (1)

where the integral image is ii(x, y) and the original image
is i(x, y). Essentially the integral image at the locations x, y
is the sum of all the pixels to the left and above, including
the point itself. The integral image representation can be
computed with only one iteration through the entire input
image, and allows a sum of a rectangular feature to be com-

1

puted using only four points. In reference to Figure 1, 1 is

Figure 1. Four array references are required in order to determine
the sum of rectangle D.

equal to the sum of the pixels in A, 2 is equal to the sum
of pixels in A and B, 3 is is the sum of pixels in A and C,
and lastly 4 is the sum of pixels in A, B, C and D. Knowing
this, we can see that to compute the sum of pixels in D, it
is simply (4+1) - (2+3). Instead of summing all of the in-
dividual pixels within the original image, we can simplify
this computation by taking advantage of the integral image
and thus reduce the time needed for the feature evaluation
part of the algorithm.

The learning portion of the face detection algorithm
uses Adaboost which basically uses a linear combination
of weak classification functions to create a strong classi-
fier. Each classification function is determined by the per-
ceptron which produces the lowest error. However, this is
characterized as a weak learner since the classification func-
tion does not classify the data well. In order to improve
results, a strong classifier is created after multiple rounds
of re-weighting a set weak classification functions. These
weights of the weak classification functions are inversely
proportional to their errors. The goal of this stage is to train
the most relevant features of the face and to disregard re-
dundant features. The last step of the Viola-Jones algorithm
is a cascade of classifiers. The classifiers constructed in
the previous step form a cascade. In this set up structure,
the goal is to minimize the computation time and achieve
high detection rate. Sub-windows of the input image will
be determined a face or non-face with classifiers of increas-
ing complexity. If a there is a positive result from the first
classifier, it then gets evaluated by a second more complex
classifier, and so on and so forth until the sub-window is re-
jected. By doing this, the structure utilizes the early stages
of the cascade in order to reject as many negatives as possi-
ble. Figure 2 below shows a general diagram of the process.

As expected, there is an associated trade-off between the
detection performance and the number of false positives.
The perceptrons created from the AdaBoost can be tuned to
address this trade-off by changing the threshold of the per-
ceptrons. If the threshold is low, the classifier will have a
high detection rate at the expense of more false positives.
Conversely, if the threshold is high, the classifier will have
a low detection rate however with fewer false positives. Ad-

Figure 2. Schematic of the classifier cascade process flow.

justing this threshold may not keep the guarantees and train-
ing from AdaBoost therefore it is better to address the train-
ing process as a whole. This time a trade-off exists between
performance in terms of high detection with low false pos-
itives and computation time. In general, higher detection
rates and lower false positives are the result of classifiers
which have more features. However, this also increases
computation time. The detector is designed with specific
constraints provided by the user which inputs the minimum
acceptable detection rate and the maximum acceptable false
positive rate. More features and layers are added if the de-
tector does not meet the criteria provided.

2.2. Feature Extraction

Before we can identify faces, it is first necessary to spec-
ify what features of the face should be used to train a model.
Once the Viola-Jones face detection runs, the face portion
of the image is then used for feature extraction. It is impor-
tant to select features which are unique to each face which
are then used to store discriminant information in compact
feature vectors. These feature vectors are the key part of the
training portion of the facial recognition system and in our
work we propose using HOG features. As mentioned previ-
ously, HOG features perform well because they store edges
and edge direction. High quality local contrast normaliza-
tion, course spatial binning and fine orientation binning are
all vital to good HOG results. Extracting HOG features can
be summarized with the following steps: calculate gradient
of the image, calculate the histogram of gradients, normal-
ize histograms, and finally form the HOG feature vector.

Figure 3. (Left) Vertical edge detector kernel. (Right) Horizontal
edge detector kernel.

