
Project Report: Source localization in an ocean waveguide using
supervised machine learning

Yuwei Li, Ruting Yin, Wen Liang, Chao Yu

June 16, 2017

Abstract
Machine learning methods is used in source localization

problem in ocean acoustics to obtain source ranges directly
from observed data. The complex pressure received by a
vertical linear array is preprocessed to construct normalized
sample covariance matrices (SCMs) and used as the input.
The range estimation problem is solved both as a classifica-
tion problem and as a regression problem by three machine
learning methods (feed-forward neural networks (FNN), sup-
port vector machines (SVM) and random forests (RF)), with
focus on the FNN. The testing results for experimental data
are calculated to compare FNN, SVM, RF and demonstrate
the feasibility of machine learning methods for underwater
source localization.

1 Introduction
Source localization in ocean acoustic is often solved by

matched-field processing (MFP). Establish the sound propa-
gation model and compare the modeled sound pressure and
observations. However, due to its sensitivity to the mismatch
between model-generated replica fields and measurements.
MFP can only provide reasonable prediction only if the ocean
environment can be accurately modeled. Unfortunately, it is
widely known that the ocean environment in reality is com-
plicated and difficult to control [3].

Finding features directly from data is a good method
to solve source range localization. Machine learning tech-
nologies have drawn much attention due to increased com-
putational resources as well as their ability to learn nonlin-
ear relationships. Our project applies the use of current ma-
chine learning approaches for source range localization, the
feed-forward neural network (FNN), support vector machine
(SVN) and random forest (RF).

In our work, the well-developed machine learning li-
braries are adopted. TensorFlow is used to implement FFN.
Due to its simple architecture and wide user case [3], it is easy
to use with just modeling the neural network as a graph. In ad-
dition, improved optimization algorithms with better conver-
gence, more robust model with high computational efficiency
give TensorFlow a more obvious advantage. Since Tensor-
Flow version doesn’t include SVM and RF, Scikit-learn is
used to implement SVM, RF and Feature Selection, which
is a simple and efficient tools for data analysis and machine
learning.

2 Source range localization through
machine learning
The dynamics of the ocean has an stochastic influence

between the received pressure phase and amplitude at the
array and the source range. Assuming a deterministic rela-
tionship between ship range and sample covariance matrix,
we preprocess the received pressure and apply it as the in-
put data of the machine learning models. After preprocessing
we assume a deterministic relationship between ship range
and sample covariance matrix, which is be implicit but can be
discovered through machine learning methods. The received
pressure is preprocessed and used as the input of the machine
learning models (Sec. 2.1). The desired output may be ei-
ther discrete (classification) or continuous (regression)(Sec.
2.2). The theory of FNN, SVM, and RF are described in
Secs. 2.3− 2.5.

2.1 Input data preprocessing
The original data we get are samples of complex pres-

sure p(t) the sensor array detects in the time series and the
GPS data(represents a distance, denoted as d(t)) as the label.
To make the processing independent of the complex source
spectra, the received array pressure is transformed to a nor-
malized sample covariance matrix [3].

At first, we average p(t) over Ns snapshots 1.

p(t) =
1

Ns

Ns∑
s=1

p(t+ (s−
⌈
Ns
2

⌉
)ts) (1)

where ts represents the interval of snapshots and 0 lies at the
center of the sequence s −

⌈
Ns

2

⌉
, s = 1, · · · , Ns. Next we

take DFT of p(t) in a snapshot to get complex pressure at
frequency f , denoted by p(f). To reduce the effect of the
source amplitude, p(f) is normalized according to

p̃(f) =
p(f)

‖p(f)‖2
(2)

The normalized sample covariance matrices(SCMS) is
produced according to

C(f) = p̃(f)p̃H(f) (3)

where H denotes conjugate transpose operator. Because
C(f) = CH(f), only the real and imaginary parts of the

1 It’s different from Niu et al’s paper [3] and is inferred from the matlab code.

1

complex valued entries of diagonal and upper triangular ma-
trix in C(f) are used as input. These entries are vectorized to
form the real-valued input x of size L× (L+ 1) to the FNN,
SVM and RF [3].

