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Predicting Coral Colony Fate with Random Forest 

Summary 

Coral reef change rapidly over time. Within a single year, there are multiple transitions for a 
single colony between growth and shrinkage that eventually lead to its survival or death. To date, 
there is a substantial amount of literature attempting to reason the causes for changing coral fate 
and with different approaches. One approach to monitor this change over time is large-area 
imagery. Preservation of the coral reef in a high-resolution 3D model allows analyzing data in 
time series on a large scale (Dornelas, 2016). In this novel and exploratory study, the use of 
random forest, an ensemble machine learning method, is combined with large-area imagery in 
order to predict how a coral colony’s health will be in the future. The aim is to predict, given a 
colony is alive the next year, will it: 1) Grow or 2) Shrink? The study finds that random forest is 
an adequate modelling technique to discover trends, but much of the predictions are biased 
towards Growth because it has higher frequencies. The major variables in predicting coral colony 
fate are typically measurements of the colony in question, such as its area, perimeter, and species 
as opposed to how many neighbors it encounters.  

 

Introduction 

Coral reefs are a constantly changing environment. At its lowest level, coral reefs are composed 
of thousands of coral colonies, colonial organisms that maintain numerous polyps within its 
skeletal structure. These ecosystem engineers are responsible for creating and significantly 
modifying the area around them. Not only are they a source of habitat for benthic fauna, they 
provide protection from wave motion and food as well as nitrogen fixing. As the individual coral 
colony develops and seeks to grow and survive, it affects the surrounding colonies and their 
ability to survive. This will determine whether it will live or die. Through the life of a coral 
colony, if a single polyp or living tissue dies this does not mean the entire coral colony dies. This 
only indicates the colony has shrunk. Fortunately, coral colonies can clone polyps and build its 
colony by creating more skeletal structure, which provides a basis for growth. These two 
outcomes have many influences, which are still ambiguous. One potential influence of coral fate 
lies with the biology of corals. Since they are sessile organisms, they are always in the presence 
of their immediate neighbors and effects in the surrounding environment. The effect of coral 
competition has a detrimental condition on the corals interacting. While hard coral competition 
may not be a cause for death, it does have a negative effect on growth rates and thus, the ability 
to reproduce and sustain health in the future (Lang, 1973; Tanner, 1996). 

Numerous studies have attempted to find the combination of factors responsible for coral colony 
fate but lack the means to study phenomena across sites and in large-scale. Classic methods 



include the basic 1 meter by 1 meter quadrat, supplemented by underwater cameras to grasp an 
idea of the health of coral reefs. The lacking qualities of this method is that is does not capture 
large-scale effects and requires an extraordinary amount of effort to generate a large amount of 
data. It is also improbable that it captures the information about large corals and their neighbors. 
An improvement upon this method is the large-scale image. With relatively cheap cameras such 
as the go-pro, divers can capture thousands of images of the benthic floor that can then be 
stitched together using identical features that overlap in the photos to create a 3D model 
(Delparte et al., 2015; Guo et al., 2016). The algorithm for creating these models uses cues from 
the pictures such as shadows and contrasting objects (think pink coral colony against green 
algae) to create a 3 dimensional representation of the coral reef. An image is taken from a 
particular angle of the model, preferably an aerial view that is able to preserve the entire model 
and high enough that features are relatively undistorted, which is termed an orthoprojection 
(Figure 1). Repeat for enough years and sites and we have time series across multiple study sites 
and reefs.  

 

	

Figure	1:	Orthoprojection	(100m2)	–	Palmyra	FR3	2013 



 

 