The first step requires computing the gradient of the in-
put face image in both the x and y directions using 1x3 and

2

3x1 edge detector kernels shown in Figure 3. The horizontal
kernel is applied to the input image to produce a horizontal
gradient image which the vertical kernel is applied to pro-
ducing a gradient image. The order in which the kernels are
applied does not matter and the vertical kernel could be ap-
plied first to obtain the same result. We can see an example
of the gradient image in Figure 4. As we can observe in the
gradient image, the edges of the face are maintained and can
be used for further processing.

Figure 4. (Top left) Input image. (Top right) Vertical gradient im-
age. (Bottom left) Horizontal gradient image. (Bottom right) Gra-
dient image.

The next step in the processing is to calculate the his-
togram of the gradient image. The gradient image is broken
up into a grid of cells where each cell is typically of size 8x8
pixels as shown in Figure 5. For each cell, a histogram of
gradients is computed. To compute the histogram gradient
two pieces of information are needed, the magnitude and
direction of the gradient at each pixel. For a single cell, the
histogram has nine channels with each channel correspond-
ing to a range of directions from 0 to 180 degrees. Since
we are using a range of directions from 0 to 180 and not 0
to 360, these are considered unsigned gradients. Each pixel
in the corresponding cell selects a channel based on the di-
rection of the gradient and votes for that channel based on
the magnitude of the gradient. This process is repeated for
each pixel in the cell until the histogram of gradients feature
vector is completed.

Now that we have a HOG feature vector for each cell,
the next part of the method is normalization. The purpose
of normalizing the vectors is to ensure that the feature is
invariant to any changes in light and contrast. Before nor-
malizing the feature vectors, we first form blocks of cells in
groups of 2x2. So essentially, each block is of size 16x16
pixels which results in four 9x1 HOG feature vectors. These
four HOG feature vectors can then be concatenated to form
one 36x1 feature vector for each block. Normalization is

Figure 5. (Left) Input image of face divided into cells. (Right)
Gradient image of face divided into cells.

then performed on this 36x1 HOG feature vector using the
following equation:

f =
v√

‖v‖2 + e
(2)

where v is the 36x1 HOG feature vector, ‖v‖ is the norm of
v, and e is a small constant. This normalization process is
repeated for each block, and blocks are moved throughout
the image overlapped such that every cell contributes to the
HOG feature vectors more than once. In general, at least
half a block size of overlap is desirable.

The last step in the feature extraction is to form the HOG
feature vector. This is accomplished by concatenating the
normalized 36x1 feature vectors in the previous step. So if
you have a total of 100 unique block positions which each
produce a 36x1 feature vector, the final concatenated HOG
feature vector would be length (36)(100) = 3600. Figure
6 below shows an example of a face and its corresponding
HOG feature vector.

Figure 6. (Left) Input image. (Right) HOG feature of input image.

2.3. Training Model

Once the method of feature extraction for a face has
been established, the next step is to train a model using

3

the extracted feature vectors of already identified faces in
a database. The method of training employed attempts to
utilize multiple instances of each distinct face in the gallery,
such that the resulting model will be able to best match an
input face to an identity from the gallery.

Support Vector Machines (SVM) are a popular training
tool which can be used to generate a model based on sev-
eral classes of data, and then distinguish between them. For
the basic two-class classification problem, the goal of an
SVM is to separate the two classes by a function induced
from available examples. In the case of facial recognition,
a class represents a unique face, and the SVM attempts to
find what best separates the multiple feature vectors of one
unique face from those of another unique face. If we repre-
sent all the feature vectors of both classes as data points
with the same dimensionality: (x1, y1), ..., (xl, yl) where
xi ∈ Rn, yi ∈ −1, 1, and l is the total number of data

points, the SVM finds the hyperplane wx+ b = 0 that sepa-
rates the largest possible fraction of points of the same class
on the same side, while maximizing the distance from either
class to the hyperplane. In other words, the set of vectors is
optimally separated by the hyperplane if they are separated
without error and the margin (distance between the hyper-
plane and the nearest data point of each class) is maximal.
This is demonstrated in Figure 7.

Figure 7. (Left) Arbitrary hyperplanes. (Right) Optimal Separat-
ing Hyperplane.