2.2 Source range mapping
Before implementing the model, we need to do source

range mapping. For the classification problem, the total
source range are segmented into K bins, r1, · · · , rK(rk is a
number, but here it represents the interval [rk−∆r

2 , rk+ ∆r
2]),

of equal width ∆r.
For SVM and RF, denote the label for each input vector

xn as tn. The mapping from original data dn(GPS distance)
to label tn is

tn = rk s.t. |d(n)− rk| ≤
∆r

2
(4)

For FNN, the label is a 1 × K binary vector, tn. The
mapping is

tnk =

{
1 if |d(n)− rk| ≤ ∆r

2
0 otherwise

(5)

For the regression problem, we just use continuous range
variable dn 2 as true source range and target output for all
three models.

2.3 Feed-forward neural networks
The structure of feed-forward neural network (FNN) see

Fig 1. Here, FNN is constructed by three layers((input layer
L1, hidden layer L2 and output layer L3). Assume the input
layer has D units, i.e. D input variables, then the input aj of
the j-th unit in the hidden layer L2 is

aj =

D∑
i=1

w
(1)
ji xi + w

(1)
j0 , j = 1, 2, · · · ,M (6)

where M is the number of units in the hidden layer. Pa-
rameters w(1)

ji , w
(1)
j0 are called weights and bias, respectively

and their linear combinations aj are called activations. In the
hidden layer, activations zj are transformed to output zj using
an activation function f(·).

zj = f(aj) (7)

Here, sigmoid function is chosen, see Fig. 1(b).

f(a) = σ(a) =
1

1 + e−a
(8)

Similarly, the input bk of the k-th unit in the output layer
is

ak =

M∑
j=1

w
(2)
kj zj + w

(2)
k0 , k = 1, 2, · · · ,K (9)

2 we use dn here rather than rn in [3] to avoid aliasing

Figure 1: (a) Diagram of a feed-forward neural network and
(b) Sigmoid function. The figure is from [3].

where w(2)
kj and w(2)

k0 represents the weights and bias.
In the output layer, the softmax function is used as the

activation function. It is a common choice for multi-class
classification problems [1]. Here, it constrains the output
class, yk(x,w), to be the probability that the source is at
range rk [1]:

yk(x,w) =
exp(bk(x,w))
K∑
j=1

bj(x,w)

, k = 1, · · · ,K (10)

where w is set of all weights and bias. yk ≥ 0,
∑
k

yk = 1⇒

yk can be regarded as probabilities.
When training the model, a cross entropy loss En is

used.

En(tn,yn(x,w)) = −
∑
k

tnk ln(ynk) (11)

Average it on N observations,

E(w) = − 1

N

N∑
n=1

K∑
k=1

tnk ln(ynk) (12)

Resulting weights and biases are

ŵ = arg min
w

[
− 1

N

N∑
n=1

K∑
k=1

tnk ln(ynk)

]
(13)

2

When predicting using the trained model, the source
range is decided to be at the most probable range, i.e., the
predicted label t′ for the input data x is

t′k =

{
1 if k = arg max

k
yk(x, ŵ)

0 otherwise
(14)

For the regression case, there is only one unit in the out-
put layer, which represents the continuous label dn. A sum-
of-squares error [1] is minimized instead of Eq. 12

E(w) =
1

2N

N∑
n=1

|yn(xn,w)− dn|2 (15)

where dn is the true source range at sample n. Resulting
weights and biases are

ŵ = arg min
w

[
1

2N

N∑
n=1

|yn(xn,w)− dn|2
]

(16)

When predicting using the trained model, the output of
the unit in the output layer is taken as the source range, i.e.,
the predicted label d′ for the input data x is

d′ = y(x, ŵ) (17)

2.4 Support Vector Machine
For Support Vector Machines(SVM), the input data are

separated into two(or more) classes by defining a separating
hyperplane that maximally separates the classes [3].