After processing the data from the orthoprojections, random forest will be tested to see how well 
it can predict coral growth and shrinkage. Random Forest is an ensemble machine learning 
method that creates binary decision trees using bootstraps of the training data. The “random” part 
of random forest is due to the selection of a random subset of the predictors among every branch 
in the tree; the larger the difference between the two outcomes in a predictor, the more likely it 
will be selected as the predictor for the split (Breiman, 2001). The “forest” part is due to 
repeating the creation of the bootstrapping trees until a desired limit. The decision trees create a 
“forest”. Furthermore, random forest includes variable importance determination by the creation 
of a tree model. For each bootstrapped tree, approximately 2/3 of the data is required for the 
model, but 1/3 is never selected. This is termed “out-of-bag”, which is then used as a test set for 
the model created. Once the prediction of this out-of-bag test data is obtained, a single predictor 
among the test set is randomly permuted and the test data is run through the model again. The 
prediction will then change accordingly depending on how important the variable was. This 
variable is then given a numerical value reflecting the amount of prediction loss. If the amount of 
prediction significantly dropped, it will have a bigger number indicating that is relatively 
important. This process is repeated with all other predictors to find how well they measure 
against each other. For classification, this is called “Mean Decrease Accuracy” while in 
regression it is called “Percent Increase Mean Square Error” (%IncMSE) instead. 



	

Figure	2:	Digitized	Orthoprojection	(100m2)	–	Palmyra	FR3	2013	

 

 

Physical and Mathematical Framework 

From an orthoprojection, a subset of species are selected to analyze, which are then traced and 
color coded to represent that particular species. In this study, we choose 7 genus-morphology 
level species to study: Favia, Hydnophora, Montastrea, Pocillopora, Pavona, Porites, and 
Stylophora (Figure 2). These species represent a large portion of the potential hard corals in the 
study site, Palmyra atoll. Four sites (FR3, FR5, FR7, and FR9) are chosen to analyze in 2013 and 
2014. The purpose of choosing a single time series is to maximize effect size of the variables and 
decrease the potential for pseudo replication seen in merging coral colonies. To current date, 
only competition-based predictors and measurements on the focal colony (colony in question) 
have been extracted. A buffer of 10 centimeters serves as the immediate surroundings that will 
be analyzed on the colonies because the maximum reach of coral aggression techniques are 
within 10 centimeters (Sheppard, 1981). 



The predictors obtained from the orthoprojection are (numerics are in centimeters & the right 
section gives a description of the predictor and the intuition behind selecting it): 

Table	1:	Biologically	relevant	predictors	and	descriptions	

1 Site What site it was located in. This covers any potential 
effects like temperature or salinity that isn’t capture 
by the images 

2 Morph The morphology of the colony. Tells of the life 
history of the colony and how its shape is. 

3 Species The species of the colony. Different species have 
different growth rates and life histories. 

4 Neighbor Count Number of neighbors in its buffer. More neighbors 
should have a negative effect on the colony. 

5 Neighbor Diversity Number of species in its buffer. More types of 
species could have an effect on colony. 

6 Total Neighbor Area Accumulated area of its neighbors. More total 
neighbor area could have a negative effect on 
colony. 

7 Mean Neighbor Area Average area of its neighbors. The bigger the 
average neighbor, the higher chance it will have a 
negative effect on colony. 

8 Area  Area of the focal colony. Representation of coral 
health and its cover on reef. 

9 Perimeter  Perimeter of the focal colony. The length it is 
exposed to surrounding neighbors 

10 Perimeter-Area Ratio P/A Ratio of the focal colony. Reflection of size and 
shape of the coral, which is health. 

11 Circularity Factor Deviation from a perfect circle - (4πA / P2). Meant 
to correct for the exponentially increasing area in 
perimeter-area ratio. 

12 Minimum Distance The shortest distance from any neighbor. The closer 
a neighbor is, the more potential it has for 
aggression. 

13 Percent Occupation The amount of area within its buffer. The higher, the 
more aggression it is exposed to in its immediate 
environment. 

14 Largest Neighbor The biggest neighbor area. Bigger neighbors should 
have stronger advantage or cause stress. 

15 Encounter Favia Did it encounter Favia? 
16 Encounter Hydnophora Did it encounter Hydnophora? 
17 Encounter Montastrea Did it encounter Montastrea? 
18 Encounter Pavona Did it encounter Pavona? 
19 Encounter Porites Did it encounter Porites? 
20 Encounter Pocillopora Did it encounter Pocillopora? 
21 Encounter Stylophora Did it encounter Stylophora? 



