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Abstract

Acoustic source localization is classically addressed
with Matched-field processing (MFP). However, since MFP
is necessarily based on accurately modeled ocean environ-
ment, it may not be well adapted as realistic ocean envi-
ronment is far more complex and unpredictable. In this pa-
per, the potential of applying machine learning techniques
is explored regarding the source localization with unstable
and fluctuating ocean acoustic signals. The sound pressure
is preprocessed to a normalized sample covariance matrix
as input data. Machine learning methods, such as feed-
forward neural network (FNN), support vector machines
(SVM) and random forests (RF), are proposed to be exper-
imented. Both classification and regression are performed
to address the range estimation problem. The performance
for all methods is evaluated with mean absolute percentage
error (MAPE), and the lowest MAPE of 2.31 % is obtained
from SVM.

1. Introduction
Accordingly, Matched-field processing (MFP) was

mostly used in solving acoustic source localization prob-
lems because it can localize the range, depth, and bearing of
a point source from the signal field propagating in an acous-
tic waveguide. However, its main drawback is that MFP
merely perform well under the circumstances of accurately
modeled environments. Thus, introducing machine learning
methods to approach this problem could potentially elim-
inate the preexisting problems. During the past decades,
numerous researches have been conducted using machine
learning techniques, and fields such as image processing [1]
and natural language processing [2] are famously known to
have benefited from applying these ground breaking tech-
niques.

From the records, many of the acoustic source localiza-
tion studies were based on neural networks, such as range
and depth discrimination simulation with neural network
[3], and classification of seafloor [4].

This paper will focus on applying various machine learn-
ing methods, such as Support vector machines, Random for-
est, and Feed-forward neural network, for source range lo-
calization. In particular, data preprocessing, source range
mapping and Compact PCA are discussed in Sec. 2. The-
oretical basis of the machine learning algorithms are pro-
vided in Sec. 3. The results are demonstrated in Sec. 4. In
the end, conclusion is given in Sec. 5.

2. Data pre-processing
The complex environment of the ocean causes a stochas-

tic relationship between pressure phase and amplitude re-
ceived at sensor array and source range. By preprocessing,
relationship between ship range and sample convariance is
assumed to be determined. The processed data is used as
input to machine learning algorithms such as FNN, SVMs
and RF.

2.1. CSDM matrix

Since the processing need to be independent of the com-
plex source spectra, pressure received at sensor array need
to be transformed to a normalized sample covariance ma-
trix.

DFT of input pressure obtained at frequency f and at L
sensors is denoted as p(f) = [p1(f), ..., pL(f)]

T . And the
sound pressure model is denoted as

p(f) = S(f)g(f, r) + ε (1)

where S(f) is the source term, g is Green’s function and ε
is the noise.

Complex pressure is normalized by

p̃(f) =
p(f)

||p(f)||2
(2)

An averaging over Ns sanpshots forms the conjugate
symmetric matrix of normalized sample covariance matrces
(SCMs).

C(f) =
1

Ns

Ns∑
s=1

p̃s(f)p̃s
H(f) (3)
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where H denotes conjugate transpose operator, p̃s denotes
the sound pressure over the sth snapshot.

The preprocessing makes sure that Green’s functionis
used for localization. In consideration of computing load
and speed, only diagnal and upper triangle matrix is used as
input to machine learning algorithms.

2.2. Source range mapping

Since source ranges are used as targets in supervised ma-
chine learning, they are discretized into K equal bins pro-
viding label tn for each input vector xn.These targets rep-
resents true range classes. And for FNN, targets are further-
more generated by

tnk =

{
1, if |tn − rk| ≤ ∆r

2
0, otherwise

(4)

representing expected output probabilities of FNN.
Lables are used along with training sets to build models of
FNN, SVMs and RF.

2.3. Compact PCA

To solve the problem of large data capacity and improve
computing speed, principle component analysis (PCA) is
introduced to this project. The idea of PCA was proposed
by Karl Pearson (1901) and Harold Hotelling (1933). The
aim of PCA is to ”turn a set of possibly correlated variables
into a smaller set of uncorrelated variables.”[5]In general,
high dimensional data sets contains correlated variables
making most dimensions are meaningless. PCA method
can find directions of dataset with greatest variance which
is also called principle components.

The method can be illustrated as following:
Assuming dataset X = x1, x2, ..., xn with xi ∈ Rd.
1. Computing mean value

µ =
1

n

n∑
i=1

xi (5)

2. Computing covariance matrix

S =
1

n

n∑
i=1

(xi − µ)(xi − µ)T (6)

3. Computing eigenvalues and eigenvectors

Svi = λi

4. Sorting eigenvalues in descending order,the largest k
eigenvalues are k principle components.
Principles of observed vector x is given by

y =WT (x− µ) (8)

And PCA basis are reconstructed by

x =Wy + µ (9)

Compact PCA method is mostly used when sample
amount is less than feature amount. Since PCA forms ma-
trix of data with most variance, they carry most of use-
ful information of the dataset. Thus, using a few princi-
ple components can still estimate distribution of the whole
dataset and reduction in dimension greatly improves com-
puting speed.