See Fig. 2, for linearly separable input data x1, · · · ,xN ,
we seek a hyperplane defined by (w, b)

wTx + b = 0 (18)

For every (w, b), define a margin dM

dM = min
n

|wTxn + b|
‖w‖2

(19)

SVM maximizes the margin while successfully separate
the two classes of input data.

max
w,b

dM

s.t. yn(wTxn + b) ≥ 0, n = 1, · · · , N
(20)

Eq. 20 can be transformed to

min
w,b

1
2w

Tw

s.t. yn(wTxn + b) ≥ 1, n = 1, · · · , N
(21)

If the training set is linearly non-separable, slack vari-
ables ξn are introduced to allow some of the training points
to be misclassified. In this case, the optimization problem
becomes

Figure 2: A linear hyperplane learned by training an SVM in
two dimensions (D = 2). The figure is from [3].

min
w,b

1
2w

Tw

s.t. yn(wTxn + b) ≥ 1− ξn, n = 1, · · · , N
ξn ≥ 0, n = 1, · · · , N
N∑
n=1

ξn ≤ Z

(22)

where Z is a empirical parameter.
For non-linear classification problem, kernel trick is

used. In this study, a radial basis function(RBF) kernel is
used:

K(x,x′) = exp(−γ‖x− x′‖22) (23)

γ is a parameter here set to 1/K, where K is the number of
total classes.

Because SVM model only separate two classes, for the
K-classes case, we train K(K − 1) models on all possible
pairs of classes. The points that are assigned to the same class
most frequently are considered to be in the same class. This
approach is known at the “one-versus-one” scheme [1].

For Support Vector Regression(SVR), a ε−sensitive er-
ror function is minimized

εε(yn − dn) =

{
0, if |yn − dn| < ε
|yn − dn| − ε, otherwise

(24)

where yn is the predicted source range and dn is the true
source range at sample n. In SVR, the support vectors are
points outside the ε region.

2.5 Random forests
The random forest(RF) trains decision tree models on

randomly selected subset of input data and get results by av-
eraging over those models. So random forest is a more robust
generalization of decision tree model.

Consider a decision tree(see Fig. 3) trained on all the
input data. The input data can be partitioned into two regions
by defining a cutoff along the i-th dimension.

3

xn ∈ xleft if xni < c,
xn ∈ xright if xni ≥ c.

(25)

c is the cutoff value and xleft, xright represents the left and
right regions. c is decided by minimizing the cost function
G(c)

G(c) =
nleft
N

H(xleft) +
nright
N

H(xright) (26)

nleft, nright are number of samples in the left and right re-
gion. H(·) is an impurity function.

For the classification problem,

H(xm) =
1

nm

∑
xn∈xm

I(tn, `m)

[
1− 1

nm
I(tn, `m)

]
(27)

where nm is the number of samples in region xm and `m
represents the assigned label for each region, corresponding
to the most common class in the region [2]:

`m = arg max
rk

∑
xn∈xm

I(tn, rk) (28)

I(tn, rk) =

{
1 if tn = rk,
0 otherwise.

(29)

The remaining regions are partitioned iteratively until re-
gions x1, · · · ,xM are defined. In this paper, the number of
regions, M , is determined by the minimum number of points
allowed in a region which is set to 50 in this papre [3]. Fig. 3
shows a decision tree with M = 3 and cutoff values 1.9 and
4.6.

To conclude, in the training process of a decision tree,
we partition the region xm continuously, which is assigned a
label `m each and finally get a series of cutoff values c, which
is the parameters of the decision tree model.

When predicting using the trained decision tree, test in-
put data x is assigned to a region xm according to those cutoff
values. Then the predicted label f̂ tree(x) for it it is just the
label assigned to the region.

f̂ tree(x) = `m (30)

For RF regression, training and testing are the same as
in the classification problem except that we use the mean of
the true class for all points in the region as the assigned label
for the region and the mean squared error 3 as the impurity
function.