In order to obtain the optimal separating hyperplane
(OSH), we first specify the constraints of the hyperplane:

yi[(w · xi) + b] ≥ 1, i = 1,l (3)

minxiyi(w · xi + b) = 1 (4)

The distance of a point x from the hyperplane is:

d(w, b; x) =
|w · x + b|
||w||

(5)

The margin can be obtained from the above expression and
constraints as 2

||w|| . Therefore, the hyperplane that opti-
mally separates the data is the one that minimizes:

Φ(w) =
1

2
||w||2 (6)

When this expression is optimized using the Lagrange, the
resulting OSH for linearly separable training data is given
by:

w̄ =

l∑
i=1

ᾱiyixi (7)

b̄ = −1

2
w̄ · [xr + xs] (8)

xr and xs are support vectors which satisfy ᾱr, ᾱs >
0, yr = 1, ys = −1. For a new data point x, the classifi-
cation of that point is f(x) = sign(w̄ · x + b̄). When the
training data is not linearly separable, slack variables are
introduced into the optimization.

Now that we have defined the process for two-class
recognition using SVM, this basic building block can be ex-
tended to implement multi-class face recognition. Assum-
ing there are multiple classes in the data set, a bottom-up bi-
nary tree is designed which applies a one-against-one strat-
egy to classify between different pairings of classes. For
the example shown in Figure 8, there are 8 classes which
must be evaluated given an input test face. Each branch of
the tree represents a two-class SVM from which results one
”winner” that continues up the tree. Eventually, the unique
class the model decides the input image best corresponds to
will appear on top of the tree.

Figure 8. Binary tree structure for 8 classes

From the above derivations, it follows intuitively that the
spread, quality, and amount of training vectors used for each
SVM class pairing will have an impact on how well the re-
sulting model identifies input faces. If the input face of a
known person in the gallery varies from the examples in
the gallery used to train the model (i.e. angle, expression),
it is expected that the model will have more difficulty cor-
rectly recognizing the face. The extent to which this occurs
is explored in our experiments with the ATT and Yale face
databases.

3. Experiment
3.1. AT&T Dataset

The first dataset we used to train and test the facial recog-
nition algorithm was the AT&T dataset of faces. The AT&T

4

set is composed of forty unique faces each with ten differ-
ent images with. The composition of the images is mostly
frontal view, consistent lighting conditions, and some vary-
ing expressions. When training the model using SVM, eight
of the ten images for each person were used to create a
class for each face while the remaining two images were
reserved to test the model. Of the eighty images that were
tested 73/80 faces were successfully recognized resulting in
an accuracy of 91.25% which is desirable. When analyzing
the cases which failed, we noticed that if the face was not
facing forward and had a slight rotation to either the left or
right then it was more susceptible to incorrectly identifying
the face as shown in Figure 9 and Figure 10.

Figure 9. Incorrect facial recognition result.

Figure 10. Incorrect facial recognition result.

In Figure 9, when the query faces in the left column
are inputted into the model, they are incorrectly matched to
the wrong person from the gallery. For both input images,
the subject is not looking straight forward and directs both
their gaze and face to the left. This observation is demon-
strated more clearly in Figure 10, where the first input face
is correctly matched because the subject’s eyes and face are
pointed forward. However, when the second input face is
the same subject but they instead look into the camera side-
ways, the model fails to recognize the face correctly once
again. The reason for this has to do with implementing a

global approach or a component-approach to face recogni-
tion which will be explained later.

3.2. Yale B Dataset

The second dataset we explored testing was the Yale B
Dataset. The subset we tested on included ten unique faces
each with twenty images. The images are also frontal view
with no changes in expression but have changes in light-
ing intensity. When training the model using SVM, sixteen
of the twenty images were used to create a class for each
person while the remaining four images were used for test-
ing. Of the forty images which were tested, 39/40 faces
were successfully recognized which results in an accuracy
of 97.5%, an improvement from the previous dataset. This
improvement in accuracy is due to two factors. The first
reason why the accuracy increased is because the images
of each face were consistent in position and facial expres-
sions unlike the AT&T dataset which has varying expres-
sions. Secondly, each unique face has more images used
in training thus the model is more robust and holds more
discriminant information of each face in the gallery.