3. Machine learning algorithms
In this paper, three commonly used machine learning al-

gorithms are compared with the same dataset. Consider the
localization problem as a multi-class classification problem,
all three method of SVMs, RF and FNN are typical solving
algorithms. The following part is going to introduce princi-
ples of these three algorithms.

3.1. Support Vector Machines (SVMs)

Support vector machines are common binary classifiers
used in supervised machine learning. The algorithm is
based on SV learning which is a method to find near optimal
of functions without knowing its statistical distribution[6].
This method enables predictions only depend on train-
ing data. Since support vector machines are binary non-

Figure 1: Support Vector Machines (SVMs)[7]

probability classifiers, the idea of SVMs is to find a sep-
arating hyperplane between two classes as illustrated in
Fg.1. Assuming there exists such a separating hyperplane
expressed as

y = wT + b (10)

with classes labeled by +1 for y ≥ 0 and −1 for y < 0.
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The distance between two classes can be represented by

γ =
|wTx+ b|
||w||

(11)

Given that the aim of SVMs is to find the separating hy-
perplane with largest margin, the optimal solution for SVM
is

argmax
γ

2
(12)

Which equals to

argmin
||w||2

2
(13)

Here the hyperplane is assumed to be a canonical hyper-
plane with property

tn · (wTx+ b) ≥ 1 (14)

where tn is the label corresponding to each data point. This
is also a constraint condition for the optimization problem.

Since the training data is not always linear separable,
other cases need to be taken into consideration. For insepa-
rable data, slack variable i is added to the objective function
in order to allow some misclassifications. And the new op-
timization problem can be expressed as

argmin
||w||2

2
+ C

∑
ξi (15)

And new constraint condition becomes

tn · (wTx+ b) ≥ 1− ξi (16)

In many cases, classes are separated with nonlinear
boundary. Then kernel trick is needed to convert data
into high dimension feature spaces to find their separating
hyperplane. Assuming the mapping function form data
space to feature space is φ(x) and by using kernel trick we
have K(xi, xj) = φ(xi)φ(xj).

Following are some common kernels [8]:

Linear kernel:K(xi, xj) = xi · xj

Radial based function kernel: K(xi, xj) =

exp(
|xi−xj |2

2σ2 )

Polynomial kernel: K(xi, xj) = (xi · xj + 1)d

Sigmoid kernel: K(xi, xj) = tanh(µxi · xj + ν)

In SVMs algorithm, only data points at boundary have
influence on the hyperplane and for most data points that are
properly classified, they have such property that tn ·(wTx+
b) = 0. Thus, only support vectors have been taken into
consideration in computation which greatly reduce comput-
ing complexity.

3.2. Random forest

Random forest is a commonly used methodology in su-
pervised machine learning, mainly to find prediction rules
and access and rank variables with respect to their ability to
predict the response[9]. Random forest is a set of decision
trees[10] as shown in Fg.2.

Figure 2: Ramdom Forest (RF)[11]

In classification problems, the aim of RF is to find a
proper cutoff value that minimize the cost function G.

c∗ = argminG(c) (17)

where G(c) = nleft
N H(xleft) +

nright
N H(xright), H(·)

function is based on problem that RF is applied to and N is
the total number of points.

Assuming X = [x1, x2, , xn] is the training set for RF
algorithm, then input vector for each decision tree is ran-
domly generated from X[12]. For each tree learner, each in-
ner node corresponds to a variables in the input vector. Each
tree is fit to their responses corresponding to their training
sets, and the output of RF is an average of outputs of all
trees.

f̂ =
1

B

∑
1

Bfb(x
′) (18)

where B is the number of decision trees, fb is the function
of trees trained by set Xb and label Yb that are randomly
chosen from the whole training set, x’ is test set or data that
need its label to be predicted.

The measurement in this project is impurity function

H(xm) =
1

nm

∑
xn∈Xm

I(tn, lm)[1− 1

nm
I(tn, lm)] (19)

Where lm is assigned label for each region and expressed as

lm = argmax
∑

xn∈Xm

I(tn, rk) (20)
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where rk is the source range classes and tn is the label cor-
responding to point in region m, I(·) is the indicator func-
tion with

I(u, v) =

{
0, iff = 0
1,otherwise (21)

Random forest algorithm decreases variance of model
without increasing bias by bagging multiple trees and av-
eraging their decisions[13]. Given that single decision tree
is highly sensitive to noise, RF algorithm trained different
trees with de-correlated training set and averaging their re-
sults.