H(xm) =
1

nm

∑
xn∈xm

(dn − `m)2 (31)

`m =
1

nm

∑
xn∈xm

dn (32)

where dn is the true source range at sample n.

3 The formula here is different from the one in [3] with a factor 1
nm

, which is
necessary by contrast to eq. 26.

Figure 3: Decision tree classifier and corresponding rectan-
gular regions shown for two–dimensional data with K = 2
classes (D = 2,M = 3) and 1000 training points. The figure
is from [3].

As the decision tree may overfit the data, we use a more
robust model, random forest. We draw B subset of data uni-
formly at random from the full training set and for each draw
a decision tree is fitted to the subset of data.

When predicting using the trained model, for the classi-
fication problem, test data x, is assigned to its most frequent
class among all draws:

f̂(x) = arg max
rk

B∑
b=1

I(f̂ tree,b(x), rk) (33)

where f̂ tree,b(x) is the class assigned to x in the b-th tree.
While for the regression problem, the predicted source

range of test data x is the average of labels produced in all
draws:

f̂(x) =
1

B

B∑
b=1

f̂ tree,b(x) (34)

where f̂ tree,b(x) is the source range assigned to x in the b-th
tree.

2.6 Source localization algorithm

Algorithm to solve localization problem:
1.Data preprocessing. According to the type of prob-

lem(classification or regression) and type of model(FNN,

4

SVM or RF), preprocess the input data and source range ac-
cording to Sec. 2.1, 2.2.

2.Train the model.
3.Use the trained model to predict the source range for

the unlabeled test data. The resulting output is mapped back
to range, and the prediction error is reported by the mean ab-
solute percentage error (see Sec).

3 EXPERIMENTAL RESULTS

3.1 Introduction to the experiment

The dataset we used contains acoustic data with time se-
ries and the location data GPS range. According to the pre-
vious section, we derived the input SCMs from the acoustic
data as input for the machine learning algorithms. The SCM
for a n-elements vertical array should be a n × n symmet-
ric matrix with both real and imaginary parts. Then, we can
convert this SCM into a n × (n + 1) dimensional data for
a single frequency. For multi-frequency data, the dimension
will be extended to k × n × (n + 1), where k is the number
of frequencies.

In classification problem, we assigned the each location
in GPS range data to a specific class. For regression problem,
we use the original GPS location data. We were provided with
5 datasets. We mainly used dataset01 and also used other 4
datasets to represents the generalization of the methods.

To evaluate the prediction results, we used the mean ab-
solute percentage error (MAPE) which is defined as

EMAPE = 100
N

N∑
i=1

|Rpi
−Rgi

Rgi
|,

where theRpi is the prediction range and theRgi is orig-
inal range data. We can see that the MMAPE evaluate the ra-
tio of absolute difference between prediction and truth range
to the truth range. Therefore, it is a proper evaluation method
for continuous values.

In this section, we used FNN, SVM and random forests
methods to do the same source localization task, compared
the performance of each method for this machine learning
task, tried to model the problem as both classification and
regression problem, tried to add noises to the original acoustic
data and represented some character of the FNN.

In the next section, we dived into more about feed for-
ward neural network.

3.2 FNN

In figure 4, we can see that the error rate on training set
and test set are decreasing through epochs but also has small
vibrations.

As described in the last section, the output of FNN
is a prediction of probability distribution over all the given
classes. In the figure 5, the prediction result of the first epoch
is rather noisy and the "spike" of the maximum argument is
wide, which means the neural network is unsure what the
result is. In the following epochs, the neural network keep
learning from the training data and continuously perfect the

Figure 4: FNN learning curve

Figure 5: Output probability distribution of truth label and
predictions after epochs (1, 50, 100)

5

performance so we can find a thinner "spike" and less prob-
ability on other classes. This illustrates that the training pro-
cess keeps improving the FNN.