 

All analyses were run in R (RStudio). Special packages included in analyses were: rgeos and 
randomForest. For the classification of Shrink and Growth, the number of predictors that were 
subset at each break was 5 and the node side was 1.  One thousand trees were run per prediction 
and random forest was repeated 1000 times for the confidence intervals.  

A null distribution model through a simple permutation was created by taking the data set and 
partitioning it into a training and test set. The training set would be counted for its frequencies 
and the test set would be permuted to match the proportion of the training set. This would 
simulate a random binary assignment for the response variable to create the simplest model 
possible. The test set was then compared to the permutation and a confusion matrix was drawn to 
find the total accuracy and recall of the outcomes. This was then repeated 1000 times with the 
same split to find a null distribution. Random forest was then run once to find if a single 
repetition would be considered significantly better than random at a 95% confidence interval. 
This was then run 100 times where a rate of 80% or better would indicate the random forest 
prediction did better than random. If the model was significant, it would then be selected for 
further analysis. 

 

Results 

The frequencies of Shrink to Growth are given in Table 2. Out of 1474 focal colonies to 
examine, 568 experienced shrinkage totaling to 39% of the total data. For Hydnophora and 
Montastrea, there is a low amount of samples noted. With the exception of these two, all the rest 
have sufficient sample sizes above 150 and Pocillopora especially has 612. Pocillopora and 
Pavona have at least 45% of their proportion to be shrinkage.  

Table	2:	Shrink	Counts	in	Samples	

 
Using the null distribution significance test through permutations, we find for random forest, 
Hydnophora, Montastrea, and Pavona do not meet the minimum criteria of being significant 
80% of the time (Table 3). The full model including all species data and Stylophora have 
significant prediction but only for Growth and the Overall accuracy. Favia and Porites only 
display significance for Growth. The insignificant Shrink prediction is coupled with the 
observation made earlier that the frequencies of the outcomes are biased for these four models.  

Pocillopora is the only model that significantly predicts all outcomes, which is noted to have 
nearly equal frequencies, and therefore no bias in the proportion. 

 Favia Hydnophora Montastrea Pavona Pocillopora Porites Stylophora Total 
% 
Shrink 

38 % 22 % 43 % 45 % 48 % 30 % 19 % 39 % 

Counts 70
186

 
11
50

 
22
51

 
82
181

 
291
612

 
45
151

 
47
243

 
568
1474

 



Table	3:	Model	Significance	

 

 

 

 

 

 

	

Figure	3:	Random	Forest	Pocillopora	Variable	Importance	

	

The variable importance calculation random forest is displayed in Figure 3. This figure describes 
the mean decrease accuracy each variable has when randomly permuted and its importance in 
prediction of the outcomes. Focal measurements such as perimeter, circularity factor, area, and 
perimeter-area ratio have the largest values, indicating they have more importance than 
neighborhood related predictors. 

 

RF Full Favia Hydnophora Montastrea Pavona Pocillopora Porites Stylophora 
Overall X     X  X 
Growth X X    X X X 
Shrink      X   



	

Figure	4:	Confusion	matrix	of	random	forest	prediction	–	Pocillopora	

	

The confusion matrix in Figure 4 describes the amount of times the outcomes are correctly and 
incorrectly predicted. This is a density graph plotted with log area distributions of the focal 
colony. Blue is true negative (correctly labeled Shrink), red is true positive (correctly labeled 
Growth), purple is false negative (incorrectly labeled Shrink), and green is false positive 
(incorrectly labeled Growth). The graph shows a separation of Growth and Shrink around 150 
cm2. Biologically, this indicates growth has a pattern of mainly being in juveniles and as a 
colony grows larger, the higher the chance one will shrink. The false negatives share similar 
patterns to true negative, which shows the cues of area push the prediction towards separating by 
area size. Same for false positives. The overlap shows there is still correct predictions along the 
area distribution but they become rarer as one diverges too far from the main proportion.  

From the simulations, the prediction for Pocillopora in overall accuracy is 64 +/- 4 % with an 
average of 8% better prediction than the null. Growth recall is 66 +/- 9 % with an average of 9% 
better prediction than the null. Shrink recall is 61 +/- 10 % with an average of 8% better 
prediction than the null. These are performance significant, but perhaps biologically 
insignificant. 
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