3.3. FeedForward neural network

Feedforward neural network is kind of artificial neural
netwrok with no circles in connection between units. Data
flow passes through the network in one direction, from input
layer to hidden layer, then to output layer[14] as illustrated
in Fg.3. Thus, Feedforward neural network is the simplest
design of artificial neural network and was first raised. Input

Figure 3: Feedforward Neural Networks (FNN)[15]

layer consists of multiple receptors, with each receptor for
one feature. The simplest FNN has one hidden layer and
is thus called single-perceptron. Hidden layer is a set of
neurons, each neuron assigns inputs with respective weights
and bias. Weighted inputs are accumulated at each neuron
as

aj =

D∑
1

w
(1)
ji + b

(1)
j (22)

where D is the number of inputs.
Then a non-linear activation function is applied to these

sums so that linear combinations of inputs are transformed
to non-linear combinations.

Some commonly used activation functions are listed be-
low: Log-sigmoid transfer function:

f(n) =
1

1 + exp(−n)
(23)

Hyperbolic tangent sigmoid transfer function:

f(n) =
2

1 + exp(−2n)
− 1 (24)

(https://www.mathworks.com/help/nnet/
ug/multilayer-neural-network-architecture.
html)

When hidden layer is not a single layer, the network is
called multi-perceptron. The previous layer’s output is input
of the latter layer. Multiple hidden layers provide complex
relationship between input and output of the network. In
most cases, sigmoid funciton is used for pattern recognition
and linear functions are used for function fitting.

In this project, hidden layer activation function is chosen
as:

f(n) =
1

1 + e−n
(25)

Output layber combines outputs of hidden layer again to
formulate prediction outputs with activation function:

yk(x,w) =
exp(ak(x,w)∑K
j=1(aj(x,w)

(26)

which is commonly used in multi-class classification
problems[12].

Since FNN is a typical kind of supervised machine learn-
ing method, training process is required to adjust weights
and bias for inputs. For big data with a large amount for
each data set, high performance devices are needed. To re-
duce computing load, this project takes advantage of the
idea of random forest that generating subset of training set
as input of FNN and iterate the process for multiple times to
make the model converge to an optimal solution. This trick
reduce computing time without losing accuracy.

The aim of training process is to minimize dissimilarity
between predicting distribution and target distribution (la-
bels).

minDKL(tn||y(xn, w)) =
∑
k

tnk[ln tnk−ln ynk] (27)

where ynk = yk(xn, w) and tnk is the label.
The optimization problem can be equivalently expressed

as minimizing cross entropy function:

En(tn, y(xn, w)) = −
∑
k

tnk ln ynk (28)

Cross entropy can be used as a measurement of FNN
performance. Since FNN takes advantage of multiple neu-
rons in hidden layers and activation functions, it has better
performance on most non-linear problems than traditional
methods.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
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(p) (q) (r) (s) (t)

Figure 4: Comparison of three machine learning algorithms. (a)-(e) Dataset 01-05, The blue arrow is the moving direction
of the ship. (f)-(j) SVM, (k)-(o) RF, (p)-(t) FNN, the blue circle and red line represents the predictions and the GPS ranges
respectively.

4. Results
4.1. Dataset Selection

Firstly, the three algorithms are used on five different
datasets Fg.4. And mean absolute percentage error(MAPE)
is used to evaluate their performance. The formula of
MAPE is shown below.[12]

EMAPE =
100

N

N∑
i=1

|Rpi −Rgi
Rgi

| (29)

where Rpi and Rgi are the predicted range and the ground
truth range, respectively. MAPE is preferred over accuracy
as an error measure because it accounts for the magnitude
of error in faulty range estimates as well as the requency
of correct estimates. MAPE is known to be an asymmetric
error measure but is adequate for the small range of outputs
considered.

According to the Fg.5, we can see that all three algo-
rithms have good predictions on five datasets. They have
worse predictions on dataset05 and better predictions on

dataset03 and 04. So, in the next parts of this section,
dataset04 is used.

Figure 5: MAPE of three machine learning algorithms for
the five Datasets
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4.2. Determine Parameters of Three Algorithm

4.2.1 Kernels for SVM

There are four frequently used kernels: linear, polynomial,
radial basis function(RBF) and sigmoid kernels. Penalty
parameter(C) is the most important one which determines
the performance of the SVMs. Gamma(γ) is another im-
portant parameter which effects the performance of polyno-
mial, RBF and sigmoid kernel SVMs. In this evaluation, C
is set to 10 and γ is set to 0.2. In Fg. 6, four kernels all have
very good prediction and RBF has lowest MAPE.

(a) (b)

(c) (d)

Figure 6: Range predictions on test Dataset04 by SVM with
different kernels: (a) linear(MAPE=2.84%), (b) Polyno-
mial(MAPE=2.48%), (c) RBF(MAPE=2.31%) and (d) sig-
moid(MAPE=3.62%).