We did not find too much overfit in this original dataset.
Generally, the MAPE and accuracy on test set and training
set decrease together and both have very low MAPE. Thus,
we can hypotheses that the datasets provided have rather low
level of noises. Therefore, although we did not know the spe-
cific SNR of the original data, we have reasons to add noise
(very small random number) to the dataset, get the leaning
curve and analyze the noise and overfit. For noisy dataset,
we should carefully control the learning process of FNN by
adding more regularization to parameters, trying more times
and keeping track of the learning curve. Then, we got the
result in figure 6.

Figure 6: FNN learning curve with noisy dataset

For this "dirty" dataset, the FNN classifier performs
great for training set but generates poor predictions on test
set, which indicates overfitting. The noise added to the orig-
inal dataset makes it harder for classifiers catch the relation-
ship between input data and labels.

3.3 Single frequency SCM inputs and multi-
frequency input

For single frequency SCM data, they are extracted from
the original acoustic data at 550Hz and 950Hz separately. The
multi-frequency SCM data are formed by concatenating mul-
tiple single-frequency SCM data into one vector. Therefore,
the input data is much more than the single frequency SCMs.
To verify whether more multi-frequency input provides more
useful information and increase the performance. Here, we
compared the performance from 2 datasets and used 3 differ-
ent frequencies.

The FNN range prediction results for single frequency
SCM data (550Hz and 950Hz separately) are shown in the
first 2 rows in the figure 7 and the results for multi-frequency
SCM data (300-950Hz with 10Hz increment, i.e. 66 frequen-
cies) are given in the last row. Here, we use MAPE to eval-
uate the results. The MAPE for 550Hz single frequency data
are 56% and 10%, for 950Hz single frequency data are 43%

Figure 7: Range predictions on the test set of dataset01 and
dataset02. Figures at first row 550Hz, Second row 950Hz,
Third row 300-950Hz with 10Hz increment, i.e. 66 frequen-
cies. The red line is the ground truth data and the blue dots
are predictions

and 9%, for multi-frequency data are 19% and 4%. All those
results are also given in the Table 4.

Compared to the single frequency SCMs results, the
multi-frequency MAPE results are much lower and the pre-
diction is much more accurate. Thus, the multi-frequency
SCM input can provide more useful information and improve
the performance of source localization classification model
dramatically.

3.4 Support vector machine and random
forests

In this section, we used SVM with linear, Gaussian,
polynomial kernel and random forests algorithms to solve this
source localization problem. SVM and random forests are
very popular and powerful machine learning methods. Now,
we compared their performance with the forward neural net-
work.

Figure 8 shows range predictions on test set by SVM
with linear kernel, Gaussian radial basis function kernel, 2-
degree polynomial kernel and the results by random forests.
The MAPE statistic of predictions is shown in Part II of Ta-
ble 4. From the predictions MAPE results, we can see that
SVM with linear kernel got a very good result. However,
SVM using Gaussian kernel and polynomial kernel cannot
predict well at right part of the dataset. The reason is that we
have less training samples at the right part and the SVM us-
ing Gaussian kernel and polynomial kernel are vulnerable to
unbalanced data and prone to overfit but the linear SVM only
find linear boundaries for each classes and can catch the trend
in the training data successfully. Moreover, random forests
do not performs well for this classification task because the
size of training set is too small but the number of classes is
rather big. This situation may be hard for random forests to

6

(a) SVMlinearkernel (b) SVMGaussiankernel

(c) SVMpolynomialkernel (d) randomforests

Figure 8: The classification results from SVM using different
kernels and random forests methods

solve. Compare with the MAPE with FNN, the FNN is more
robust than SVM using Gaussian and polynomial kernel and
the FNNs with more than 2 layers are better than linear SVM
because FNN is more flexible and SVM suffers from the lim-
itation of linear boundaries.

3.5 Source localization as a regression prob-
lem

In this section, we solve the source localization prob-
lem as a regression problem so the output is not classes but a
continuous range. This time, the input training data and test
data is same with the previous classification problem but the
output y is GPS range data directly. Then we used FNN as
regressor and got the result in figure 9.

The detailed prediction statistics of MAPE are also given
in the table 4 part III. The MAPEs on test set for each regres-
sor are 38%, 36% and 36%. Then we also used SVM and
random forests to solve this regression problem and results
are shown in figure 10.