Figure 11. Incorrect facial recognition result.

In Figure 11, for the case that fails to recognize the face,
we notice that the change in lighting plays a major factor.
For the test image located at the bottom of the left column,
the lighting environment causes the left half of the subject’s
face to be hidden in the shadows which drastically affects
the feature vector which is extracted. Hence when trying to
match the face to a face in the gallery the face recognition
system struggles to identify the right face.

The reason for these errors from both datasets is tied
closely towards the method of training we apply to gen-
erate the model and how we utilize SVMs. When devel-
oping facial recognition techniques, there is a global ap-
proach and a component-based approach. The global ap-
proach, which is used in this experiment, uses a single fea-

5

ture vector to represent the whole face image, and then use
these vectors to train the model. Although global techniques
work well for classifying frontal views of faces, they are
not robust against pose changes since global features are
highly sensitive to translation and rotation. The other ap-
proach meanwhile, which is component-based, attempts to
deal with pose changes by allowing a flexible geometrical
relation between the components in the classification stage.
For example, by independently matching templates of the
eyes, nose, and mouth instead of the entire face as a whole,
the configuration of the components during classification is
unconstrained and does not enforce a specific geometrical
model of the face. In contrast to the global approach where
a face detector extracts the face and propagates it to a set
of SVM classifiers, in the component approach, the face de-
tector instead extracts local components of the face. Then,
these local components are fed independently into a set of
SVM classifiers.

Despite the advantages in robustness that come with us-
ing local features, they also may require specialized classifi-
cation algorithms to handle cases where the number of fea-
ture vectors returned by each image is not constant. Thus,
if it is already known or made a requirement that all in-
put faces must be facing forward, the global-approach is a
simpler implementation of facial recognition and proves to
produce sufficient results.

4. Conclusion
In this project, we implemented a facial recognition sys-

tem using a global-approach to feature extraction based on
Histogram-Oriented Gradient. We then extracted the fea-
ture vectors for various faces from the AT&T and Yale
databases and used them to train a binary-tree structure
SVM learning model. Running the model on both databases
resulted in over 90% accuracy in matching the input face to
the correct person from the gallery. We also noted one of
the shortcomings of using a global approach to feature ex-
traction, which is that a model trained using a feature vec-
tor of the entire face instead of its geometrical components
makes it less robust to angle and orientation changes. How-
ever, when the variation in facial orientation is not large, the
global-approach is still very accurate and simpler to imple-
ment than component-based approaches.

References
[1] Bernd Heisele, Purdy Ho, Jane Wu, Tomaso Poggio

Face recognition: component-based versus global ap-
proach. Computer Vision and Image Understanding.
February 2003.

[2] Guodong Guo, Stan Z. Li, Kap Luk Chan Support vec-
tor machines for face recognition. Image and Vision
Computing. January 2001.

[3] Harihara Santosh Dadi, Gopala Krishna Mohan Pillutla
Improved Face Recognition Rate Using HOG Features
and SVM Classifier. IOSR Journal of Electronics and
Communications Engineering, Vol. 11, Issue 4, pp 34-
44, July 2016.

[4] Navneet Dalal and Bill Triggs Histograms of Oriented
Gradients for Human Detection. Proceedings of the
2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. 2005.

[5] O. Deniz, G. Bueno, J. Salido, F. De La Torre Face
recognition using Histogram of Oriented Gradients.
Pattern Recognition Letters. 2011.

[6] P. Jonathon Phillips Support Vector Machines Applied
to Face Recognition. National Institute of Standards
and Technology,

[7] Qiang Zhu, Shai Avidan, Mei-Chen Yeh, Kwang-Ting
Cheng Fast Human Detection Using a Cascade of
Histograms of Oriented Gradients. Proceedings of the
2006 IEEE Computer Society Conference on Computer
Vision and Patter Recognition. 2006.

6