(a) (b)

(c)

Figure 7: Range predictions on test Dataset04 by RF with
different number of decision trees: (a) 10(MAPE=2.88%),
(b) 100(2.58%) and (c) 1000(2.39%).

(a) (b)

(c)

Figure 8: Range predictions on test Dataset04 by FNN with
different number of hidden units: (a) 10(MAPE=13.82%),
(b) 50(3.83%) and (c) 100(3.41%).

4.2.2 Number of Decision Trees in RF

The number of decision trees is built before taking the max-
imum voting or averages of predictions. Higher number of
decision trees provides better performance but makes the
code slower. Normally, as high value as the processor can
handle will be chosen because this makes the predictions
stronger and more stable.

In this paper, 10, 100 and 1000 decision trees are em-
ployed to compare their performance because the code get-
ting very slow when the number of decision trees is higher
than 10000.

4.2.3 Number of Hidden Units in FNN

In this paper, only one hidden layer is used. So Deciding
the number of neurons in the hidden layer is a very impor-
tant part of deciding the overall neural network architecture.
Though the layer do not directly interact with the external
environment, it has a tremendous influence on the final out-
put. Fg.8 shows the predictions on dataset04 by FNN with
different number of hidden units.

Using too few neurons in the hidden layer will result
in something called underfitting. Underfitting occurs when
there are too few neurons in the hidden layer to adequately
detect the signals in a complicated data set.

Using too many neurons in the hidden layer can result in
problem, too. First, too many neurons in the hidden layer
may result in overfitting. Overfitting occurs when the neural
network has so much information processing capacity that
the limited amount of information contained in the training
set is not enough to train all of the neurons in the hidden
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layer.
According to the three comparisons. The RBF kernel for

SVM, 1000 decision trees for RF and 100 hidden units for
FNN are chosen for the next part of this section.

4.3. Prediction Performance with different SNRs

The prediction performance is examined for four SNRs(-
10, -5, 0, 5dB) with three different algorithms. Fg. 9, 10 and
11 compare the range predictions by SVM, RF and FNN

It’s reasonable that the MAPE decreases when the SNR
getting higher. And the SVM and RF have better prediction
performance than RF according to the MAPE shown in Fg.
9, 10 and 11.

(a) (b)

(c) (d)

Figure 9: Range predictions by SVM on test Dataset04 with
SNR of: (a) -10(MAPE=3.22%), (b) -5(MAPE=2.67%), (c)
0(MAPE=2.63%) and (d) 5(MAPE=2.31%) dB

(a) (b)

(c) (d)

Figure 10: Range predictions by RF on test Dataset04 with
SNR of: (a) -10(3.77%), (b) -5(2.81%), (c) 0(2.67%) and
(d) 5(2.46%) dB

(a) (b)

(c) (d)

Figure 11: Range predictions by FNN on test Dataset04
with SNR of: (a) -10(7.93%), (b) -5(5.40%), (c) 0(3.85%)
and (d) 5(3.28%) dB

4.4. Single Frequency SCM inputs for Three Algo-
rithms

The input SCM is format at 585 Hz. It is first used to
train the three algorithms separately. The RBF kernel SVM
range prediction results are given in Fg.12 (a)(b); the RF
range prediction results are given in Fg.12 (c)(d) and the
FNN range prediction results are given in Fg.12 (e)(f).

MAPE is used to quantify the prediction performance,
too. The MAPE statistics of the SVM is 9.26% at 585 Hz.
The MAPE statistics of the RF is 10.55% at 585 Hz. The
MAPE statistics of the FNN is 11.12% at 585 Hz.

5. Conclusion
In this paper, conventional acoustic source localization

problem is addressed as a supervised learning problem.
By applying several machine learning techniques, such as
FNN, SVM and RF, fluctuating acoustic signals collected in
unstable and complicated ocean environments are fed into
each classifier which in turn produces prediction with desir-
able accuracy.

The results indicate that FNN performs much better for
SNR above 0dB than for lower SNR datasets, while the
other two algorithms tend to be more stable against vari-
ation in SNR. In view of datasets with high SNR, SVM
and RF provide more accurate predictions with respect to
MAPE.

In comparison among frequencies, single frequency data
tend to be more stochastic in predictions. While multi-
frequency data gives prediction source range with less
MAPE. In conclusion, machine learning methods are
proved to be a strong candidate in acoustic source local-
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(a) (b)

(c) (d)

(e) (f)

Figure 12: Range predictions on test Dataset04 by
SVM(a,b), RF(c,d) and FNN(e,f). (a)(c)(e) 585Hz, (b)(d)(f)
305-711Hz

ization problems due to its excellence in handling data col-
lected from unknown environments and robustness in deal-
ing with various types of models.
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