Compare with classifiers, the FNN, SVM and RF de-
grade significantly for solving regression tasks. Thus, it is
more proper to model the source localization as a classifica-
tion problem.

4 Discussion on FNN

In the project, we test the performance of Forward-Feed
Neural Network from different angles, such as number of
snapshots, number of hidden layers and number of neurons
for each layer. These experiments can give us some instruc-
tions of tunning hyperparameters of FNN model and deeper
insight of this source localization problem.

Figure 9: Source localization as a regression problem. Range
prediction on test set of dataset01 by FNN for 300-950 Hz
with 10 Hz increment, i.e. 66 frequencies. From top to bot-
tom, the first figure is the result using 1 hidden layer FNN, the
second one using 2 hidden layers FNN, the third one using 3
hidden layers. Each hidden layer consists of 512 neurons.

Figure 10: Source localization as a regression problem.
Range prediction on test set of dataset01 by SVM and ran-
dom forest for 300-950 Hz with 10 Hz increment, i.e. 66
frequencies. (a) SVM for regression, (b) RF for regression.

7

4.1 Number of snapshots

Then different number of snapshots have been tested in
the project, Figure 11 shows the results with different number
of snapshots of the same input data. When snapshots equals
to 1, MAPE equals to 5.74293%. When snapshots equals
to 20, MAPE equals to 16.826350% MAPE increases as the
number of snapshots increases. The reason is because More
snapshots average the noises in the data, but introduce mis-
match if the source is moving or the environment is evolving.
The results are shown in Table 1.

(a) snap = 1 (b) snap = 5

(c) snap = 10 (d) snap = 20

Figure 11: number of snapshots and MAPE

number of snap shots MAPE(%)
1 5.74293
5 8.761923
10 10.01532
20 16.826350

Table 1: number of snapshots and MAPE.

From the results on test set, we can see that more snap-
shots introduce higher error, which implies for this data set
with rather high SNR, the NN can handle the noises but suf-
fers more from the bias caused by snapshots. However, If the
dataset has more noises, more snapshots may help to reduce
the effect of noises by averaging the data.

4.2 Number of layers

In addition,we test different number of layers to see how
FNN performs. The number of hidden layers also affects
FNN prediction performance.In Figure 12, the three plots
shown the result of the FNN with 1, 2 and 3 layers with
the data 300-950 Hz with 10 Hz increment. The MAPE are
11.08%, 7.64% and 7.03% corresponding to the number of
hidden layers 1, 2 and 3. The results show that the MAPE

decreases with the increase of number of hidden layers.

(a) layer = 1 (b) layer = 2

(c) layer = 3

Figure 12: number of layer and MAPE

number of hidden layer MAPE(%)
1 11.083
2 7.639
3 7.0319

Table 2: number of hidden layers and MAPE.

4.3 Number of Neurons
For each layer, different number of neurons for each

layer have also been tested. Hidden layers plays a vital role
in the performance of FNN. Thus, deciding the number of
neurons in each hidden layer is significant issue while con-
sidering any complex problem. In this section, we tried and
tested 64,128,256,512, 1024 number of neurons with one hid-
den layer forward neural network model to compare. In Fig-
ure 13, MAPE decreases as the number of neurons increases.

number of neurons MAPE(%)
64 15.1452
128 13.2979
256 11.0830
512 9.81127
1024 8.7899

Table 3: number of neurons and MAPE.

We also tried to use 2 hidden layer FNN to test and all
the MAPE statistics are shown in table 4 part VI and VII.

8

(a) neuron = 64 (b) neuron = 128

(c) neuron = 256 (d) neuron = 512

(e) neuron = 1024

Figure 13: number of neurons for each layer and MAPE (1
hidden layer FNN)

4.4 Range resolution

In this section, we decrease the original resolution by 2
times, 5 times and 10 times. As before, there are same num-
ber of input data, same number of neurons at input layer, 5
snapshots but different number neurons at output layer ac-
cording to the number of labels which is related to the value
of range and range resolution. Another difference is that, the
number of samples for each classes is enlarged by assigning
samples to less classes. The results are shown in figure 14.

(a) 2X (b) 5X

(c) 10X

Figure 14: Range predictions on dataset01 with 300-950 Hz
input with different range resolution (2X, 5X, 10X) and 5
snapshots.

The MAPE statistics are provided in the table 4 part IV.

We can see that FNN performs better for 2X resolution test
set, which implies that FNN can predict better with more sam-
ples for each classes. However, for other dataset, the biases
eliminate the advantages and get higher MAPE.

5 Conclusion
This paper referenced the paper "Source localization in

an ocean waveguide using supervised machine learning" and
represented how to use machine learning methods to solve
physics problems. The classic solution for those problems
need complex physics and mathematic analysis and calcula-
tion. However, this paper introduced a supervised machine
learning algorithm using some modern machine learning li-
braries such as Scikit-learn and Tensorflow, to solve acous-
tic source localization problem. Normalized SCMs are used
as input vectors to the models. We mainly used FNN clas-
sifier model to solve this problem and got a very good per-
formance. We also used SVM and random forests classifiers
and regressors to compare with the model. The result shows
that multi-frequency input helps the model to performs bet-
ter. In the comparison between classifiers and regressors, it is
more proper to model source localization as a classification
problem rather than regression. Moreover, the FNN models
have advantages of robustness and flexibility compared to the
SVM and RF methods.

In the section 4, we concentrated on FNN and did a se-
ries of experiments on number of layers, number of hidden
neurons, resolutions and number of snapshots. By analyzing
the changes of performance, we got a deeper insight of ap-
plication of feed-forward neural network used to solve source
localization problem .

References
[1] C. M. Bishop. Pattern Recognition and Machine Learn-

ing. Springer, 2006.

[2] F. Pedregosa et al. Scikit-learn: Machine learning in
python. J. Mach. Learn, 12:2825–2830, 2011.

[3] Haiqiang Niu, Emma Reeves, and Peter Gerstoft. Source
localization in an ocean waveguide using supervised ma-
chine learning. arXiv, June 2017.

9

Table 4: Experiment results
Part Frequency No. of No. of No. of No. of MAPE

hidden hidden output snapshots
(Hz) layers neurons neurons (%)

I

550 1 256 144 10 95.152
950 1 256 144 10 60.723

300-950, ∆f = 10 1 256 144 10 11.083

II 300-950, ∆f = 10 SVM for classification 9.952
300-950, ∆f = 10 RF for classification 50.508

III

300-950, ∆f = 10 1 256 1 10 42.926
(FNN Regression) 2 256 1 10 38.004

3 256 1 10 36.340
300-950, ∆f = 10 SVM for regression 60.912
300-950, ∆f = 10 RF for regression 91.134

IV 300-950, ∆f = 10

1 256 72 5 9.388
1 256 29 5 25.460
1 256 15 5 37.941

V 300-950, ∆f = 10
1 256 144 1 5.743
1 256 144 5 8.762
1 256 144 20 16.826

VI 300-950, ∆f = 10

1 64 144 10 15.145
1 128 144 10 13.298
1 256 144 10 11.083
1 512 144 10 9.811
1 1024 144 10 8.790

VII 300-950, ∆f = 10

2 64 144 10 8.191
2 128 144 10 7.439
2 256 144 10 7.084
2 512 144 10 6.680

10

	Introduction
	Source range localization through machine learning
	Input data preprocessing
	Source range mapping
	Feed-forward neural networks
	Support Vector Machine
	Random forests
	Source localization algorithm

	EXPERIMENTAL RESULTS
	Introduction to the experiment
	FNN
	Single frequency SCM inputs and multi-frequency input
	Support vector machine and random forests
	Source localization as a regression problem

	Discussion on FNN
	Number of snapshots
	Number of layers
	Number of Neurons
	Range resolution

	Conclusion

